Supporting Information:

Identification of Allosteric Modulators of Metabotropic Glutamate 7 Receptor Using Proteochemometric Modeling

Gary Tresadern,^{a,*} Andres A. Trabanco,^b Laura Pérez-Benito,^a John P. Overington,^c Herman W. T. van Vlijmen,^d Gerard J. P. van Westen,^{c,*}

^a Computational chemistry, ^b Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., Jarama 75A, 45007, Toledo, Spain. ^c ChEMBL Group, EMBL
 -EBI, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, United Kingdom. ^d Computational chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium.

* Corresponding author phone: +32 1460 2111. E-mail: gtresade@its.jnj.com; phone: +31 71
527 3511. E-mail: gerard@lacdr.leidenuniv.nl

Contents:

٠	Method for selectivity assays	р3
•	Table S1. Example of training and test set distribution	p4
•	Table S2. Aligned Residues used.	P5
•	Table S3. Euclidian distance matrix using the descriptors used in the model.	р6
٠	Table S4: Physicochemical properties used in addition to fingerprints	p7
٠	Table S5. Smiles and purity information of identified hits	p8
٠	Figure S1. Sequence identity between 7-TM domains of human mGlu receptors	p9
٠	Figure S2. Example of the sequence alignment human mGlu receptors	p10
٠	Figure S3: Chemical space mean distance versus target space mean distance	p11
•	Figure S4. ROC curve for Out-of-Bag validation.	p12
•	Figure S5. Model quality in different validation experiments	p13
•	Figure S6. Properties of queries used for fingerprint analogue searches.	p14
•	Figure S7. Comparing PCM highly ranked false positives to true positives	p15

Method for selectivity assays

mGlu receptor panel selectivity assays: Ca^{2+} assays with human mGlu1, 3, 5, 7, or 8 receptor expressing HEK 293 cells were performed as reported in Lavreysen et al. (2013), except for a slight change in the procedure for mGlu₅: cells expressing the human mGlu₅ receptor were seeded at 40,000 cells/well in MW384. Twenty-four hours after seeding, cells were incubated for 90 min in Ca^{2+} assay kit (Molecular Devices) dissolved in saline PBS supplemented with 5 mmol/L probenecid, pH 7.4 (f.c. 2.5 mmol/L probenecid as loading buffer was added on the cell layer without removal of medium) before measurements. Measurement of [³⁵S]GTP_YS binding to membranes from CHO cells expressing the rat mGlu₆ receptor and membranes from L929sA cells expressing the human mGlu₄ receptor were conducted also as described in Lavreysen et al. 2013.

Lavreysen H, *et al.* Pharmacological Characterization of JNJ-40068782, a New Potent, Selective, and Systemically Active Positive Allosteric Modulator of the mGlu2 Receptor and Its Radioligand [3H]JNJ-40068782. *J. Pharmacol. Exp. Ther.* **2013**, *346*, 514- 527.

	Actives	_Training		Inactive	es_Training		Actives	_Testing		Inactive	Inactives_Testing					
Receptor	Total	ChEMBL	Janssen	Total	ChEMBL	Janssen	Total	ChEMBL	Janssen	Total	ChEMBL	Janssen				
grm1_human	391	366	25	396	1	395				3765	8	3757				
grm1_mouse							15	15								
grm1_rat	28	28		26	26		288	288								
grm2_human	2234	296	1938	2231	6	2225				1481	3	1478				
grm2_rat	3	3		4	4		237	237								
grm3_human	269	13	256	272	1	271				3191	4	3187				
grm3_rat	5	5		3	3		24	24								
grm4_human	99	88	11	86		86				3844	11	3833				
grm4_rat							32	32								
grm5_human	1422	996	426	1401	14	1387				2341	17	2324				
grm5_mouse							2	2								
grm5_rat	56	56		46	46		588	588								
grm6_human	1	1		2	2					2	2					
grm6_rat	5		5	5		5				4084		4084				
grm7_human	23		23	17		17				3957		3957				
grm7_rat							20	20								
grm8_human	13	5	8	13		13				3734		3734				
Total	4549			4502			1206			26399						
Fraction	0.50			0.50			0.04			0.96						

Supporting Table S1: Example of training and test set distribution

				c			-	2			~	DC.				-	42						T M	GA		ECL		,	C A DC				T 1 4 5			6	A DC			T N 44	c								-		-	7
\vdash	_		GAPS	3	2	2	2	2	2	2	GA	422	3	3	3	3	13 3	3	3	3	G/	422	4	24		2	_		JAPS		5	5	5	5	5	G	APS		6 6	5 6	5	6		6	APS		7	77	7	7		7
S p c i e s	R c e p t o r	1	2	з д	4 6 a 4 2	2 4 9 a 4 5	5 0 a 4 6	2 5 3 a 4 9 c	5 6 a 5 2	6 0 a 5 6	5	6 7	2 8 a 3 2	2 9 a 3 3	3 2 a 3 6	3 3 a 3 7	3 5 a 3 9 c	3 6 a 4 0	3 9 a 4 3	4 0 a 4 4	8	1	4 5 3 a 4 3	1	1	4 5 . 5	4 5 1 2 3	. 1	1	1 1	4 0 a 4 1 0	4 3 a 4 3	4 4 a 4 4 4	4 7 a 4 7 6	5 1 a 5 1	1 1	2	2	4 4 7 4 7 4 7 4 7 4 7 6 9	144 78 a a 15 0	5 1 a 5 3	5 5 a 5 7	2	23	2	2 2	, 3 5 a 2 2 2 5	, , , , , , , , , , , , , , , , , , ,	4 1 a 3 5	, 4 2 a 3 6		4 5 a 3 9 c
	1	-	2	<u> </u>		C C		-	-		5						-				0	5 0		-	-		_	-	5	0 /						0 3		-					-		Ť	5 0						
	1	-			Ľ	G	'	G	L	-	-		ľ	L R	v	G	3	3	C	Ŷ	-		Q	-	-	C		-	-		ľ	P	L	N	'		-	-		V	/ F	Ŷ	-	-	-		'		А	v		2
	2	-			L	G	v	С	м	F	-		R	R	L	G	Α	F	с	Y	-		Q	-	-	CI	Η -	-	-		N	ΛS	L	Ν	'		-	-	т	W	/ F	F	-	-	-		T	ΤN	ΛS	v		S
7	3	-			L	G	v	S	М	F	-		R	R	L	G	S	F	с	Y	-		Q	-	-	c١	v -	-	-		N	/I S	L	D	v		-	-	т	W	/ F	F	-	-	-		T	ΤN	ΛS	v		S
MAI	4	-			L	G	I	С	т	м	-		R	R	L	G	G	м	s	Y	-		Q	-	-	c I	-	-	-		L	L	L	S	м		-	-	тV	v	V F	F	-	-	-		Т	ΤL	S	v		S
ЫН	5	-			Т	G	ı	G	с	L	-		q	R	. 1	G	s	Р	s	Y	-		Q	-	-	c 1	г -	-	-		v	P	L	N	ı I		-	-	ті	W	V F	Y	-	-	-		1	IN	лs	v		s
	6	-			L	G	ī	ī	I.	м	-		R	R	L	G	G	т	s	Y	-		Q	-	-	c I	м -	-	-		L	с	L	s	м		-	-	ті	W	v F	F	-	-	-		Т	тι	S	L		s
	7	-			L	G	ī	с	ī	м	-		R	R	L	G	G	м	s	Y	-		Q	-	-	c I	-	-	-		1	s	L	s	м		-	-	т١	v v	V F	F	-	-	-		т	тι	s	N	1	I S
	8	-			L	G	ī	с		м	-		R	R	L	G	G	м	s	Y	_		Q	-	_	c ı	-	_	-		L	s	L	s	м		-	-	т	W	VF	F	-	_	_		T	тι	s	N		s
	1	_	_		I.	6		6	r		_) R	v	6	s	s	Ċ	v	_					с 1	-		_			, D	v	N			_	_	т	14	N F	v						. т	· •	v		s
	2				Ľ	0	.,	0							, v	0		-	C	, ,			Q	-							Ľ	· ·						-					-							•		5
	2	-			Ľ	G	v	C	IVI	F	-		ĸ	к	Ľ	G	А	F	C	Y	-		Q	-	-	CI	Η -	-	-		Ň	/1 5	L	N	'		-	-		V	/ F	F	-	-	-		'	IN	/1 5	v		5
	3	-			Ľ	G	v	S	М	F	-		R	R	L	G	S	F	с	Y	-		Q	-	-	c \	V -	-	-		N	ΛS	L	D	v		-	-	т	W	/ F	F	-	-	-		T	ΤN	ΛS	v		S
RAT	4	-			L	G	I	С	т	м	-		R	R	L	G	G	М	S	Y	-		Q	-	-	C I	-	-	-		L	L	L	S	м		-	-	T١		/ F	F	-	-	-		T	ΤL	S	v		S
	5	-			Т	G	I	G	С	L	-		q	R	1	G	S	Р	s	Y	-		Q	-	-	C 1	г -	-	-		v	P	L	Ν	I I		-	-	т і	W	/ F	Y	-	-	-		1	IN	ΛS	v		S
	6	-			L	G	I	I	I	м	-		R	R	L	G	G	т	s	Y	-		Q	-	-	c r	м -	-	-		L	С	L	S	м		-	-	т	W	V F	F	-	-	-		Т	ΤL	S	L		S
	7	-			L	G	I	с	I	м	-		R	R	L	G	G	м	s	Y	-		Q	-	-	c I	-	-	-		I.	s	L	s	м		-	-	т١	v	V F	F	-	-	-		Т	тι	S	Μ		s
	8	-			L	G	ı	с	ı	м	-		R	R	L	G	G	м	s	Y	-		Q	-	-	c I	-	-	-		L	s	L	s	м		-	-	т	W	v F	F	-	-	-		Т	тι	S	м		S
щ	1	-			1	G	ı	G	с	L	-		q	R R	v	G	s	s	с	Y	-		Q	-	-	c 1	г-	-	-		v	P	v	N			-	-	т	v	V F	Y	-	-	-		1	ιт	A	v		s
ous	5	_				G	ī	G	с	L	-		0	R		G	s	Р	s	Y			0	-	_	c 1	r -	_	_		v	/ P	L	N			_	-	т	W	VF	Y	-	_	_			I N	лs	v		s
Σ	8				Ι.	G		c		м	_	_	R	R		G	G	м	ç	v			0	_		C 1			_	_	Ι.	ç		ç	М				т	14	N F	F						т.	ç	м		s

Supporting Table S2: Aligned Residues used. Residues marked in yellow were removed in the model due to the absence of variance over the sequences.

Receptor	grm1 human	grm1 mouse	grm1 rat	grm2 human	grm2 rat	grm3 human	grm3 rat	grm4 human	grm4 rat	grm5 human	grm5 mouse	grm5 rat	grm6 human	grm6 rat	grm7 human	grm7 rat	grm8 human
grm1 human		0.40	0.40	1.16	1.16	1.13	1.13	1.10	1.10	0.65	0.65	0.65	1.15	1.15	1.12	1.12	1.10
grm1 mouse	0.40		0.00	1.23	1.23	1.20	1.20	1.18	1.18	0.76	0.76	0.76	1.22	1.22	1.19	1.19	1.18
grm1 rat	0.40	0.00		1.23	1.23	1.20	1.20	1.18	1.18	0.76	0.76	0.76	1.22	1.22	1.19	1.19	1.18
grm2 human	1.16	1.23	1.23		0.00	0.57	0.57	1.01	1.01	1.01	1.01	1.01	1.02	1.02	0.94	0.94	0.92
grm2 rat	1.16	1.23	1.23	0.00		0.57	0.57	1.01	1.01	1.01	1.01	1.01	1.02	1.02	0.94	0.94	0.92
grm3 human	1.13	1.20	1.20	0.57	0.57		0.00	0.98	0.98	0.99	0.99	0.99	1.04	1.04	0.92	0.92	0.90
grm3 rat	1.13	1.20	1.20	0.57	0.57	0.00		0.98	0.98	0.99	0.99	0.99	1.04	1.04	0.92	0.92	0.90
grm4 human	1.10	1.18	1.18	1.01	1.01	0.98	0.98		0.00	0.95	0.95	0.95	0.68	0.68	0.46	0.46	0.52
grm4 rat	1.10	1.18	1.18	1.01	1.01	0.98	0.98	0.00		0.95	0.95	0.95	0.68	0.68	0.46	0.46	0.52
grm5 human	0.65	0.76	0.76	1.01	1.01	0.99	0.99	0.95	0.95		0.00	0.00	1.03	1.03	0.96	0.96	0.94
grm5 mouse	0.65	0.76	0.76	1.01	1.01	0.99	0.99	0.95	0.95	0.00		0.00	1.03	1.03	0.96	0.96	0.94
grm5 rat	0.65	0.76	0.76	1.01	1.01	0.99	0.99	0.95	0.95	0.00	0.00		1.03	1.03	0.96	0.96	0.94
grm6 human	1.15	1.22	1.22	1.02	1.02	1.04	1.04	0.68	0.68	1.03	1.03	1.03		0.00	0.64	0.64	0.54
grm6 rat	1.15	1.22	1.22	1.02	1.02	1.04	1.04	0.68	0.68	1.03	1.03	1.03	0.00		0.64	0.64	0.54
grm7 human	1.12	1.19	1.19	0.94	0.94	0.92	0.92	0.46	0.46	0.96	0.96	0.96	0.64	0.64		0.00	0.35
grm7 rat	1.12	1.19	1.19	0.94	0.94	0.92	0.92	0.46	0.46	0.96	0.96	0.96	0.64	0.64	0.00		0.35
grm8 human	1.10	1.18	1.18	0.92	0.92	0.90	0.90	0.52	0.52	0.94	0.94	0.94	0.54	0.54	0.35	0.35	

Supporting Table S3: Euclidian distance matrix using the descriptors used in the model.

Descriptor	Notes
CMP_Formal_Charge	Calculated in PP after ionization at 7.4
CMP_AlogP	
CMP_Num_atoms	
CMP_Num_Bonds	
CMP_Num_Hydrogens	
CMP_Positive_Atoms	
CMP_Negative_Atoms	
CMP_Ring_Bonds	
CMP_Rotatable_Bonds	
CMP_Aromatic_Bonds	
CMP_Bridge_Bonds	
CMP_Num_Rings	
CMP_Aromatic_Rings	
CMP_Ring_Assemblies	
CMP_Num_Chains	
CMP_Chain_Assemblies	
CMP_Molecular_Weight	
CMP_H_Acceptors	
CMP_H_Donors	
CMP_SP3_Carbon_fraction	
CMP_SP2_Carbon_fraction	
CMP_SP_Carbon_fraction	
CMP_Total_Atoms	Heavy atoms and hydrogens
CMP_Aliphatic_Rings	
CMP_Aromatic_Bonds_Frac	
CMP_Bridgebonds_Frac	
CMP_Ringbonds_Frac	
CMP_Aliphatic_Ring_Bonds_frac	
CMP_Rotatable_Bonds_Frac	
CMP_Postive_Atoms_Frac	Out of heavy atoms
CMP_Negative_Atoms_Frac	Out of heavy atoms
CMP_H_Acceptors_Fraction	
CMP_H_Donors_fraction	
CMP_Rigidity_Index	(AromaticBonds_Frac + (1-RotatableBonds_Frac) + Aliphatic_Ringbonds_Frac) / 3

Supporting Table S4. Physicochemical Descriptors used

Number in Paper	Method	Purity by mass % (Multiple values are repeat measurements)	Source	mGlu7 PAM pEC50	mGlu7 EMAX (%)	Smiles
1	FPrint Active	100, 100, 100	Internal synthesis	4.90	86	COc1c(F)cccc1COc2ccc(cn2)C(=O)N[C@H](C)C(C)(C)C {A20=R}
2	FPrint Active Analogues	100, 100	Internal synthesis	4.90	103	COc1cc(F)cc(c1)COc2ccc(cn2)C(=O)N[C@H](C)C(C)(C)C {A20=R}
3	PCM	91, 94, 98, 99	Internal synthesis	5.80	76	CNC(=O)N1CCCC(CN2CCC(CC2)OC(c3ccccc3)c4ccccc4)C1
4	PCM	100	Internal synthesis	4.50	57	CC(C)(C)OC(=O)N1CCc2ccc(cc2CC1)n3cc(cn3)c4ccncc4
5	PCM	-	Asinex	4.80	99	COc1ccc(cc1)CN2CCC3=C(C2)N=C(NC3=O)N4CCC(C)CC4
6	PCM	86	ChemOvation	<4.50	65	CC1CCN(CC1)c2nc(nc3cnccc23)c4ccncc4

Supporting Table S5. Smiles and purity information of identified hits

	1	2	3	4	5	6	7	8	9	10	11
1:GRM1_XRAY		96.2	47.6	47.2	47.2	43.9	43.0	74.7	40.8	44.0	44.0
2:GRM1_HUMAN	98.8		48.0	47.6	47.6	44.6	43.7	78.1	41.5	44.8	44.8
3:GRM2_HUMAN	49.6	48.7		99.3	99.3	74.7	52.0	50.9	48.0	49.8	50.9
4:GRM2_RAT	49.2	48.3	99.3		99.3	74.7	52.0	50.6	48.0	49.8	50.9
5:GRM2_MOUSE	49.2	48.3	99.3	99.3		74.3	52.0	50.9	48.0	50.2	51.3
6:GRM3_HUMAN	45.7	45.3	74.7	74.7	74.3		46.6	47.9	45.8	46.9	47.7
7:GRM4_HUMAN	46.1	45.7	53.5	53.5	53.5	48.0		49.1	75.5	78.3	82.7
8:GRM5_HUMAN	76.7	78.1	50.2	49.8	50.2	47.2	46.9		43.7	46.6	47.3
9:GRM6_HUMAN	43.8	43.4	49.4	49.4	49.4	47.2	75.5	45.7		72.6	76.2
10:GRM7_HUMAN	47.3	46.8	51.3	51.3	51.7	48.3	78.3	48.7	72.6		85.9
11:GRM8_HUMAN	47.3	46.8	52.4	52.4	52.8	49.1	82.7	49.4	76.2	85.9	

Figure S1. Sequence identity between 7-TM domains of mGlu receptors. Proteins are identified with their gene ID's GRM#, where #1-8 corresponds to the equivalent receptor protein. Sequence identity within mGlu receptor subgroups mGlu 1&5, 2&3, 4-6-7&8 is typically in the range 75-85% whereas between members of different groups it is typically in the range of 45-50%.

		10	20	30	40	50	60	70	80	
grm1_human/590-841 grm5_human/577-828 grm2_human/565-820 grm3_human/548-829 grm4_human/585-848 grm6_rat/577-840 grm7_human/588-851 grm8_human/581-844	590 N I E S I I A I 577 D PE PI A A V 565 D AWA V GPV 574 D AWA I GPV 585 S PWA VL PL 577 S PWA AL PL 588 S PWA VI PV 588 S PWA V PV	AF <mark>S</mark> CLGIL /VFACLGLL /TIACLGAL /TIACLGAL /TIACLGFM .FLAVVGIA .LLAVLGIM /FLAMLGII /FVAILGII	VTLFVTLIFV ATLFVTVVFI ATLFVLGVFV CTCMVVTVFI ATLFVVITFV ATTFIMATFM ATIFVMATFI ATTFVIVTFV	L YRDT PVVKS I YRDT PVVKS RHNAT PVVKA KHNNT PL VKA RYNDT PI VKA RYNDT PI VRA RYNDT PI VRA RYNDT PI VRA	S SREL CY I I I S SREL CY I I I S GREL CY I L S GREL CY I L S GREL SYVLI S GREL SYVLI S GREL SYVLI S GREL SYVLI	AGIFLGYVCPF AGICLGYLCTF GGVFLCYCMTF FGVGLSYCMTF AGIFLCYATTF TGIFLLYAITFI TGIFLLYAITFI TGIFLCYSITF	ILIAKPTTIS CLIAKPKQIY IFIAKPSTAV FFIAKPSPVI MIAEPDLG MVAEPCAAI MIAKPDVAV MIAAPDTII	CYLORLLYG CYLORIGIGI CTLRRLGLG CALRRLGLG CSLRRIFLG CAARRLLLG CSFRRVFLG CSFRRVFLG	LSSAMCYSALVTK LSPAMSYSALVTK TAFSVCYSALLTK SSFAICYSALLTK LGMSISYAALLTK LGTTLSYSALLTK LGMCISYAALLTK LGMCFSYAALLTK	678 665 653 662 673 665 676 669
	90	100	110	120	130	140	150	160	170	
grm1_human/590-841 grm2_human/577-828 grm2_human/576-820 grm4_human/574-829 grm6_rat577-840 grm6_rat577-840 grm7_human/588-851 grm8_human/581-844	679 TNR AR L 666 TNR AR L 654 TNR AR F 663 TNC AR F 674 TNR YR F 666 TNR YR F 677 TNR YR F 670 TNR HR F	AGSKKKIC AGSKKKIC GGAREGA DGVKNGA EQGKRSV EQGKRSV EQGKKSV EQGKKSV	TRKPRFMSAM TKKPRFMSAC - QRPRFISPA - QRPKFISPS - SAPRFISPA - TPPPFISPT - TAPRLISPT - TAPKFISPA	AQUVIIASILI AQLVIAFILI SQVAICLALI SQVFICLGLI SQLAITFSLI SQLVITFGLT SQLAITSSLI SQLVITFSLI	SVQLTLVVTI CIQLGIIVAI SGQLLIVVAV LVQIVMVSVV SLQLLGICVV SLQVVGVIAV SVQLLGVFIV SVQLLGVFVV	LIMEPPMP FIMEPPDI VLVVEAPGT VLILEAPGT VVDPSHSV-V VGGOPPHSV-II VFGVDPPNII-II VFGVDPP	GKETAPE GKETAPE RRYTLAE DFQDQRTLDP DYEEQRTVDP DYDEHKTMNP DYGEQRTLDP	SIKEV <mark>YLIC</mark> SIREVYLIC RREVVILCC KRETVILKC RFARGVLKC EQARGVLKC EQARGVLKC EKAR <mark>GVLKC</mark>	NTSNLGVVAPLGY NTTNLGVVTPLGY NHRDASMLGSLAY NVKDSSMLISLTY DISDLSLICLGY DISDLSLIGCLGY DITDLQIICSLGY DISDLSLICSLGY	759 746 734 743 759 751 762 755
	180	190	200	210	220	230	240	250	260	
grm1_human/590-841 grm5_human/577-828 grm2_human/565-820 grm3_human/585-848 grm6_rat/577-840 grm7_human/588-851 grm8_human/581-844	760 NGLLIMS 747 NGLLILS 735 NVLLIAL 744 DVILVIL 760 SMLLMVT 752 SLLLMVT 763 SILLMVT 756 SILLMVT	TYYAF KTR TFYAF KTR TLYAF KTR TVYAF KTR TVYAF KTR TVYAI KTR TVYAI KTR TVYAI KTR	NVPANFNEAK NVPANFNEAK KCPENFNEAK KCPENFNEAK GVPETFNEAK GVPETFNEAK GVPETFNEAK GVPETFNEAK	Y I AFTMYTTC Y I AFTMYTTC F I GFTMYTTC F I GFTMYTTC P I GFTMYTTC P I GFTMYTTC P I GFTMYTTC P I GFTMYTTC	I IWLAFVPI I IWLAFVPI I IWLAFLPI I WLAFLPI I WLAFIPI I WLAFIPI I WLAFIPI I IWLAFIPI	F GT AQSA E KMY	YKIITTCFAV YKIITMCFSV YQTTTMCVSV YQTTTMCISV IQTTTLTVSV IQTTTLTVSL IQTTTLTVSN IQTTTLTVSN	YSL SVTVALG YSL SATVALG YSL SGSVVLG YSL SGFVVLG YSL SASVSLG SL SASVSLG INL SASVALG ISL SASVSLG	SMF <mark>TPK</mark> MYIIIAK SMFVPKVYIILAK CLFAPKLHILFQ CLFAPKVHILFQ MLYWPKYVILFH MLYMPKVYIIFH MLYMPKVYIIFH	841 828 820 829 848 840 851 844

Figure S2. Example of the sequence alignment for selected amino acids in the 7-TM.

Supporting Figure S3: Mean Tanimoto distance (chemical descriptors) plotted versus the mean Euclidian distance (sequence descriptors). The worst performing receptor in the learning curve (rat mGlu5) is shown to have the largest average chemical distance to the training set, while the Euclidian distance to the training set is rather low. In fact, the distance to the human and mouse orthologs is 0. We speculate that the high chemical distance combined with the low number of actives led to the poor performance.

Figure S4: ROC curve for out-of-bag cross validation (A) and external validation (B). The ROC curve was generated on the data from table S3 and represents one of the 5 models used in ensemble modeling of the final predictions.

Figure S5. Model quality in different validation experiments. Shown are model quality for true data: fitted model (brown), externally validated (orange). Model quality for scrambled data: no protein descriptor (grey) protein descriptor scrambled (yellow), compounds physicochemical descriptors scrambled (light blue), compound FCFP_6 bits scrambled (green), no compound descriptor (dark blue), Y-scrambled (where the output variable (activity) has been randomized and coupled to input vectors with true descriptors, red), a random model (dark grey), and a biased random model (purple). As all scrambled experiments deteriorate model quality compared to models build on the true data, it can be said that each part of the data adds information for the model. However, the influence of the compound descriptors is much larger than the influence of the protein descriptors. This can also be explained given that a larger part of the variance in the data set is located in the compound descriptors (1000s) as opposed to the relatively low number of proteins (17).

Figure S6. Properties of queries used for fingerprint analogue searches. $Histogram of mGlu_7 pIC_{50}$ showing the skew to low activity, also histograms of calculated AlogP and MW.

Figure S7. Comparing PCM highly ranked false positives to true positives. Left: Example of top ranking hits from the prospective virtual screen PCM model that later turned out inactive (false positives). Right: Example of known $mGlu_7$ receptor actives (true positives.