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Web Appendices A and B provide the EM algorithm referenced in Sections 2.2 and the technical
proofs for Theorem 1 and 2 referenced in Section 3, respectively. Supplementary proofs needed in
Web Appendix B are given in Web Appendix C. Web Appendix D contains the tables referenced in
Sections 4.3 and 5.

Web Appendix A: EM Algorithm

In Appendices A.1 and A.2, the expressions of the conditional expectation and the conditional score
equations calculated in the E- and M-steps of the EM algorithm described in Section 2.2 are given for
continuous longitudinal outcomes following a normal distribution and binary longitudinal outcomes
with survival time, respectively.

A.1. EM algorithm — Continuous longitudinal data and survival time

(1) E-step : For continuous longitudinal outcomes following a normal distribution and survival time,
we calculate the conditional expectation of ¢(b;, a;) for subject i with S; =s given the observations and

the current estimate (8™, Agm)) for some known function ¢(-). The conditional expectation denoted
by E[q(bi, ai)|0(m),Agm)] can be expressed as the following:

Given the current estimate (0(m>,A§m)),
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is a constant, (Eém)) 2 is an unique non-negative square root of Egm) (i.e. (Egm)) 2 x (EI(Jm)) 2 = Egm)),
and z,, follows a multivariate Gaussian distribution with mean zero.

(2) M-step : Since normal distribution has a dispersion parameter ¢ as o2

., We estimate B+ and O’Z



in longitudinal process. B(™*1) is the linear regression coefficients of regressing {Yi—E[X ibi|0™) AT,
1= 1,...,n} on {Xl-,i = 1,...,n}, where X ; = (X;‘q,,Xz;h)T and X; = (XZ;,...,XT )T
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where D; = Y; - X; 80" — B[ X;b;[0) AC]. w1 ay(mat) | (qp(meD) Am)y ang

Agmﬂ) have the same expressions as in Section 2.2.
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A.2. EM algorithm — Binary longitudinal data and survival time

(1) E-step : For binary longitudinal outcomes and survival time, given the current estimate (0(m) , Agm)),

the conditional expectation denoted by E[q(bi, ozi)|0(m),Agm)] can be expressed as in (B.01), where
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is a constant.
(2) M-step : Since the parameter ¢ is set to 1 for logistic distribution, we estimate only 3 in the

longitudinal process. B(m+1) solves the conditional expectation of complete data log-likelihood score
equation, using one-step Newton-Raphson iteration,
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El()m“), D) gy (m+1) gy (mal) -y (mtl) - g AgmH) have the same expressions as in Section 2.2.

Web Appendix B: Proofs for Theorems

In Appendices B.1 and B.2, we present the detailed technical proofs for Theorem 1 and Theorem 2 given
in Section 3, which are the asymptotic properties of the proposed estimator (8, A(t)) with = (ET, aT,
Vech(f]b)T,uT,wT,'t,TJT,’\T)T and A(t) = (A1 (t),...,As(t))”. Meanwhile, the supplementary proofs
needed to prove the asymptotic properties are provided in Appendices C.1 ~ C.3. From the full



likelihood function of observed data (Y, V') for (8, A) given in Section 2.2,
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we have the observed log-likelihood function,
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Then, we obtain the following modified object function by replacing As(V;) with Ag{V;} in the above
l(0,A;Y, V) where A;{V;} is the jump size of A,(t) at the observed time V; with A; =1,
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and (6, A) maximizes I,(8, A) over the space {(8,A):0 €O, A e W, xW,,---xW,}, where W,, consists
of all the right-continuous step functions only; that is, A = (Ay,...,Ag)?,s=1,...,5,A, € W,. For
the proofs of both Theorem 1 and Theorem 2, the modified object function is used in the place of the
observed log-likelihood function.
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B.1. Proof of Consistency — Theorem 1

Consistency can be proved by verifying the following three steps: First, we show the maximum like-
lihood estimate (8, A) exists. Second, we show that, with probability one, Ay(7), s = 1,...,5, are
bounded as n — oo. Third, if the second step is true, by Helly’s selection theorem (p9 of [3]), we
can choose a subsequence of A, such that A, weakly converges to some right-continuous monotone
function A* with probability one; that is, the measure given by p4([0,t]) = Ag(t) for t € [0,7] weakly
converges to the measure given by p’([0,t]) = A%(t). By choosing a sub-sequence, we can further
assume 6 — 0*. Thus, in this third step, we show 6* = 8, and A =As,s=1,...,5S.

Once the three steps are completed, we can conclude that, with probability one, 0 converges to Og
and A, converges to Ay in [0,7], s =1,...,5. However, since Ay is continuous in [0, 7], the latter
can be strengthened to uniform convergence; that is, sup;[g - IA(t) - Ag(t)|| = 0 almost surely. Then,
the proof of Theorem 1 will be done.

In, the first step, we will show the existence of the maximum likelihood estimate (8,A). Since 6
belongs to a compact set © by the assumption (A1), it is sufficient to show that A;{V;}, the jump size
of As at V; for which A; =1, is finite. Since, for each subject i with A; =1,
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we have that, from (B.02),
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Thus, if As{V;} - oo for some i with A; = 1, then [,,(6,A) - —oco, which is contradictory to that
l,(0,A) is bounded. Therefore, we conclude that As{-}, the jump size of A for stratum s, must be
finite. By the conclusion and the assumption (A1), the maximum likelihood estimate (6, A) exists. {

In the second step, we will show that KS(T) is bounded as n goes to infinity with probability one.

We define Z'; =log KS(T) and rescale A, by the factor G Then, we let A, denote the rescaled function;
that is, Ag(t) = Ag(t)/Ag(7) = Ag(t)e . thus, Ay(7) = 1. To prove this second step, it is sufficient to
show (s is bounded. After some algebra in (B.02), we obtain that, for any A € W x W--- x W,
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Thus, since 0 < n'1,(8,A) —n~'1,(0,A) where A = € o A, it follows that
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According to the assumption (A3), there exist some positive constants C'1, C2 and C3 such that
|Q1ia(t, bao, @)| < C1||bao||+ C2||Y i]| + C5. By denoting by as a vector of variables following a standard
multivariate normal distribution, from concavity of the logarithm function, in the third term of (B.03),
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where C4 and Cj5 are positive constants. Then, since it is easily verified that E b, [%M Z;M ia
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assumption (A5), the third term of (B.03)
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can be bounded by some constant Cg from above. Then (B.03) becomes
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where C7 is a constant. On the other hand, since, for any I' > 0 and = > 0, I'log (1 + x/F) <I'z/T ==z,
we have that e™ < (1 + x/F)fF. Therefore, in the second term of (B.04),
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where Cg is a constant and Co(I") is a deterministic function of I'. For the s-th stratum, (B.06) is that
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In other words,

Z‘ < (CS+CQ(F))27’L N (CS+CQ(F))2
i DY I(Vi=7)I(S; =) TP(Vi=1,5=5)

If we denote By = exp {2(Cs+Co(I))/(TP(V; = 7,S; = 5)) }, we conclude that Ay(7) < Bgo,s=1,...,8.
Note that the above arguments hold for every sample in the probability space except a set with zero
probability. Therefore, we have shown that, with probability one, As(7) is bounded for any sample
size n. |

In the third step, the goal of this step is to show that, if 0 - 6" and A, weakly converges to
A% with probability one, then 8* = 8y and A = Ay, s =1,...,5. We set some preliminaries as the
followings: For convenience, we omit the index ¢ for subject and use O to abbreviate the observed
statistics (Y, X, X,V,A,ny,s) and {Z(t),Z(t),0 <t < V} for a subject. By dropping (As(V))?
from the complete data likelihood function, we define that

G(b,,0;0,A,) = exp{”ZN [Yj(Xjﬂ . 21(41»(1;0{)) ~B(B:ba)
J

+C(Yj; ¢j)]}
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_ _ 1 _
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d 0.0 A =
and  Q(v,0;0,A,) S fp, G(ba,,0;60,A,)db,

Furthermore, for any measurable function f(Q), we use operator notation to define P,, f = n™t 3%, £(O;)
and Pf = [ fdP = E[f(O)]. Thus, P, f is the empirical measure from n i.i.d observations and
Vn(P,—P) is the empirical process based on these observations. We also define a class % =
{Q(v,0;0,A5) : v e [0,7],0 € O,A5 € W,As(0) = 0,A5(7) < Bso}, where By is the constant given
in the second step and W contains all nondecreasing functions in [0,7]. According to the result
proved in Section C.1 % is P-Donsker.

Let ms denote the number of subjects in stratum s; i.e. n = Zil ms. Vs and Ay denote the
observed time and censoring indicator for a subject belonging to stratum s, respectively. Thus, Vy
and Ay are the [-th subject observed time and censoring indicator in stratum s.

Now we start the proof of the third step. Since (?)‘,K) maximizes the function 1,(0,A), where
A = (A,...,As)T and A,, s = 1,...,S, are any step functions with jumps only at V; belonging to
stratum s for which A; =1, we differentiate ,,(8, A) with respect to A;{Vy} and obtain the following
equation, satisfied by Ay,

—~ A
Ro{Va} = slM
Mg Pms {I(V; 2 U)Q(Ua 07 07 AS)}|U:VSZ
Imitating the above equation, we also can construct another function, denoted by A = (Aq,...,Ag)T
such that As, s=1,...,5, are also step functions with jumps only at the observed V; and the jump
size As{Vy} is given by
- A
As{vsl} = oL .
Mms Pm, {I(V; 2 U)Q(Ua O; 6o, ASO)}‘U:VSZ
Equivalently,
- 1 I <t)A
As(t) Z (‘/sl = ) sl

" ms = P, {I(Vs20)Q(v,0; 90,Aso)}‘vzvsl .
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Then, we claim A (t) uniformly converges to As(t) in [0,7]. To prove the claim, note that
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In (B.07), the right hand side converges to 0 because the first and second terms on the right hand
side converges to 0 in the following: First, according to Section C.1, {Q(v,0;0¢,As) :v € [0,7]} is a
bounded and Glivenko-Cantelli class. {I(V; > v)Q(v,O;0p,Ag) : v € [0,7]} is also a Glivenko-Cantelli
class because {I(Vs >v):v € [0,7]} is a Glivenko-Cantelli class and the functional (f,g) — fg for any
bounded two functions f and g is Lipschitz continuous. Then, we obtain that

SUP;e[0.7] | P {I(Vs 2 v)Q(v, 0500, A0) } - P {I(Vs 2 0)Q(v, 0; 60, Aso) }

Besides, from Section C.1, P {I(Vs > v)Q(v,0;00,As)} > P{I(Vs > v) exp{-Cio - C11||Y||}} for the
two constants C19 and C11, which means P {I(Vs >0)Q(v, O; 0y, AsO)} is bounded from below. Thus,
the first term tends to 0. Second, since the class {[(VZ9 <t)Ag/P {I(V9 >0)Q(v, O; HO,ASO)}LFV ite

[0, 7']} is also a Glivenko-Cantelli class, the second term vanishes as m;s goes to infinity.

converges to 0.

Therefore, we conclude that A(¢) uniformly converges to

[ (Vs <)A, (B.08)

Flp 102 00,0500, 80))] L, |

We can easily verify that (B.08) is equal to Ag(t). Thus, the claim that As(t) uniformly converges
to Aso(t) in [0,7] has been proved.

From the construction of A4(t), we obtain that

As(t) =

t sz(v) A _ t Pms {I(‘/S 2 ’U)Q(’Ua 0;007A30)} n
0 d/is(v)dAs(U) B /0- P, {I(Vs > v)Q(v, 0;8, Ks)} dhs(v). (B.09)

A4 (t) is absolutely continuous with respect to Ag(t). On the other hand, since both {I(V; >v):v €

[0,7]} and F are Glivenko-Cantelli classes, {I(Vs > v)Q(v,0;0,A;) : v € [0,7]} is also a Glivenko-
Cantelli class. Thus, we have

s[up] (P, —P){I(Vi 20)Q(v,0;0,K,)}| + s[up (P, = P){I(Vs 2 0)Q(v, 0; 00, Aso) }]
vel| 0,7 ve|0,T

— 0 a.s.



By the bounded convergence theorem and the fact that @ converges to 8* and A, converges to A7, for
each v, P {I(V; > 0)Q(v, 0:9, Ks)} — P {I(Vs > 0)Q(v, O;0*,A;)}; moreover, it is straightforward
to check the derivative of P {I(VS > 0)Q(v, 0:9, KS)} with respect to v. Thus, by the Arzela-Ascoli
theorem, uniformly in [0, 7],

P {I(V, 2 0)Q(v,0;8,,)} — P {I(V; 2v)Q(v,0;0",A})}.
Then, combining the above result and (B.09), it holds that, uniformly in [0, 7],

dRs(v) P, {1(Vs 20)Q(v, 0560, A50) } P {I(Vs 20)Q(v,0;60,A50)}

— = ——— — . B.010
dAs(v) P, {I(Vs20)Q(v,0;0,A,)} P{I(Vi>v)Q(v,0;0%,A%)} ( )
After taking limits on both sides of (B.09), we obtain that
~ tPI(Vs > , 0500, As
lim R, (f) = f (2 0)Q( 0 0)}dA80(v), (B.011)
ms—oo o P{I(Vi;>v)Q(v,0;0* Az)}

Therefore, since Ag(t) is differentiable with respect to the Lebesque measure, so is AZ(t); that is,

(B.011) is equal to
t dAX(v)
= dAs . B.012
Sy ey o) (B.012)

And we denote A:(t) as the derivative of A;(¢). Additionally, from (B.010) ~ (B.012), note that
ANs{Vs}/As{Vs} uniformaly converges to dA}(Vy)/dAso(Vs) = A:(Vs)/Aso(Vs). Therefore, a second

conclusion is that Ag uniformly converges to A} since A} is continuous.

On the other hand,

n_lln(av K) - n_lln(007 A)

S A Yo [ G(b,a,0:8,A,)db,
Z P, | Aslog /}S{VS} + P, | log fba ( _ )
s=1 AS{‘/S} Za fba G(baaaO;OOaAs)dba

I\

(B.013)
Using the result of Section C.1 and similar arguments as above, we can verify that

o ZCM fba G(b7 &, 0;5, Ks)dboz
s Za fba G(b) «, 07 007 A/_\S)dba

1

belongs to a Glivenko-Cantelli class and

1 Za fba G(b’a70;§7 Ks)dba 1 ZO& fba G(b7a7 O; 9*;A;)dba
P|log Yo Jp, G(b,a,0;00,As)db, —P|log Ty, C(b2,0:00, Ao ) bs |

Since Ay{V;}/As{Vs} uniformaly converges to A*(Vs)/Aso(Vs), we obtain that, from (B.013),

(A1 (V)™ Za Jp, G(b,a,0;0%, A )db,
o 5 B -
(As0(Ve)) ™" Za Jp, G(b,a,0;00, Ao )db,

Note that the left-hand side of the inequality is the negative Kullback-Leibler information. Then, the
equality holds with probability one, and it immediately follows that

(A;(VS))ASZfba G(b,a,O;H*,Az)dba:()\So(VS))ASZfba G(b,a,0:00, Ay)dbs.  (B.O14)

10



Our proof will be completed if we can show 8" = 6y and A} = A from (B.014). Since (B.014) holds
with probability one, (B.014) holds for any (Vs, As = 1) and the case (V5 = 7,As = 0), but may not
hold for (V;, Ag =0) when Vs € (0, 7). However, we can show that (B.014) is also true for (V;, Ag =0)
when Vi € (0,7). To do this, treating both sides of (B.014) as functions of V;, we integrate these
functions over an interval (Vs,7) for Ag =0 as the following;

Jo. & Jy, G0r0.0:0° A dbe = [T [ G(b,, 0300, Ao

to obtain that

G(b,a,0;0",A\})db,
b S

- G(b,a,0:;0%,A*)db,,
b S

As=0,Vs=T7

=Z[b G(b,a,0: 00, Aso)db,

Ag=0,V=Vs

—Zfb G(b,a,0: 00, Aso)db,

As=0,Vs=T As=0,Vs=V;s

After comparing this above equality with another following equality, which is given by (B.014) at
Ags=0and Vi =7,

Zf G(b,a,0;0",A*)db, - Zf G(b, v, 0; 00, Ayy)dbe, ,
[e} b. Ag=0,Vs=7 [e} b. Ag=0,Vs=T7
we obtain
Zf G(b,a,0;6*, A db, - 2/ G(b, @, 0; 00, Aso)dbe ,
o Jba As=0,Vs=V o Jba As=0,Vs=V,

and therefore

G(b,a,0;0",A%)db,
b S

> [, G(b,0,0:0000)ibs| 5 (BOI5)

Ag=0 As=0

that is, (B.014) also holds for any V; and A4 =0.

Thus, to show 8* = 8y and A* = Ay, we let Ay = 0 in (B.014). Also, we define b, = by — 1, and
boo = bo — o0, and therefore E; ~ N(O, EZ) and bug ~ N(O, Ebo)- This leads to b ~ 25:1 w;N(O, EZ)
and by ~ TK waoN(O, 2b0) since b ~ 25:1 waN(ua, Eb). Then, (B.014) for A; =0 can be expressed

a=1
as following,

wWYi(X,;8 +X;(b +pl))-B(B*,b +ul
[exp{Z[ (X8 i( IZ(I;;))) (8 + )

co| - [N o0 (Z00W o @ )+ 2007 a0

& - W[ Vi(X 38 + X (b + £4a0)) = B(By, bo + ao)
= o;wao Eb0 [exp{ Z [ A(650)

x exp{ - /(;V exp {Z(t)(¢0 o (50 + o)) + Z(t)'yo}dAso(t)}], (B.016)

K
5wk, reoson)|
a=1

7=1

+C(Yj;¢jo>]}

J=1

where b ~ N(O,EZ) and by ~ N(O,Ebo). Furthermore, we assume ft;q > fog > ==+ > o and

11



By > ps > > pie in (B.016), multiply exp{ Z;L:Nl thjyj} to both sides and obtain

K WY (X8 +X;(b +t;+pl))-B(B*,b +pu)
P [exp{ Z[ A(67)

Vv ~ ~%
o] - [ e (ZO@ 0@ w2+ 2007 ani o]

= 0 i A(d’j())

xexpi — fovexp {Z(t)('z,bo o (50 + o)) + Z(t)‘yo}dAso(t)}]. (B.017)

mel

J=1

j=

Then, we use the fact that, for p; > po,

WYX 8+ X(b+t)+p1)-B(B,b+py)
lim { Eb[exp{j;[ A(0)

Jin +C(Yj;¢j)]}
xexp{—/ovexp{Z(t)( (b+,u1))+Z 'y}dA (t)}] /

o [exp{:é [YJ(XJB +X,(b +jj(;jl;2))—3(5,b+ Ha) | C(yj;%)]}

xexp{— i Vexp{Z(t)(¢°(5+u2))+Z(t)7}dAs(t)}] }
_ 0. (B.018)

Hence, when t; - oo, the dominating term of the left hand side of (B.017) is

. Ew[exp{"z[wxg - X, lytH)-BE B i)

x eXp{ - fov exp {E(t)(d)* o (5* +py))+ Z(t)'y*}dA;(t)}]. (B.019)

+C<Yj;¢;>]}

Similarly, the dominating term of the right hand side of (B.017) is

w1 Eg [exp{nZN [YJ(XJIBO + Xj(go tii Hm))—B(,@o,go + P1o) + (Y ¢j0)]}
0 A(Qb]O)

x eXp{ - fov exp { Z(t) (g © (Bo + p119)) + Z(t)—yo}dAso(t)}]. (B.020)

=1

Thus, now we can compare (B.019) and (B.020) which are for one normal distribution.

First to show that 8" = B, ¢ = ¢y, X} = o, p] = Hqg, and w; = wip, from (B.019) and (B.020),
we let V; = 0 use b back in place of b + pi and by + pg in (B.019) and (B.020), respectively. Then,

12



with probability one, by some algebra, (B.019) becomes

WIY;(X,;8°+X;(b+t;))-B(B", by +1;)
—/beXP{Z[ A(qb;)

— *[— 1 * *— *
«(2m) P53y 1/26Xp{—§(b—u1)T2b 1(b—u1)}db

WY X8 + Xt
:eXp{Z[ J( ilﬁ(qb;) th) +C(Y}';¢;):|}(27T)_db/2’22‘_1/2

A YJ‘N(]b & B(,@*,b"r‘t]) 1 Tsvx—1 T -1 1 *Tn—1, % *
x [ exp - " —=b" X, 7b+pu] X, b-—pui X, ug rwidb
b {21 FTE N T T B K A e I T A

"WlY(X.08" + Xt . ~ Y
:eXp{ZI: J( 14/6((;6;) J ]) +C(Y],¢]):|}(27T) db/2|2b| 1/2

| i x-1/2,\T fax—1/2 K Y X; s T k-1 |t 12t —1/2
x [ expd —=|(X b) (X b)- 2( At p] X DI b
./b { 2[( b ) ( b ) J; A(gf)j) L= b b

+C(Yj;¢§)]}

j=1

J=1

=1
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T
& Y'X *—1 *1/2 X YX *—1 *1/2
+ =+ Q] s )E ][( =+ Q] s 3
[(j:zlA(qﬁJ) R R | P2 ren M
T
1]/ N Y'jX e 1) *1/2:||:(nN Y}X 1 £1/2
+= =+ p] s 3 ==+ ] s 3
2[(j:1 D0 I A | A= 10D B A
& B(ﬁ*;b+tj) 1 T -1 *} *
- —*——u 3,7 ul rwidb
= (¢ ) 9 1 b 1 1

Y (X8 + Xt . dyf2reniol/2.
G et [ err i

_ -~ T
X Y}XJ T %=1 *1/2 K X/JXJ T vx—1 *1/2 1 # el *
il inial B » ) b > b -= b))
[(ZA(QS;)JFM ; ; ZA(¢;)+H1 b b ok =y

j=1 j=1

> TT T
1 a1y (NN V;X; .7 *_1) ] [ “1/2 WYX P
X [ expl——|2 b- =t py X by b1 - S tu X
/f-’ { 2[ ’ o1 A() b b o1 A() b

o EE ),

ATOAGD
W Y;(X ;8% + X jt;)
| £ f4<¢*.> 2000
* >(—T *—1 * A Y]X‘.Y T -1 g
XWy €xXp (J 1A(¢ ) 2b )XJI)(‘YZ:1 A((Z);) T M Zb ) 9 Eb "Ll}

< o084 (P
:exp{g[’@(xﬁ(bjx” o, ¢;>]}

N YX * YX ! A }/3)?] * *Tgvt—1 !
L exp (§A<¢*>)E (;A(qﬁ*)) +(j_1A<¢;))2”(“1 o ) }

W B(B*;b+tj)
* Epja-1 [exp{—Z Tﬂ*)}]

j=1
o | S 000}
j=1
YX o & }/JX] A Y A N Ao X
xwlexp{ (jzlA(qﬁ ))2 (;A(¢;)) +]Z;A(¢*)( iB +XJtJ+XJu1)}
W B(B*; by + 1)
><Eb|04=1[exp{—jz::1 —A(¢;) }]
YRS 7 SANNESS 'S CANNE S (I (VR
:exp{'(jzlAw*))z”(jzlA(w)) ZZlA(qb*)(Xjﬁ *thj*xf'“l)}
" B(B*;b+1;)
xeXp{]z:IC(Y]7¢J)}w1 Ep|- 1[exp{ Flw}”. (B.021)

Likewise, (B.020) becomes
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1nNY}‘Xj nNY'ij T nn Y; | N
o {5( 5 a0 0 £ 2o & i (X8 Ko+ Koo

j=1 j=1 j=1
X exp { % C(Yj; ¢jo)}w1o Epja-1 [exp {—% M}H (B.022)
j=1 j=1 14(¢J0)

Then, to compare the coefficients of Y7Y and Y in the exponential part and the constant term out
of the exponential part from (B.021) and (B.022), we have

WYX, )2*(’” VX, )T: (”N VX, )2 ("N VX, )T B.093
(Z Ae) )" J;A(qs;) J;ijo) w0 J;A(qsm ’ (5.023)
ny Y - — nyN . ~ ~
Z A((;;) (Xjﬂ* + X jt; +Xj,f{) :; —A(Cljj()) (X]ﬂ0 + X jt; +Xju10), (B.024)

and

exp{nZN C(Yj; ¢;)}wf Epja1 [exp{—% %}]
J

J=1 J=1

e S ov b b o [ B(Boi b+ 1))
= p{j;C(Yga%o)} 10Eba=1[ p{ j; A(d70) }] (B.025)

Furthermore, by the assumption of the generalized linear mixed model with canonical link function for
longitudinal outcome Y'(t) at time ¢, we have u(t) = E(Y (¢)|b) = B'(n(t)) and v(t) = Var(Y (¢)|b) =
B"(1(1))A(4(1)), where b = $15, I(a = k)by, n(t) = g(u(t)) = X ($)B+ X (£)b, v(t) = v(u(t)) A(4(1)),
g(+) and v(-) are known link and variance functions respectively, and B’(n(t)) and B”(n(t)) are the
first and second derivatives of B(n(t)) with respect to the canonical parameter 7(¢). Hence, we have

E(Yjlb,a=1) = B'(njla=1)=B'(8"bla=1)=B(By;bla=1) (B.026)
and  Var(Yjlb,a=1) = B"(njla=1)A(¢;) = B"(8";bla = 1)A(¢;)
= B"(By;bla =1)A(¢jo). (B.027)

By the continuous mapping theorem and (B.026), we obtain 8* = (B;. Then, (B.027) becomes
B"(By; bl = 1) A(¢}) = B"(By; bla = 1) A(¢jo). Hence, by assumption (A6), A(¢7) = A(¢jo), and, by

the continuous mapping theorem, we obtain ¢; = ¢;j0, j = 1,...,nn. Therefore, (B.023) can be written
as
= 5 \T = 5 \T
"N Y. X . . "N Y. X . "N Y. X . "N Y. X .
() (SR
j=1 (¢j0) j=1 (¢j0) j=1 A(¢j0) j=1 A(¢j0)

Then, by assumption (A6), we obtain 3 = Xy. Since 8" = B and ¢} = ¢jo, (B.024) can be written
as

ny Y'J ( —~ - i} ny j _ _
— | X, +X-t-+X-u)= —(X,B + X iti+ X )
;A(qﬁjo) M0 2% M1 ];A((%O) M0 7ty iH10

Also, by assumption (A6), we obtain p} = 9. In (B.025) for the constant terms, note that the
random effect b given o = 1 on the left-hand side follows a multivariate normal distribution with

mean X ( >N Yj)N(j/A(gb;))T + pi and covariance ¥, and the random effect b given o = 1 on the
right-hand side follows a multivariate normal distribution with mean Zbo( Z?j’l VX /A(¢jo))T + Wy

and covariance 3. (i) Because 3j = Xy, p] = pqg and ¢; = ¢jo, j =1,...,ny, the random effects
b’s given a = 1 on both sides follow the same multivariate normal distribution. (ii) Besides, because

* * . n *;ba: ny B ;ba: . ..
B* =By and ¢; = ¢jo, j =1,...,nn, we have ijl% =Y %. By (i) and (ii), we
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B ;b . . * .
obtain (iii) Epja-1 [exp{ A ))}] Eb|a 1 [exp{ %E(%;o))}] Also, (iv) since ¢} = ¢jo, j = 1,...,nn,
we have exp { Z"N C(Yj; gb*)} = exp { Z Yj: d)jo)}. By (iii) and (1v), (B.025) can be written as

=1
— eXp{ ZC(Y},(b]O)}U)lO Eb|a 1[exp{ nZN B(io(’Tl;;_)tj)}:I

J=1 J=1
Then, by assumption (A6), we obtain w] = wip.

For p3 = poy and wy = wap, we go back to (B.017). Since 8" = By, ¢* = ¢y, Xj, = o, 1] = K10,
and w; = wip, the most dominating terms of the left and right hand sides of (B.017) are canceled out.
Then, the next dominating terms of the both sides of (B.017) are for o = 2. Thus, by replacing p7,
wy, pyg and wig with p3, ws, pog and wyp in (B.019) and (B.020) and comparing (B.019) and (B.020)
for o = 2 which are for one normal distribution, we can obtain pj = pog and wj = wy through the
same argument done for a = 1. By repeating this also for o = 3, ..., K, we finally can obtain p, = pt,0,
and w) = wqo, v =1,..., K,

Next, to show that ¥* = 1, v* = v, and A} = Ay, we also let A; = 0 in (B.014) and, with
B* =By, ¢ = ¢y, Bjy = X, Bl = Bao, and w), = wao, a =1,..., K, (B.014) can be expressed as, for
a=1,....K,

Epjq [exp{ - [OVS exp {Z(t)(w* ob)+ Z(t)vy* }dA; (t)}]
= Eb|a [exp{ - A‘VS exXp {2(t)(¢0 ° b) + Z(t)’YO}dASO(t)}} <B028)

where the random eﬂec%s b’s on both sides follow a multivariate normal distribution with mean
Ebo( Z;L:Nl Yij/A(gZ)jo)) + o and covariance Y.

For any fixed X = (Xf, . ,X:N )T, treating )NCTY as a parameter in this normal family, b =
=T
YK I(a = k)b is the complete statistic for X~ Y. Therefore,

exp{ - [OVS exp {2(t)(¢* ob) + Z(t)'y*}dA;’(t)}

Vs ~
“on - [ o0 (2O 2O}k,
and equivalently we have

exp {Z(t)(" 0 b) + Z(1)y* AL (1) = exp {Z(£) (g 0 b) + Z ()70 }Aso()-
By assumptions (A3) and (A6), ¥* =P, v* =7 and A} = Ay. §

Since all the three steps are completed, we can conclude that, with probability one, 9 converges
to Oy and A converges to Ag in [0,7]. Moreover, as mentioned in the beginning of this proof for
consistency, since Ag is continuous in [0, 7], the latter can be strengthened to uniform convergence;
that is, supyepg 7] |IA(t) = Ao(t)]| = 0 almost surely. Therefore, Theorem 1 is proved.

B.2. Proof of Asymptotic Normality — Theorem 2

Asymptotic distribution for the proposed estimators can be shown if we can verify the conditions of
Theorem 3.3.1 in van der Vaart and Wellner (1996). Then, it will be shown that the distribution is
Gaussian. For completeness, we use Theorem 4 in Parner (1998) which restated the Theorem 3.3.1 of
van der Vaart and Wellner (1996).
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Theorem 4 (Parner 1998) Let U,, and U be random maps and a fixed map, respectively, from & to
a Banach space sugfl that: _

(a) /n(Up = U) (&) = /n(Un = U) (&) = 0p(1 +/nll€n = &ol])-

(b) The sequence \/n(U, —U) (&) converges in distribution to a tight random element Z.

(c) the function & — U(&) is Fréchet differentiable at & with a continuously invertible derivative
VU, (on its range).

(d) Ug, and &, satisfies Uy (&) = 0}3(71_1/2) and converges in outer probability to &.
Then /n(&, — &) = VUE_OIZ.

We will prove the conditions (a)~(d). In our situation, the parameter & = (0,A;) € E = {(0,Ay) :
10 = Oo|| + supyefo, 7 [As(t) = Aso(t)| <6, s=1,...,5} for a fixed small constant 6. We note that = is a
convex set. Define a set 7 = {(hy,ho) : ||hy|| < 1,||hs||v < 1}, where ||ha||y is the total variation of ho
n [0, 7] defined as

l
sup - |ha(t;) = ha(ti1)|-

0=t05t1£"~5tl=7'j=1
Furthermore, we define that, for stratum s,

P {lo6(0,A)Thy + 15 (0,A)[ha]}
P{lp(0,As) hy +1x,(6,A ) [h2]},

Unn, (gs)(hlv h2)
and Us(&s)(h17h2)

where lg(0, As) is the first derivative of the log-likelihood function from one single subject belonging
to stratum s, denoted by 1(O; 0, A;), with respect to 8, and I (0, Ay) is the derivative of [(O; 0, Ay.)
at € =0, where A (t) = fot(l +¢eha(u))dAs(u). Therefore, we can see that both U,,, and Us map from
E to £2°(A) and /mg{Upn, (&) — Us(&s)} is an empirical process in the space £ ().

Denote (hf ,h‘f,hlz” ,hf ,hﬁ”,hqf,hY) as the corresponding components of h; for the parameters
(B8, ¢, Vec(Xy), p,w,1p,7y), respectively. From Section C.2, for any (hy, hy) € 5, the class

G = {lp(0,A5) hy +1a,(0,As)[h2] — (B0, Aso) " hy +1n, (B0, Aso) [ 1],
16 — 8o + sup [As(t) = Aso(t)] <3, (hy,ha) e}

te[0,7]

is shown as P-Donsker (Section 2.1 of [4]), and it is also implied that

sup P [lg(0,A5) hy +1a,(0,A5)[ha] —19(80, Aso) hy + lAs(ﬁ’o,/\so)[hQ]]2 —0
(hl,hg)E%

as ||6 = Ool| + supyeg 1 1As(t) = Aso(t)| = 0. Then we conclude the followings:

(a) follows from Lemma 3.3.5 (p311) of [4].

(b) holds as a result of Section C.2 and the convergence is defined in the metric space £*° () by
the Donsker theorem (Section 2.5 of [4]).

(d) is true because (8,A,) maximizes P, [(0;0,A,), (00, As) maximizes P1(0;0,A,), and
(6,1A,) converges to (8o, As) from Theorem 1.

Now, we need to verify the conditions in (c). Since the proof of the first half in (c), that the
function & - U (&) is Fréchet differentiable at &y, is given in Section C.3, we will only prove that the
derivative VU, is continuously invertible on its range ¢*°(J¢). According to Section C.3, VU, can
be expressed as follows: for any (61,As1) and (02,As) in E,

ngo(Gl -02,Aq —Asg)[hl,hg] = (91 —GQ)Tﬁl[hl,hg] + ](; Qg[hl,hQ]d(Asl —ASQ)(t), (B.029)

where both Q; and Qy are linear operators on ., and Q = (Q1,) maps 5 c R% x BVI[0,7] to
R¥xBV/[0, 7], where BV[0, 7] contains all the functions with finite total variation in [0, 7]. The explicit
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expressions of Q0 and 2y are given in Section C.3. From (B.029), we can treat (61 — 02, As1 — As2) as
an element in ¢*°(.77") via the following definition:

(01_02>Asl —Asg)[hl,hg] = (01 —02)Th1 +‘/D\ hz(t)d(Asl—Asg)(t), V(hl,hg) ERdXBV[O,T].
Then VUyg, can be expanded as a linear operator from £*°() to itself. Therefore, if we can show

that there exists some positive constant e such that e c Q(), then we will have that for any

(80,60,) € £>(H),

IVUe, (56, 68 |y 2 sup  [607Qu[hy, ho] + fo Qalhy, hy]doAL(t)]

(hl,hg)&%
||(50,6A5)||£m(9(%)) 2 6H((m’6As)||f°°(jf)’

and VU, will be continuously invertible.

Note that to prove ¢ c Q(s) for some ¢ is equivalent to showing that € is invertible. We also
note from Section C.3, that  is the summation of an invertible operator and a compact operator.
By Theorem 4.25 of [?], for the proof of the invertibility of €2, it is sufficient to verify that  is one
to one: if Q[hy, ko] =0, then, by choosing 61 — 03 = e*hy and Ag — Ago =€* [ hadAgo in (B.029) for a
small constant €*, we obtain

M [hy, ho]

% T
VUgo(hl,[thASO)[hl’hQ] =€ (hl ’hQ)( Q2[h17h2]

) =e*(hT, hy)Q[hy, ha] = 0.

By the definition of VUy,, we note that VU, (hy, [ hadA)[hi, ho] is the negative information matrix
in the submodel (0p + ehy, Aso + € [ hadAsp). Thus, the score function along this submodel should be
zero with probability one; that is, lg(0o, Aso)Thy +1a, (00, Aso)[R2] = 0; that is, with probability one,
for the numerator of the score function

_ . A vix. B 8
0 = %:/I;QG(baOé70,907Aso) [;A(%O)(Y]Xj B'(By; ba) )b}
& (Y(X;B0 + Xjba) - B(Boiba) \ 4 NN
B (IR e e
1 1
+5 (ba = 1a0) " Ty DTy (ba = o) = 5 Tr (i Do)

*(ba } %“ao)sz‘& bi® + wfohi"‘“ + A{(Z(V) o b3 )b + Z(Vo)hi}
_fovs exp {Z (£)(1by 0 ba) + Z(t)vo} x {(Z(t) o bT)RY + Z(t)h?}dAso(t)]dba
+%jfba G(b, o, 0; 00, Ayo) X [AShQ(VS)
_ fOVs ha(t) exp{Z(t) (¢ 0 by) + Z(t)»yo}dAso(t)]dbm (B.030)

where A'(¢j0)and C'(Yj; ¢j0) are the derivatives of A(¢;)and C(Yj;¢;) with respect to ¢; evaluated
at ¢;o and B'(8y;b) is the derivative of B(3;b) with respect to B evaluated at 3,. Note that (B.030)
holds with probability one, so it may not hold for any V; € [0, 7] when Ag = 0. However, by the similar
arguments done in Section B.1, if we integrate both sides from V; to 7 and substract the obtained
equation from (B.030) at Ag =0 and V; = 7, it is easily shown that (B.030) also holds for any Vs € [0, 7]
when A; = 0. Hence, the proof of the invertibility of 2 will be completed if we can show hy = 0 and
ha(t) =0 from (B.030).
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To show h; =0, particularly we let A; =0 and Vs =0 in (B.030) and obtain

2/ G(b,, 0; 00, Ay) x [Z (;] )(Yij—B’(Bo;ba))hf

W[ (Y5(X;B+ X jba) - B(By; ba
+Z{_( ( O+A(¢j0;2 (Bo; ba)

1 _
+= (ba Boo)" i Dp i (ba Mao)——Tr(EbolDb)

0

)A'(¢j0) +C'(Yy; ¢j0)} h(fj

j 1

Wa0

2lon(5 sl e

o 7=1

y o] SEBBoib) || (XL s
[Eb“'a[ p{ Z A(djo) H (‘Zf‘l(cbjo)Y]th1

7=1 7=1

(VX8
Zzl{ A(650)?

1 _ _ 1 _ 1 1
+5li£ozbolDb2bolﬂao D) Tr (EbolDb) Qﬂaozbo hi~ + —hwa)

Wa0
B B(ﬁo;ba)} y (_"N B'(Bo; ba) , 5
+Eb“°‘[exp{ ]; A(éj0) J; A(djo) !

Rl VX jba = B(Boiba) \ o1 0 3| 1o
2{ ( ol )ijo)}hl

1
+§(b§2,;ngzggb 2bT2b0Db2boua)+bT2b1h“a)H]. (B.031)

T
1
+(ba - §“a°) by + —h“’a]db

A'(djo) +C'(Yj;¢j0)} h(fj

We first examine the coefficient for Y in (B.031).

ny 1 ) , j
Q{E(Awm&hf e o) 1)

X ex N Y w, exX 3 B(I@()’ ba)
[g[ p{z A(¢j0) ]”O‘O} o0 B, 'a[ p{ ]; A(¢jo) }]H}

4ﬂw&§mMWMwM%?%K%M

A
XY g1 é;
_;A(%o){ J( L Agm) ) A'(@s0) by )
X ex s Y j w ex _”N—B(Bo;ba)
[Z[ p{jzlAwJ)XJ“ao} Eb[ p{ 2 " A(om) }m
X, .
B0

X ex s Y ~ w ex -5 —B(ﬁo;ba)
[SlewlEy el [ 25 ]
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Then, for all j=1,...,ny,

h? ex s Y w ex 3 —B(Bo;ba)
thlz[ p{]ZIAwJo) J““O} 0 Ep, [ p{ 2 " A(on) }H
; ex s Y w ex 5+ B(Byiba)
A(¢] )A(¢j0)h ( J/BO%:[ p{;A(%o) JIU‘QO} aOEb |a[ p{ JZ; A(¢]0) }:|:|

nn

[ 5 e oers oo 5]

Based on assumption (A6), hf =0 and hfj =0,7=1,...,nn.

=0.

Then, we examine the constant terms without Y in (B.031). Since hf =0 and hqu =0, 7=
1,...,ny, (B.031) becomes

nN Y S i ba
{8t o] 52520)

j=1 j=1
! —Tr (X, D L > ihhe L hi
B r (230 Do) ~ 5 HaoZpo hi* + 1

1
( B u‘aOEbO Dbzbo Hao — 5 Wt

+E 5 BWBoiba) |, sz ' DySitba - bI Sy DSl + B Sid bl
ba|o | €XP Z , b0 62440 vo b boﬂa+ b0
j=1 A(¢JO)

_ WY . NNB(,Boab )} ( S D5
Eavb[e"p{]zlmo) o e"p{ 4 Albo) oo Dr ik

1
_§Tr(21;01Db) 2Ha02b Jhi= +—0th + bTEbolDbEb ba — bl 55 Dy Sig e,

+b§2;&h¥‘”)]

where b follows a multivariate normal distribution with mean Xy Z;L:I\’l(Y,X' il A(#j0))) + Bao and

covariance Xpo. For any fixed X, treating X Ty asa parameter in this normal family, b = Zszl I(a=
k)by, is the complete statistic for X Ty | therefore,

WY, o WB(Byby)) -
{8 iy o~ £ 2 | (s D - 5 (500

1 1 1
~SHao T b+ — Ohﬁ“‘*+5b£2b&Dbzb&ba—bZJEb&Dbzbéua+b£2b&h’f“) = 0.

ny B ?ba
Since exp{Z] 1 A(¢Jo) X jtto0 — i %} #0, by (A6), we have

1 _ _ 1 _ 1 1
S0 DT o — = T (Zig Dy) + | = Sl + b |Zp0 i + —hie
2 2 2 Wa0

1 e _ _ _

+§b§2bngzbgba b DS, = 0.
Then, by (A6), —2pl;+bL #0 and ;7 # 0 lead to h{* =0, a = 1,..., K. Likewise, by (A6), 1/w, # 0
and Egol #0 result in h{* =0, a=1,..., K, and Dy = 0, respectively.
Next, we let Ag =0 in (B.030) and obtain
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nnN 1

0 = %:fbaG(bﬂ,O;eo,Aso)X[;m(Yij—B'(ﬁo;ba))hf
W (VX80 + X ;ba) - B(By; ba)
+Z{ ( A(pjo)?

)A'(¢j0) "‘C,(Yj’§¢j0)} h(fj

j=1

T
1 _ i} 1 _ 1 _ 1
+5(ba - Hao) g DoZig (ba — o) — 5T (ZpDy) + (ba - 5%0) Sohte ¢ w_ohl a0

e 2O b) + 2070 < (F0 B 2Rl
+%: /I;a G(b,a,0;600,As) x [_ /OVS ha(t) exp{Z(t)('(p ob,) + Z(t)’YO}dAso(t)]dba.

Since h? =0, h(fj, j=1,...,nn, hf* =0, h{*° =0, a =1,..., K, and D, = 0, the above expression
can be written as

) Wy 4 T _nN B(,B();ba)}
b Ea’b[exp{j;A(cbjo)(Xjﬁ o Xakea)” & o)

x /OVS exp {Z (1) (g 0 ba) + Z ()70} x [(Z(t) o bT)MY + Z(t)h] + hg(t)]dAso(t)],
(B.032)

where b, follows a multivariate normal distribution with mean Ebo[ Z?NI (Y] zZ b /A((;Sjo))] + o and

covariance 3. Likewise, for any fixed X, treating X Ty asa parameter in this normal family, b, is
the complete statistic for XTY, therefore,

XY % (S B(ﬁo;ba)}
_J (x. X -\ 20 Ta)
exp{; A(¢jo) (X380 + Xjttao) ]; A(9jo)

xfovs exp{Z(t)(3hg 0 ba) + Z(t)vo} x [(Z(t) o bI)NY + Z(t)h] + ha(t) JdAs(t) = 0

Since exp { 5% [V5(X 80 + X;1100) | A(650)] - £ [B(Boi b)/A(50)]} # 0, equivalently

fOVS exp{Z(t)(1hg o ba) + Z(t)vo} x [(Z(t) o bI )Y + Z(t)h] + ha(t) ]dAso(t) = 0

by assumption (A6). From assumption (A6), this immediately gives hlf =0, h] = 0 and hy(t) = 0.
Hence, the proof of condition (c) is completed.

Since the conditions (a)-(d) have been proved, Theorem 3.3.1 of [4] concludes that \/m;(0—-80g, Ay~
Ag0) weakly converges to a tight random element in £*° (7). Furthermore, we obtain

Vs VU (8 - 00, Ry — Ago)[h1, ho] = /s (P, = P){l6(80, Aso) hiy + s, (80, Aso) [h2]} +0p(1),
(B.033)
where op(1) is a random variable which converges to zero in probability in £*°(2#°). On the other
hand, from (B.029), we have

Vs VU (0-80, As—Ago) [hy, ho] = \/m_s{(a—ao)Tﬂl[hl,h2]+/OTQz[h1,hQ]d(Ks—Aso)(t)}- (B.034)

By denoting (h},h3) = Q71 (hy, ha), we have (hy, ha) = Q(h}, h3), and replacing (hy, he) with (h},h})
in (B.033) and (B.034) leads to the followings, respectively.

VmsVUe, (080, Ks—Ag)[h], h3] = Vs (P, —P){l9(80, Aso) " hi + s, (00, Aso) R3]} + op (1),
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and
VTV Ue, (-0, Ro-Aso) [}, 5] = ¢m—s{<5—eo>Tm[hi,h;] . [ TQQ[hi,h;]d@—Aso)(t)}
- m{@—eo)Thl v f Tm(t)d(KS—Aso)(t)}.

Thus, we obtain

wn—s{(b‘ -0 hi+ [ ha(Dd(R, —Aso><t>}
= /15 (P, — P){l9(00, Aso) " hi +1a, (00, Aso)[13]} + op(1). (B.035)

Note that the first term on the right-hand side in (B.035) is \/ms{Upm, (600, Aso) — Us(609, Aso) }, which
is an empirical process in the space £*°(7), and it is shown that ¢ is P-Donsker in Section C.2.
Therefore, \/ms(0 — 0y, As — As9) weakly converges to a Gaussian process in £ ().

In particular, if we choose hy = 0 in (B.035), then EThl is an asymptotic linear estimator for Oghl
with influence function being lg(8o, Aso) i +Ia, (00, Aso)[h3]. Since this influence function is in the
linear space spanned by the score functions for 8y and Agp, Proposition 3.3.1 in Bickel et al. (1993)
concludes that the influence function is the same as the efficient influence function for 82 hy; that is @
is an efficient estimator for @y. Therefore, Theorem 2 is proved.

Web Appendix C: Supplementary Proofs

The proofs for P-Donsker property of the classes % and ¢ needed in Appendices B.1 and B.2 are
presented in Appendices C.1 and C.2, respectively. In Appendix C.3, we prove Fréchet differentiability
of U(&) at & and derive the derivative operator VU, used in Appendix B.2.

C.1. Proof of P-Donsker Property of .#

We defined that a class .# = {Q(v,0;0,A;) : v € [0,7],0 e ©,As e &/, s=1,...,5}, where & = {A; €
W,As(0) =0,As(7) < Bsg,s=1,...,5}, By is the constant given in the second step and W contains
all nondecreasing functions in [0,7]. We can rewrite Q(v, 0;0,A;) as

Q0.0:6.1,) = Qu(0.0:0) 2202
where
Q1(0:0:6) = ex| 20+ ( £ 555+ AW o ) IRuZ0) o7 + 10|
v,0;0,A;) = ex ——Ta nNYX A v )
Q:(0.00.8) = T [, exn{ = 5pbe+ (£ 05+ (3 1(@0) 0w s,

Blfgb’b) : [T ew {<2<t> o "), bo+ Z(t)y
j= J

+(Z(t)o¢T)[Eb(ZN St 3 HAZ@) e )) ]
+R(t)}dl\s(t)}wadb
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nn

Qs3(v,0:0,A,) = Zfbaexp{—%bgba+(;§(z)+A(Z(v) P )) ~Z A0

[ e E0 w20

N o T
O L DR T NC (U R ) IEVH | PNy

j=1
R(t) = (Z(t) o v1)Sy(Z(t) o ™Y, R(v) is R(t) evaluated at t = v, By(B;ba) = B(ﬁ g1(ba)),
Ba(B:ba) = B(ﬁ 92(ba)); 91(ba) = 2, *bo+ Zy[ £7 L (VX /A(0) + (A+ 1)(Z () ¥+, and
92(ba) = 2, *ba + Zy[ 573 (VX /A(6))) + AZ () 0] + .
Using assumption (A3), we can easily show that Q1(v,0;80) is continuously differentiable with

respect to v and 6, and

d
IVgQ1(v, O;0)| + o oF+k2| Y|
v

for some positive constants k1 and ko. Furthermore, it holds that

[79Qa(v,0:6.4,)]+ | 5

1 XY N B1(B;ba)
S;[ba[exp{—ibgba+(214(¢j)+(A+1)(Z(v) p )) Z—A(d)j) }

J=1 J=1

QQ(Ua 07 07 As)

X€k3||baH+k4”Y”+k5(a) x Bgg x wa]dba
< crotkal| Y|

ek8+k}9||Y|l

d
and IVeQ3(v,0;6,A,)] + %Qg(U,O;H,AS)

for some positive constants ks, k4, k¢, k7, ks, and kg, and a deterministic function of a, k(a). Addi-
tionally, note that, for any 0 < A < oo, 0 <e™® <1 and e < A and thus e —e ™2 < A; — Ay for any
A and Ag over (0, 00). Hence,

|Q2(v,0;6, A1) - Q2(v,0; 60, A2)|

V;X;
exp{ 2baba+(]zlA(¢])+<A+1><z<v> «pT))ua

N By (/67 ba)
le A(9)

x[exp{ - [0 exp {(Z(t) o TV} Pby + Z(t)y + (Z(t) 0 p7)

Wy X ’
x[zb(z A >) ]

7=1

+R(t)}dA31 (t)} - exp{ — AU exp {(Z(t) o ¢T)2;/2ba +Z(t)y

nN .~ T
+(Z(t) [ ( Z +A(Z(t) o wT)) + ua] + R(t)}dAsg(t)}]wadba

J_ )
i YlN A B (ﬁ?ba)
oo{ gt (£ 555 @ o0 @0 o), - E2EE)

7=1

n

X[/Ovexp{(z(t)O¢T)2;/2ba+Z(t)'y+(Z(t)O'l,bT)[E (]z]\:;};(i)

T
NI >) +ua]
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+R(t)}d(A81 - Asg)(t)]wadba

ex p{(nz_: A(% +(A+ 1)(Z(v) Y )) ]Z:l %@;Jb)a)} X (27T)db/2 X (271')*db/2

x[ /(; exp{ - §[ba -((Z(t) o ¢T)Zi/2)T]T[ba -((Z(t) o sz)z;/z)T]}

X exp {%((Z(t) o )ZV)(Z (1) 0 pT)Z D) + Z(t)y

~ WYX g
+(Z(t)o¢T)[2b( 1A](¢J])+A(Z(t) ) )) ]+R(t)}d(A51—Asg)(t)]wadba
ox KA Y X (A s v T Y2
| sl {(£ 505+ @ v@ e i) 2

S| 3@0 e wnm @0 B 20n

n

+(2<t>owT>[ ( iﬁzgm(zo ¢T>) +ua]+R<t>}

e o[ 2

7=1

s exp {_ o (20 0w =) T b0 - (Z (1) o wT)z;ﬂ)T]}dba]d(Asl . Asg)(t)]wa

| [ {(B 2 - a e n@@ e < 2
o j j

S| 5(@0 e m (@0 ) 20

n

N T
+<Z<t>o¢T>[ ( 129(;3%(2(0 ¥ >) ]+R<t>}

=1

Z[exp{("if(f;ﬂ)+<A+1)(z<v> 0 Jaa | < )
a 7 J

x[(ASl(v) - Asg(v)) exp {%((2(1}) o ¢T)§]1/2)((2(v) ° ¢T)§]i/2)T +Z(t)y

wwe[=( 353

& B1(B;ba)
oo 2282

J=1

- fov[(Aﬂ(t)—A82<t>)%[exp{1(<2<t>o¢T>zl/2)(<Z<t>o¢T>z;/2)T+z<t)~/

T
O )) +ua]+R(v>}

nn

X5 AF (1) o ))T ]+R(t)}

7 ° T J J
0[5 5565
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o] 524889 o]

< x| (25005 + (A DE0) 0w | )

x[|A81(v) — Ao (v)|exp {1((2(1)) o )SIH)((Z(v) 0TS + Z()y

N T
H(Z () o >[2b( UESIING T >) +ua]+R<v>}

ZA()
W B1(B;ba)
wun o[- X

. [0”[\Aﬂ(t)—A52<t>\‘i[exp{1(<2mowT>z”2)(<E<t>o¢T>2;/2)T+Z(t)~/

1 X, !
(2006 B 305+ AW v i+ )

ool £20 ]

= At (0) - A ()| exp {2 ((Z(0) 0T (Z(0) 0 $T)EY)T + Z (1)
2

N Y, X
H(F(v) o >zb(” At ) +R(v)} (2

7=1

E [0”[\Asl<t>—A32(t)\x(2w>db/2an,b[exp{(:iE ¢J;+<A+1><z<v> o) s}

jt[exp{ ((Z(@0) w2 )(Z(1) o)) + Z(0)y

n

N T
@038 555 a@wewn) m oo~ 5 20 [l

< (20) exp {1(<2<v> o TSV (Z(v) 0 7)) + Z (1)

N T
HZ0) w35 L AZ0)0v") +R0)|
y oxn 1 [ S XX o) o 5T N B1(8;ba)
s (£ @ v - £ TS

><|:|A81(U) - ASQ(U)‘ + jO\ |A31(t) - Asg(t)|dt:|
< k10+k11||Y|||:‘A 1(v) - 52(7))‘ + /(;T ‘Asl(t) - Asg(t)‘dt],

where k19 and k11 are positive constants. Similarly,

1Q3(v,0;0, A1) - Q3(v,0;0,Ap)| < ekw”ﬂs"”[msl(v) ~ Ao (v)| + fo T|A51(t) ~ Ao (t)]dt |,
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where k15 and ki3 are positive constants.

On the other hand, there exist positive constants kig,..., kog such that
|Q1(v, 0;0)|
ny ij’(
= [exp{ Z(v)y + A(Zv) o ") |S(Z(v) o ™) + R(v)
= A(oy)
< ek14+k15||Y||7
|Q2(v, 00, A)|

Ly Y; X N v N B1(B;ba)
o 3ot (5505 + @0 e, - 3 242

—[OV exp{(z(t) oqu)z:;/?ba + Z(t)y

N T
CTORN Y Dok 2SS ONE OB VN
+R(t)}dA5(t)}wadba
X ;b
<[5 ow{ oo (5355 @ v@0 90 5 2

x[Q/(; exp{(?(t) osz)Ell,/Qba +Z(t)y

HZ () oy >[2( S X5 Az oy >)T ]
&40

+R(t)}dAS(t)]wadba

1 ] Bl(ﬁ;ba)
Z/baexp{—ébgba ( ) F(A+1)(Z () ot )) z 40 }

[ 7=1

x 2 x exp {kig|[ba)|| + k17|[Y]| + ks||ital| + K19} x Bso x wa dbg

S ek19+k20”Y”7

and
Q3(v,0;6,Ay)

B T YX v T Bl(ﬁﬂ’a)
-2, exp{ g Pl (”A(@)*A(Z” v )) ]Zl ()

—fov exp{(Z(t)oqp >z 1/2b +Z(t)y

WYX,

j= 1A(¢j) "
T VX, T N B (8;ba)
>Z/b exp{— b, b, (j 1A(¢])+A(Z(U) P )) JZ; A(0))

—exp {kQQHbQH + k23||Y|| + k24||“a|| + ]{525} X Bsg}wadba

T
+(2(t) o 'ng)[Eb( A(z(t) o wT)) + pa]}d/\s(t)}wadba

> kog > 0.
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Moreover,

d
||VHQ(Uv 0;90, AS)” + —Q(U,

ot o) - oo )

H(Vng g—+Q1[(v0Q2)Q—+Q2 VgQg)”

Y2 -olte)s oG ko]

H(Vte —+(V0Q2)%-( an)QggZ
Q2 @ Q1Q2
( Ql)Q?» (d @2 )Qs (d QS) Q2
< (190 + |51 2| « (1mgat | )| &2+ (1wol « |5 )| %5

< ek27+k28HY\|,

for some positive constants ko7 and kog. Therefore, by the mean-value theorem, we conclude that, for
any (v1,01,As) and (ve,02,As) in [0,7] x O x o7,

|Q(v1,0;01,Ag1) - Q(v2,0;5 02, Ago)|

< ekarthaslY| 161 - 0s]| + [As1 (V) = A2 (V)] + foT |As1 () = Asa (t)|dt + |v1 — o (B.036)

holds for some positive constants ko7 and keg and 0 <V <7 (V = v; or vy).

Applying Theorem 2.7.5 (p159) in [4] to our situation, the entropy number for the class &7 satisfies
log Npj(e, 47, La(P)) < K e, where K is a constant. Thus, we can find exp{K/e} brackets, {[L;, U;]},
to cover the class &7 such that ||U; - L;||1,(p) < € for each pair of [L;,U;]. On the other hand, we can
further find a partition of [0, 7] x ©, say Iy U I+, such that the number of partitions is of the order
(1/e)%+*! and, for any (vy,01) and (vg,05) in the same partition, their Euclidean distance is less than
e. Therefore, the partition {I;, I, ...} x {[L;, U;]} bracket covers [0, 7] x O x o, and the total number
of the partitions is of order (1/¢)%*! exp{1/c}. Hence, from (B.036), for any I, and [L;,U;], the set
of the functions {Q(v,0;0,A;) : (v,0) € I;, Ag e o/ , A € [L;,U;]} can be bracket covered by

Q(v;,0;0;,Ay) - ek27+kas|Yll{5 +|U;(V) = Ly(V)| + fOT U; (t) - Lj(t)\dt},
O(0r.0:01.00) + ek27+k28|Y|{5 U (V) = Ly(V)| + fo U;(t) - Lj(t)|dt}], (B.037)

where (v, ;) is a fixed point in I; and Ag; is a fixed function in [L;,U;]. Note that the Ly(P) distance
between these two functions in the above bracket (B.037) is less than O(g). Therefore, we have

1 d9+1
N[.](e,y,H'HLQ(P) SO((E) 61/6).

Furthermore, .# has an Lo(P)-integrable covering function, which is equal to O(e’””stHYH). From
Theorem 2.5.6 (p130) in [4], .# is P-Donsker.

Additionally, in the above derivation, we also note that all the functions in .# are bounded from
below by e"”""mHYH for some positive constants kog and k3p. f
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C.2. Proof of P-Donsker Property of 4
Recall that we defined the class

G = {lp(0,A5) hy +1a,(0,As)[h2] — (B0, Aso) " hy +In, (B0, Aso) [ 2],
16— 60|l + sup [As(t) = Aso(t)| <6, (hy,ho) e},

te[0,7]

where (hf ,h(f,hlzb,h’f ,hil”,hlf,hY) denote the corresponding components of h; for the parameters
(B8, ¢, Vec(Xy), p,w,1p,7y), respectively. We can write that for (hy,hy) € 52,

le(aa As)Thl + lAs (07 AS)[h2]

Vs
:[pl(O;B,AS)Thl—fO pg(t,O;G,AS)ThldAs(t)]+Ah2(‘/;)

Vs
- [ p(t,0:6, Ao (1),
where

p1(0;07As)Thl
-1
={Z[b G(b,a,O;H,As)dba} xZ[b G(b,a,0;0, A,)

} [:ﬁfw’”jxﬂ'“;”a”“f
ny ~ }/j(XjB+ija)_B(ﬂ§ba)
+Z{ ( A(6,)?

1 _ _ 1 _
+5(ba - po) 2y DyEyt (ba - ) - 3 Ir (' Dy)

)A’(@-) + c’(Yj;qu)} h’

J=1

T
+(ba - %%) ¥, hie + ih;“a + A{(Z(V5) o bT)RY + Z(Vs)hY}]dba,
W

pZ(tao;aaAs)Thl

-1
_ {Z[b G(b,a,O;O,As)dba}

<y, G0.0.050.0) xexp {200 < bu) + 2001 | | (Z00) VMY + 200 |,

p3(t70;07A5)

-1
= {Z fb G(b,a,O;G,As)dba} X Z[b G(b,a,0;0,A;) x exp {Z(t)(zp oby) + Z(t)’y}dba,

B'(B;b) is the derivative of B(8;b) with respect to B, A'(¢;) and C'(Yj;¢;) are the derivatives
of A(¢;) and C(Yj;¢;) with respect to ¢; respectively, and Dy is the symmetric matrix such that
Vec(Dy) = h}.

For [ = 1,2,3, we denote Vgp; and Vi, p[0As] as the derivatives of p; with respect to € and A
along the path Ag +dA;. Then, using the similar arguments done in Section C.1, it is verified that
Va.pi[0As] = fot pi+3(u, 0;0,As)doAs(u) and there exist two positive constants ¢; and g2 such that

S ol + |Vgnl} < enelY
l
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By the mean value theorem, we have that, for any (0, Ay, hy, he) and (8, A, hy, hy) in 2 x 2,

16(0,A) T hy +1p_(0,A)[ha] - 16(0,A)Thy -1, (6, A,)[ha]
=19(0, M) hy + 15, (0,A4)[ha] = 16(0,A) hy —1a_(0,A,)[he]
+19(8,K)Thy +1a,(0,K)[h2] - 16(0,A) Ty — 1, (0, A)[Ra]
= [10(6,A0)" = 19(8,85)" |hy + [1a,(6,As) — Ia,(6,4,)][h2]
+19(0,Ks)" (hy - hy) + 14, (0, K,) ([h2] - [R2])

d

- (6—5)T[%l9(6,As)

d
h1 + [ le(O,AS)
0:0*,AS:A;] dAs

+ (8 —5)T[%ZA5(0,AS)

T
:| [As - Ks]hl

0=0" A.=A*

d
[h] + [ 1. (0.A,)
9:9*,AS=A;] dAs
+19(6,8)" (hy —hy) + 15, (6, K) ([ha] - [R2])
— — V.
= (0-8)"Vgp1(0;6",A))h; - (6-6)" /O " Vgpa(t,0:07, A5 AN ()

T
] (A, - K]{he]

0-0" A.=A*

Vs ~ Vs t ~
. fo pa(t,0;0%, A hud(Ay - K,)(¢) + fo fo ps(u,0:0%, A)Td(Ay - Ky)(u)hidAZ (¢)
Vs ~ ~ Vs
- fo pa(t,0;6%, AT (Ay - K)hydt — (6 -8)T fo Vgos(t, 0;0°, N Yho(t)dAX (t)
Vs t ~ Vs -
e [ [ 6, 0107, AN ~ K (ha()aAZ () = [ pa(t, 050", A1) (A, = K)(D)ha(t)at
~ 7 ~ Vs ~ ~ 7 ~ o~
+ p(0:8,%,) (hl—hl)—fO pa(t,0:8, )T (hy - By )dA, (1)
~ Vs ~ ~ ~ ~
+ A (ha(V5) = ha(V5)) - fo p3(t,0;0,A)(ha(Vs) = ha(V5))dA4(2), (B.038)
where (6*,A%) is equal to £*(8,A,) + (1 -*)(8,As) for some £* € [0,1]. Thus, we have that
19(6, As) hy +15,(0,A)[h2] — 19(0,Ks) "Dy — 1a, (6, K,) (2]
< ¥ 1o i« g o 4.(0) - B (V)
+ [T = Ka(o)lldt + dha(®)] + o (1))

“lha(Va) = Toa (V)| + foﬂhxvs)—EQ(VS>|[dAS<t>—d”A;<t>J}, (B.039)

where d|hy(t)| = dh3 (t) + dh3 (t) and d|ha(t)| = dh3(t) + dhs (t). As done in Section C.1, by applying
Theorem 2.7.5 (p159) in [4], we note that for a set 9 = {hs : ||ha||v < B1}, logN[.](s,,%”g,Lg(P)) <
K /e for a constant B; and any probability measure P where K is a constant. Thus, we can find
exp{ K /e} brackets, {[L;,U;]}, to cover the class 73 such that ||[U; - L;||1,(p) < € for each pair of
[L;,U;]. On the other hand, we can further find a partition of 51 = {h; : [|hy|| < 1}, say 1 UloU--,
such that the number of partitions is of the order (1/¢), and, for any h; and hs in the same partition,
their Euclidean distance is less than . Therefore, the partition {Iy, I,...} x{[L;,U;]} bracket covers
A1 x A9, and the total number of the partitions is of order (1/¢)exp{1/e}. Then, we obtain

1
logN[.](a,%,Lg(P)) < O(g + loge).

Moreover, ¢ has an Lo (P)-integrable covering function, which is equal to O(eq“q?”Y”). Hence, from
Theorem 2.5.6 (p130) in [4], ¢ is P-Donsker.
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Additionally, from (B.039), we can calculate that
16(8, As) hy +1a,(0,A5)[h2] — 19(00. Aso)Thy = Ia, (80, Aso) [ 2]

< eq”‘DY{HO =60l + |45 (V) = Ao (Vi) | + fo [As() —Aso(t)ldt}

+

7 ost0.0:6° Ao —Aso(t))‘- (B.040)

If [0 — 60| - 0 and supe[o -1 As(t) — Aso(t)] = 0, the above expression converges to zero uniformly.
Therefore,

sup P [lo(8, M) hy +1a,(0,As)[ha] —19(00, Aso) hy - ZAS(007A80)[h2]]2 — 0.
(hl,hg)&%

C.3. Derivative Operator VU,
From (B.038) in the previous Section C.2, we can obtain that

1g(8,A5) hy +14,(8,As)[h2] - 19(80, Aso)"hy — Ia, (80, Aso) [ 2]
=[16(8,A5)" = 19(00, Aso) " Jhy + [1a, (8, Ay) = Ia, (B0, Aso) ][]

T * * T Vs * *\T *
= (0-00)"Vgp1(0;6°, A")hy — (6 - 6p) fo Vgpa(t, 0;0%, A) hydA* (t)

Vs
v [ pu(t. 05607 A A (A, - M) (1)

Vs t
+f0 fo ps(u, 0:0%, A)Td(As - Ago) (u)hydA* (£)

Vs
—fo pa(t,0:0%, A ) hyd(As - Ag) (1)

\Z

- (0-60)" [ Vgns(t. 056", ADha(1)dAL(1)

Vs t
; fo [0 po(u, 0:0%, A )Td(Ay — Ago) (u)ha(£)dA* (1)

Vs
-[0 p3(t,0; 0%, A ha(£)d(As - Aso)(t)

T * * Vs * *\T *
= (0-00)"{Vgp1(0;0 ,AS)—fO Vgpa(t, 0:0°, A)TdA (t) thy
+ th{ fOTJ(tgv;)[p4(t,o;0*,A;)—pz(t,o;e*,A;)
Vs
con(t.050% A3 [ ani i, - )0
t

= (0-00)" [T 1(t<V)Vgpa(t, 036", Aha(t)dA; (1)

T Vs
-/ { 1< Vops(t,0:0°.03) [ ha(u)ani(w)

t
+ I(t < Vi)ps(t, O 9*,A§)h2(t)}d(1\s = As0)(1). (B.041)

Then, we have that

VUe, (0 — 60, As — Aso)[hy, ha]
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Vs
=(9—90)TP{V901(0;90,A50)—fo Vepz(t,os90,Aso)d/\so(t)}h1
+ th{fo P[I(tSVs)(M(t,O;QmAw)—Pz(t70;9071\50)

Vs
+p5(t70;90,/\so)ft dAso(U))]d(As—Aso)(t)}
- (0-60)" [ "B {I(t < Vy)Vgps(t,0; 00, Aso) Yha()dA (1)
_ATP{—I(tS%)pﬁ(t,O;eo,Aso)ﬁvs hg(u)dAso(u)
+ I(t < Vy)ps(t, O; 90,Aso)h2(t)}d(As —As0)(t).

By the similar algebra done in (B.040), we can verify that, for j =1,...,6,

sup ||pj(t,0;e*,A:)—pj(t,o;eo,Aso)HSe%*q4”Y”{||9*—eoH+ sup |A;—Aso\},
te[0,7] te[0,7]

which implies that the linear operator VU, is bounded.

Then, we obtain

P [19(8,A6) hy +15,(8, Ag)[ha] — 19(80, Aso) hi = Ia, (80, Aso) [h2]]
= VU, (0 - 00, As — Ago)[hi, ho] + 0(||0 - 00| + S[up] |As - A50|)(||h1|| +||h2|lv)-
te[0,T

Therefore, Ue is Fréchet differentiable at &o.
Additionally, from (B.041) and the above expression, we have

VU, (0 - 00, A5 — Aso) [h1,h2] = (9—90)T91[h1,h2]+[0 Qofhy, ha]d(As = Aso) (1),
where

Vs
Q[hy, he] = P{Vgpl(O;eo,Aso)—]O V9P2(t>0;90,Aso)d/\so(t)}h1

—fo P{I(té Vs)Vapz%(t,O;90,Aso)}h2(t)d/\so(t)
and
Qo[hy, ho]

Vs
:thP{J(tsm)[m(t,o;eo,Aso)—pQ(t,o;oo,Aso)+p5(u,0;00,A80)ft dAso(u)]}

Vs
+P {I(t < Vs)ps(t, O; 60, Aso) ﬁ h2(u)d/\so(u)}
P {I(t <Vy)p3(t,0;00, Aso) }ha(t).

Thus, Q = (Qy,) is the bounded linear operator from R? x BV[0, 7] to itself. Furthermore, we note
that Q= H + (M7, M3), where
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H(hy,hy) = (hi,-P{I(t<Vi)ps(t, 0;00,As0)}ha(t)),
Mi(hy,he) = Q[hy, he]-hy,
My(hy, hy) = h’—fp{f(tsm)[vgm(t,o;ao,z\so)-p2(t,o;00,Aso)

Vs
+p5(t,0;90,/\so)ft dAso(U)]}

Ve
+P{I(t5 ‘/})Pcs(tao;ao,/\so)ft h2(u)dAso(u)},

and also note that H is obviously invertible. Since M maps into a finite-dimensional space, it is
compact. The image of M5 is a continuously differentiable function in [0,7]. By the Arzela-Ascoli
theorem (p41) in [4], M is a compact operator from R? x BV[0,7] to BV[0,7]. Thus, we conclude
that Q is the summation of an invertible operator H and a compact operator M = (M1, M3). {
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Web Appendix D: Figures and Tables

Figures and tables referenced in Sections 4.3 and 5 are provided in Appendices D.1 and D.2, respec-
tively.

D.1. Figures and tables referenced in Section 4.3

The results, density plots and relative bias plots obtained from additional simulations for the sen-
sitivity to model-misspecification under a new true distribution, the mixture of non-central t9y(-2)
and Gamma(7, 1/8), are presented in Table 1 and Figures 1 and 2 in this Appendix D.1 which are
respectively corresponding to Table 3, Figures 1 and 2 in Section 4.3 for the original true distribution,
the mixture of non-central t19(-1) and Gamma(7, 1/8).

D.2. Tables referenced in Section 5

In the CHANCE data analysis, we additionally applied the rest four unselected distributions for
random effects — one normal distribution without mixture and the mixtures of 2, 4 and 5 normal
distributions — to the final simultaneous models derived under the mixture of 3 normal distributions
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and compared their results (provided in Tables 2-5, respectively, of this Appendix D.2) to those in
Table 4 in Section 5. Most of the covariates in the final models yielded same conclusions under
different distributions assumed for random effects except one covariate, “the number of 12 oz. beers
consumed per week” whose inference is somewhat changed in comparison to the reference category
of ‘30 or more’: No beer consumption group, associated with higher odds of being satisfied under all
mixtures, is not significant under one normal distribution although its p-value is at borderline around
the significance level of 0.05; While the category of ‘15 to 29’ is not associated with QoL satisfaction
with a borderline p-value under the mixture of 3 normal distributions, it is likely to have higher odds
of being satisfied under the mixture of 2 normal distributions; The category of ‘1 to 4’, not associated
with the risk of death under the mixture of 3 normal distributions, appears to significantly lower
the risk of death under one normal distribution and has a borderline p-value under the mixture of 2
normal distributions. On the other hand, overall, the estimates for same variables are similar under
all mixtures but slightly different from those under one normal distribution.

Table 6 is referenced in Paragraph 7 of Section 5 for additional simulations under the settings
similar to the CHANCE data with the high censoring rate = 85% and the low average number of
longitudinal observations per patient (n;) = 1.93.
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Table 1: Summary of simulation results of sensitivity for model-misspecification under the true dis-
tribution of random effects with a mixture of non-central to9(-2) and Gamma(7, 1/8).

1 Normal distribution Mixture of 2 Normal distributions

Par. TRUE Est. SSD ESE CP Est. SSD ESE CP
Longitudinal model
51 1.0 909 116 .122  .899 969  .074  .073  .920
B2 -5 - .654 152 211  .962 - .88 128 126  .885
B3 -2 -.201  .025 .026 .959 -.199  .024 .025 .955
05 .5 500 .010  .010 .946 501 .010 .010 .951
Hazards model
P -1 -.099 .024 .025 .959 -.098 .024 .025 .959
Y1 -1 -.091 .082 .084 .952 -.097 .083 .084 .952
Y2 .1 120 150 .146  .936 A12 149 145 937
A( .9) .9 903 .088 .089 .951 904 .088 .089 .953
A(1.4) 1.4 1.403 .138 .140 .954 1.405 .138 .140 .954
A(1.9) 1.9 1.902 .209 .204 .946 1.903 .209 .204 .946

Mixture of 3 Normal distributions  Mixture of 4 Normal distributions
Par. TRUE Est. SSD ESE CP Est. SSD ESE CP

Longitudinal model

51 1.0 981 .059 .057 .934 982 .058 .057 .936
B2 -5 - .563 .104 .099 .885 - .560 .104 .099 .886
B3 -2 -.199  .024 .025 .953 -.200 .024 .025 .958
05 .5 500 .010  .010  .947 500 .010  .010 .945
Hazards model

v -1 - .098 .024 .025 .959 -.099 .024 .025 .960
el -1 - .098 .083 .083 .951 - .098 .083 .083 .952
Y2 1 110 .149 145 .936 107 150  .145  .937
A(C .9) .9 904 .088 .089 .952 904 .088 .089 .955
A(1.4) 1.4 1.405 .138 .140 .953 1.406 .139 .140 .950
A(1.9) 1.9 1.903 .209 .204 .946 1.906 .210 .204 .949

Mixture of 5 Normal distributions
Par. TRUE Est. SSD ESE CP

Longitudinal model

B1 1.0 987 .052  .050 .931
B2 -5 - .541  .091 .087 .912
Bs -2 - 200 .024 .025 .956
o, 5 500 .010 .010 .946

Hazards model

P -1 - .100 .025 .025 .956
Y1 -1 -.098 .080 .083 .964
Y2 1 107 144 145 951
A( .9) 9 900 .08 .089  .960
A(1.4) 1.4 1.405 .136 .140 .962
A(1.9) 1.9 1.905 .203 .204 .957
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Figure 2: Relative bias plot of parameters in longitudinal and hazard models (thin and thick lines
respectively) from simulation results of sensitivity for model-misspecification with true distribution as
a mixture of non-central tog(-2) and Gamma(7, 1/8).
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Table 2: Results from the final model of simultaneous analysis for the Quality of Life and survival
time of the CHANCE study, assuming 1 normal distribution for random effects

Parameter Est. ESE P-value

< HNCS QoL longitudinal model >

Race (ref= White)

— African American 51 .948 .402 .018
# of 12 oz. beers consumed per week (ref=30 or more)

— None B2 .898 472 .057
— less than 1 B3 1.000 .598 .095
-1to4 Ba 1.946 523 <.001
- 5to 14 Bs 1.644 454 <.001
- 15 to 29 Be 903 508 .075
Household income (ref= levell: 0-10K)

— level2: 20-30K B7 - .263 .403 .515
— level3: 40-50K Bs .592 .446 .184
— leveld: > 60K Bo 1.920 487 <.001
Radiation therapy (ref= No)

— Yes B1o -1.454 423 .001
Tumor stage (ref= 1)

- 11 B11 - .590 499 .238
—1III P12 -1.762 495 <.001
-1V B3 -1.679 443 <.001
# of persons supported by household income (14 - .292 .146 .046
BMI P15 .054 .026 .037
Time at survey measurement (years) B16 .305 .092 .001

< Hazards model >

Random effect coefficient W - .225 .094 .017
# of 12 oz. beers consumed per week (ref=30 or more)

— None " - .708 .349 .043
— less than 1 Yo - .124 397 .755
~1to4 V3 - .766 .386 .048
- 5to 14 V4 -1.030 .350 .003
- 15 to 29 V5 - .550 .371 .139
Household income (ref= levell: 0-10K)

— level2: 20-30K Y6 - .227 275 .409
— level3: 40-50K Y7 - .875 .342 .010
— leveld: > 60K s -1.417 374 <.001
Tumor stage (ref= 1)

-~ 11 Yo - .245 444 .581
- 1II Y10 .155 .402 .700
-1v Y11 .958 .307 .002
Total # of medical conditions reported Y12 .208 .095 .028

P-value for testing Uf being zero is based on a mixture of 0 and x? distribution with 1
degree of freedom with equal mixing probabilities.
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Table 3: Results from the final model of simultaneous analysis for the Quality of Life and survival
time of the CHANCE study, assuming a mixture of 2 normal distributions for random effects

Parameter Est. ESE P-value

< HNCS QoL longitudinal model >

Race (ref= White)

— African American 51 .910 .398 .022
# of 12 oz. beers consumed per week (ref=30 or more)

— None Ba .865 441 .050
— less than 1 B3 1.078 .600 .072
-1to4 Ba 1.695 .549 .002
- 5to 14 Bs 1.506 451 .001
- 15 to 29 Be .964 .490 .049
Household income (ref= levell: 0-10K)

— level2: 20-30K B7 - .343 .373 .359
— level3: 40-50K Bs .644 .449 151
— leveld: > 60K Bo 2.002 .500 <.001
Radiation therapy (ref= No)

— Yes B1o -1.671 534 .002
Tumor stage (ref= 1)

- 11 B11 - .701 .563 213
—1III P12 -2.035 .539 <.001
-1v B3 -1.862 .499 <.001
# of persons supported by household income (14 - .386 .145 .008
BMI P15 .054 .026 .039
Time at survey measurement (years) B16 .339 .094 <.001

< Hazards model >

Random effect coefficient W - .207 .079 .008
# of 12 oz. beers consumed per week (ref=30 or more)

— None " - .703 .348 .043
— less than 1 Yo - 148 .394 707
~1to4 V3 - .T27 .385 .059
- 5to 14 V4 - .998 .349 .004
— 15 to 29 Y5 - 572 370 122
Household income (ref= levell: 0-10K)

— level2: 20-30K Y6 - .206 275 .455
— level3: 40-50K Y7 - .884 .342 .010
— leveld: > 60K 8 -1.408 373 <.001
Tumor stage (ref= 1)

-1I Yo - .250 443 .574
- 1II Y10 175 .402 .663
-1v Y11 .960 .307 .002
Total # of medical conditions reported Y12 .207 .095 .029

P-value for testing Uf being zero is based on a mixture of 0 and x? distribution with 1
degree of freedom with equal mixing probabilities.

38



Table 4: Results from the final model of simultaneous analysis for the Quality of Life and survival
time of the CHANCE study, assuming a mixture of 4 normal distributions for random effects

Parameter Est. ESE P-value

< HNCS QoL longitudinal model >

Race (ref= White)

— African American 51 .891 .400 .026
# of 12 oz. beers consumed per week (ref=30 or more)

— None Ba .851 .430 .048
— less than 1 B3 1.128 .614 .066
-1to4 Ba 1.579 577 .006
- 5to 14 Bs 1.458 431 .001
- 15 to 29 Be 1.013 .535 .058
Household income (ref= levell: 0-10K)

— level2: 20-30K B7 - .344 .358 .337
— level3: 40-50K Bs .630 444 .156
— leveld: > 60K Bo 1.960 .516 <.001
Radiation therapy (ref= No)

— Yes B1o -1.716 .640 .007
Tumor stage (ref= 1)

- 11 B11 - .7T13 .557 .201
—1III P12 -2.030 .548 <.001
-1v B3 -1.845 522 <.001
# of persons supported by household income (14 - .396 143 .006
BMI P15 .059 .027 .028
Time at survey measurement (years) B16 .353 .093 <.001

< Hazards model >

Random effect coefficient W - .204 .078 .009
# of 12 oz. beers consumed per week (ref=30 or more)

— None " - .703 .347 .043
— less than 1 Yo - .156 .393 .691
~1to4 V3 - .11 .385 .065
- 5to 14 V4 - 991 .348 .004
- 15 to 29 V5 - .579 .370 117
Household income (ref= levell: 0-10K)

— level2: 20-30K Y6 - .204 274 .456
— level3: 40-50K Y7 - .881 341 .010
— leveld: > 60K 8 -1.398 374 <.001
Tumor stage (ref= 1)

-1 Yo - .252 443 .570
- 1II Y10 .168 .403 677
-1v Y11 951 .306 .002
Total # of medical conditions reported Y12 .207 .095 .030

P-value for testing Uf being zero is based on a mixture of 0 and x? distribution with 1
degree of freedom with equal mixing probabilities.
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Table 5: Results from the final model of simultaneous analysis for the Quality of Life and survival
time of the CHANCE study, assuming a mixture of 5 normal distributions for random effects

Parameter Est. ESE P-value

< HNCS QoL longitudinal model >

Race (ref= White)

— African American 051 .929 .379 .014
# of 12 oz. beers consumed per week (ref=30 or more)

— None B2 .895 441 .043
— less than 1 B3 1.116 .615 .069
~-1to4 Ba 1.654 507 .001
- 5to 14 Bs 1.489 441 .001
- 15 to 29 Be .968 .530 .067
Household income (ref= levell: 0-10K)

— level2: 20-30K B7 - .357 .349 .307
— level3: 40-50K Bs .643 .449 152
— level4: > 60K Bo 2.004 A73 <.001
Radiation therapy (ref= No)

— Yes Bio -1.651 .594 .005
Tumor stage (ref=T)

- 1I B11 - .733 515 155
—1III P12 -2.066 .550 <.001
-1V P13 -1.886 .528 <.001
# of persons supported by household income 14 - .390 .145 .007
BMI Bis .062 .027 .022
Time at survey measurement (years) B16 .356 .093 <.001

< Hazards model >

Random effect coefficient P - .204 077 .008
# of 12 oz. beers consumed per week (ref=30 or more)

— None o] - 710 .348 .041
— less than 1 Yo - .153 .394 697
~1to4 Y3 - 719 .384 .061
- 5to 14 Y4 - .996 .348 .004
— 15 to 29 Y5 - .572 370 122
Household income (ref= levell: 0-10K)

— level2: 20-30K Y6 - .202 274 .460
— level3: 40-50K Y7 - .884 341 .010
— leveld: > 60K 8 -1.406 373 <.001
Tumor stage (ref= 1)

-1I Yo - .249 .442 573
—1III Y10 174 403 .666
-1V Y11 .956 .307 .002
Total # of medical conditions reported Y12 .207 .095 .029

P-value for testing o7 being zero is based on a mixture of 0 and x? distribution with 1
degree of freedom with equal mixing probabilities.
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Table 6: Simulation results under the settings similar to the CHANCE data with 85% censoring and
the average number of longitudinal observations per patient (n;)=1.93 — mixture of 2 distributions,
sample size of 400 and variance of random effect (07)=0.5 considered.

Par. True Est. SSD ESD CP
51 1.0 1.082 .516 .630 .972
5o -5 - .525 731 .847 977
B3 -2 - .215 254 267 .964
11 -3.0 -3.150 490 .954  .995
142 3.0 3.087 427 764  .995
wy 4 400 .030  .050  .994
ag .5 B77T 0 .202 1421 .998
) -1 -.099 .044 .049 .970
T - .1 -.103 251  .242 947
Yo .1 .091 415 419  .960
A( .104) 104 105 .031 031 .954
A( .209) 209 2210 .059  .059  .955
A( .313) 313 314 .087  .088  .953
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