Online resource 1: Animals used in the current study

The mice used in this study were part of 4 experimental replicates used in Rey et al. 2016.

The mice that were not euthanized for histological analyses in the previous study were maintained alive for up to 23 months post injection, and used for this study.

In addition, we reassessed some animals that were used in our previous study (for the experiments indicated

in the table), and included an additional group, 9 months post injection, that we did not presented previously.

			Animala	Animals use	Figures including	
Timepoint	Experimental group	n=	Animais	Reused for heatmap	Reused for quantifications	these animals
1 mo	Ctl	4				
	PBS	4		Simple scoring,		
	mMs	3	Revisited			Fig 4
	mPFFs	4		average score value		
	huPFFs	4		(continuous data)		
3 mo	Ctl	3		Simple cooring		
	PBS	4		Simple scoring,		
	mMs	5	Revisited			Fig 4
	mPFFs	4		average score value		
	huPFFs	3		(Continuous uata)		
6 mo	Ctl	4		Simple scoring		
	PBS	4		simple scoring,	New cresyl violet staining	
	mMs	5	Revisited		and stereology	Fig 4, Fig 6
	mPFFs	5		(continuous data)	quantification	
	huPFFs	4				
9 mo	Ctl	-				
	PBS	4				
	mMs	5	New			Fig 4
	mPFFs	5				
L	huPFFs	5				
12 mo	Ctl	4		Simple scoring		
	PBS	4		calculation of	Pser129 slides from Rey et	
	mMs	9	Revisited		al. newly analysed by	Fig 4, Fig 5
	mPFFs	5		(continuous data)	ImageJ for quantifications	
	huPFFs	5				
18 mo	Ctl	3				
	PBS	3				
	mMs	4	New			Fig 4, Fig 5, Fig 5,
	mPFFs	3				
	huPFFs	5				
23 mo	Ctl	3				
	PBS	-				
	mMs	4	New			Fig 1, Fig 3, Fig 4
	mPFFs	-				
	huPFFs	4				

Online resource 2 : Flow-chart of macros for pser129 analysis by ImageJ

Images were acquired at 20x magnification with condenser on for OB (a), and without condenser for other brain regions (b). Images were then processed on ImageJ64 as described in a and b.

a. Analysis of OB images

b. Analysis of images from other brain regions

Online resource 3 : Pser129 staining does not lead to unspecific staining in white matter tracts in control animals, and no TDP-43 or Tau pathologies are observed in PFFs injected mice. (a) Pser129 staining is not detected in white matter tracts (aca: anterior part of the anterior commissure, fmi: anterior forceps of corpus callosum, cc: corpus callosum, and cerebellum) of mice injected with mMs 18 months-post injection (ipsilateral) and in age-matched non-injected mice (Ctl). Analysis was performed in 3 animals per group. Scale bar: 100 μ m (b) Tau and TDP-43 pathologies were assessed by immunohistochemistry against hyperphosphorylated tau (AT8) (pS202/T205) and hyperphosphorylated TDP-43 (1D3) (pS409/410) (b). Tau and TDP-43 pathologies are detected respectively in post-mortem brain tissue from patients with AD (AD Brain, angular gyrus) and FTLD (FTLD Brain, cingulate cortex), but are absent from mice 18 months after injection of PBS, huPFFs or mPFFs (a-b; images from the ipsilateral anterior olfactory nucleus). Histochemical analysis was performed in the ipsilateral olfactory bulb and ipsilateral anterior olfactory nucleus of mice 18-months post-injection of mPFFs, HuPFFs and PBS (mPFFs 18 months: n=3; HuPFFs 18 months: n=5, PBS 18 months: n=1). Additional brain regions were assessed in one animal per group (hippocampus, orbitofrontal cortex, motor cortex, striatum, piriform cortex; data not shown). Scale bar: 20 μ m.

• 1				
b	AD Brain	PBS	HuPFFs	mPFFs
	- 3. 3 1			
	a share the state of the state			
	the start of the start			
	1. 1 × 1.0 1 × 2			
	and the second second			
	the said star			
	1 the second			
	AT8			
	FTI D Brain	PBS	HuPFFs	mPFFs
	- TEB Brain	. 20		
	,			
	**			and the second sec
	-			
	103			

Online resource 4

List of the abbreviations used in the figures

Abbreviation	Structure name
AA	Anterior amygdaloid area
AcbNu	Accumbens Nucleus Core and Shell
аса	Anterior part of the anterior commissure
aci	Anterior part of the anterior commissure, intrabulbar part
ACo	Anterior cortical nucleus of the amygdala
AHIPM, AHIAL	Amygdalohippocampal area posteromedial, part anterolateral part
APir	Amygdalopiriform transition area
AON	Anterior olfactory nucleus
AOB	Accessory olfactory bulb
	Secondary auditory cortex
BAOT	Bed nucleus of accessory olfactory tract
	Bacal amygdaloid nucleus
BMA BMP BMI	Accessory basal amygdaloid nucleus (Amygdala)
	Corny Ammonis of the hinnocompus
	Contral amygdaloid nuclous (Amygdala)
	Central amygdaloid nucleus (Amygdala)
	Cingulate cortex
CGb	Central gray, beta part
Ср	Cerebral crus
СРи	Caudate putamen
СхА	Cortex amygdala transition area
DEn, IEn	Dorsal endopiriform nucleus, Immediate endopiriform Nucleus
DG	Dentate Gyrus
DMX	Dorsal motor nucleus of the vagus nerve
DP	Dorsal peduncular cortex
Ect	Ectorhinal cortex
Ent, DiEnt, MiEnt, CEnt, ViEnt	Entorhinal cortex
E/OV	Ependymal and subependymal layer/olfactory ventricle
FC	Frontal cortex and orbital cortex
HDB	Magnocellular preoptic nucleus
GP	Globus pallidus
Нірр	Hippocampus
IC	Internal capsule
Ins	Insular cortex
IL	Infra-limbic cortex
IPR	Interpeduncular nucleus
iRt, 7SH	Intermediate reticular nucleus; facial motor nucleus, stylohyoid part
LC	Locus Coeruleus
LH	Lateral hypothalamic area
LPO	Lateral preoptic nucleus
LSI	Lateral septal nucleus
M2	Secondary motor cortex
MeAD, MePV	Medial Nucleus of the amygdala
Med	Medial cerebellar nucleus
mPtA	Medial parietal association cortex
Mol	Molecular layer of the hippocampus
MoDG	Molecular laver, dentate gyrus
mVeMC, mVePC	Medial vestibular nucleus, magnocellular part, parvicellular part
nLOT	Nucleus of the lateral olfactory tract
ОВ	Olfactory bulb
Or	Oriens layer of the hippocampus
ОТ	Olfactory tubercle
PBP	Parabrachial pigmented nucleus
PC	Piriform cortex
PLCo	Posterolateral cortical amygdaloid area
РІН	Peduncular part of the lateral hypothalamic area
1 611	

РМСо	Posteromedial cortical amygdaloid area
PoDG	Pyramidal layer, dentate gyrus
PRh	Perirhinal cortex
PVA	Paraventricular thalamic nucleus, anterior part
PVP	Paraventricular thalamic nucleus, posterior part
Pyr	Pyramidal layer of the hippocampus
REth	Retroethmoid nucleus
Rad	Radial layer of the hippocampus
rmx, RML	Retromammillary decussation, retromammillary nucleus, lateral part
RN	Dorsal and medial raphe nuclei
S1	Primary somatosensory cortex
S2	Secondary somatosensory cortex
SC	Superior colliculus
SFi	Septofimbrial nucleus
SN, SNR, SNpc	Substantia nigra, reticulata, pars compacta
STMAM, STMPM	Antero medial part of the bed nucleus of the stria terminalis
STr	Subiculum transition area
TeA	Temporal cortex association area
TT	Tenia tecta
V2	Secondary visual cortex
VS	Ventral subiculum
VP	Ventral pallidum
VTA	Ventral tegmental area

Online resource 5: Linear mixed effect model analysis of pser129 quantifications

a. Comparison of ipsilateral versus contralateral sides, within the same experimental groups and delays post-injection.

Analyses for each brain regions were performed separately, but are presented in the same table for easier reading. p p<0.05, n p<0.01, nn p< 0.001. M. estim. = Model estimate

Brain	Linear mixed		12 mo			18 mo	
region	effect model	mMs	HuPFFs	mPFFs	mMs	HuPFFs	mPFFs
	M. Estim.	-0.2415421	-2.1282153	-2.4606963	-0.0988964	-1.4449104	2.5365672
ОВ	SE	0.6318344	0.6318344	0.7064124	0.7064124	0.6318344	0.8156947
	p-value	0.8426982	0.0022689 ^^	0.0022689 ^^	0.8886615	0.0333069 ^	0.0037455 ^^
	M. Estim.	0.2698275	-1.4503223	-1.0137230	-0.4571813	-1.6265008	-0.7691579
AON	SE	0.4722032	0.4722032	0.4722032	0.5279392	0.4722032	0.6096117
	p-value	0.5677133	0.0063918 ^^	0.0636193	0.4638057	0.0034328 ^^	0.3105755
	M. Estim.	0.1276413	-1.8216912	-1.7025134	0.8088221	-2.0827230	-2.7913161
aPC	SE	0.3923716	0.3923716	0.3923716	0.5065496	0.4530717	0.5849131
	p-value	0.7449487	0.0000086 ^^^	0.0000215 ^^^	0.1323915	0.0000086 ^^^	0.0000086b ^^^
	M. Estim.	0.2237275	-2.1453953	-1.8106423	-0.6666596	-3.6460458	-1.8887278
pPC	SE	0.5569773	0.5569773	0.5569773	0.6227195	0.5569773	0.7190546
	p-value	0.6879184	0.0003517 ^^^	0.0023013 ^^	0.3412399	0.0000000 ^^^	0.0129333 ^
	M. Estim.	0.1813210	-1.9837258	-1.7828835	0.0710812	-2.8643844	-2.3400220
PC	SE	0.3162032	0.3162032	0.3162032	0.3872683	0.3463833	0.4471789
	p-value	0.6796228	0.0000000 ^^^	0.0000000 ^^^	0.8543703	0.0000000 ^^^	0.0000003 ^^^
	M. Estim.	0.0461447	-2.3131974	-1.5910613	-0.0927822	-2.6742402	-3.0255354
Ent	SE	0.4498931	0.4498931	0.5029958	0.5029958	0.4498931	0.5808095
	p-value	0.9183058	0.0000005 ^^^	0.0023409 ^^	0.9183058	0.0000000 ^^^	0.000005 ^^^

b. Comparison between experimental groups, within same side of the brain and same delay. Analyses for each brain regions were performed separately, but are presented in the same table for easier reading. * p<0.05, ** p<0.01, *** p<0.001 for comparisons to mMs; # p<0.05, ## p<0.01, ### p<0.001 for comparisons between mPFFs and huPFFs. M. estim. = Model estimate

Dunin		Linear		12 mo			18 mo	
Brain	Side	effect						
		model	huPFFs/ mMs	mPFFs/mMs	huPFFs/mPFFs	huPFFs/ mMs	mPFFs/mMs	huPFFs/mPFFs
		M. estim.	4.9647172	-6.9911420	-2.0264248	2.4860425	-0.0516132	2.4344292
	Ipsi-	SE	0.7505855	0.7961162	0.7961162	0.7961162	0.9064182	0.8667015
	lateral	p-value	0.000000 ***	0.000000 ***	0.0130988 #	0.0035838 **	0.9545914	0.007458 ##
08		M. estim.	3.0780440	-4.7719880	-1.6939440	1.1400280	-2.6870770	-1.5470480
	Contra-	SE	0.7505855	0.7961162	0.7961162	0.7961162	0.9064182	0.8667015
	lateral	p-value	0.0001235 ***	0.000000 ***	0.0500355	0.1521474	0.0060635 **	0.0891167
	Incel	M. estim.	4.6859919	-5.9153911	-1.2293992	3.0398960	-2.3964439	0.6434521
	Ipsi- latoral	SE	0.5596034	0.5596034	0.5596034	0.5935490	0.6757853	0.6461743
	lateral	p-value	0.000000 ***	0.000000 ***	0.0336321 #	0.0000006 ***	0.0005863 ***	0.3193536
AON	C	M. estim.	2.9658421	-4.6318407	-1.6659985	1.8705765	-2.0844673	-0.2138908
	Lateral	SE	0.5596034	0.5596034	0.5596034	0.5935490	0.6757853	0.6461743
	lateral	p-value	0.000003 ***	0.000000 ***	0.0034918 ##	0.0030583 **	0.0030583 **	0.7406362
	lpsi- lateral	M. estim.	2.7881870	-4.4508940	-1.6627070	3.1702950	-2.8222260	0.3480690
		SE	0.3870358	0.3870358	0.3870358	0.5329051	0.6067392	0.5801536
280		p-value	0.000000 ***	0.000000 ***	0.0000209 ###	0.000000 ***	0.0000049 ***	0.5485328
arc	Contra- lateral	M. estim.	0.8388548	-2.6207396	-1.7818848	0.2787496	0.7779126	1.0566622
		SE	0.5024278	0.5024278	0.5024278	0.5329051	0.6067392	0.5801536
		p-value	0.1424970	0.0000011 ***	0.0011709 ##	0.6009218	0.2397606	0.1371077
	Inci	M. estim.	2.7532726	-4.2592406	-1.5059680	3.6456037	-3.0675061	0.5780976
	lateral	SE	0.5569773	0.5569773	0.5569773	0.5907636	0.6726140	0.6431420
nPC		p-value	0.0000015 ***	0.000000 ***	0.0082256 ##	0.000000 ***	0.0000077 ***	0.3687247
pre	Contra-	M. estim.	0.3841498	-2.2248709	-1.8407210	0.6662176	-1.8454379	-1.1792204
		SE	0.5569773	0.5569773	0.5569773	0.5907636	0.6726140	0.6431420
	lateral	p-value	0.4903799	0.0003889 **	0.0028509 ##	0.3113244	0.0121509 ***	0.1000856
	Inci	M. estim.	2.7765490	-4.3870097	-1.6104606	3.4079492	-2.9448659	0.4630833
	lateral	SE	0.3883009	0.3883009	0.3883009	0.4632686	0.4987108	0.4742004
PC	lateral	p-value	0.000000 ***	0.000000 ***	0.0000403 ###	0.000000 ***	0.000000 ***	0.3287889
	Contra	M. estim.	0.6115023	-2.4228052	-1.8113029	0.4724836	-0.5337627	-0.0612791
	lateral	SE	0.4367738	0.4367738	0.4367738	0.4632686	0.4987108	0.4742004
	lateral	p-value	0.3230007	0.000002 ***	0.0001011 ###	0.3693361	0.3693361	0.8971787
	Inci	M. estim.	4.3141972	-7.2342055	-2.9200083	4.8852957	-4.2210985	0.6641973
	lateral	SE	0.5303450	0.5625158	0.5625158	0.5625158	0.6404524	0.6123896
Ent		p-value	0.000000 ***	0.000000 ***	0.0000003 ###	0.000000 ***	0.000000 ***	0.2780992
LIIL	Contro	M. estim.	1.9548550	-5.5969990	-3.6421440	2.3038380	-1.2883450	1.0154920
	lateral	SE	0.5303450	0.5625158	0.5625158	0.5625158	0.6404524	0.6123896
	lateral	p-value	0.0003417 ***	0.000000 ***	0.000000 ###	0.0000842 ***	0.0531123	0.0972679

c. Comparison of 12 mo versus 18 mo delays, within same experimental groups and same side of the brain.

Analyses for each brain regions were performed separately, but are presented in the same table for easier reading. \$ p<0.05, \$\$ p<0.01, \$\$\$ p<0.001. M. estimate= Model estimate

Brain region	Side	Linear mixed effect model	mMs	huPFFs	mPFFs
ОВ	lu el	M. estim.	-1.2572934	1.2213813	5.6822353
	Ipsi- lateral	SE	0.7961162	0.7505855	0.9064182
	lateral	p-value	0.1714064	0.1714064	0.0000000 \$\$\$
	Contro	M. estim.	-1.3999392	0.5380763	0.6849719
	lateral	SE	0.7961162	0.7505855	0.9064182
	lateral	p-value	0.1714064	0.4734510	0.4734510
	Inci	M. estim.	-2.3096783	-0.6635824	1.2092689
	lateral	SE	0.5935490	0.5596034	0.6461743
AON		p-value	0.0005982 \$\$\$	0.2828375	0.1225715
Aon	Contra	M. estim.	-1.5826695	-0.4874039	0.9647038
	lateral	SE	0.5935490	0.5596034	0.6461743
		p-value	0.022997 \$	0.3837645	0.2031767
	Ipsi- lateral	M. estim.	1.2148021	0.8326947	2.8434706
		SE	0.4823581	0.4484587	0.5340971
aPC		p-value	0.0235735 \$	0.0760088	0.0000003 \$\$\$
ui e	Contra- lateral	M. estim.	0.5336212	1.0937265	3.9322734
		SE	0.5329051	0.5024278	0.5801536
		p-value	0.3166606	0.0442339 \$	0.000000 \$\$\$
	lpsi- lateral	M. estim.	0.5282631	-0.3640680	1.7199976
		SE	0.5907636	0.5569773	0.6431420
pPC		p-value	0.4454554	0.5133375	0.0224611\$
pre	Contra-	M. estim.	1.4186502	1.1365825	1.7980831
	lateral	SE	0.5907636	0.5569773	0.6431420
		p-value	0.0326664 \$	0.0619320	0.0224611
	Inci-	M. estim.	0.8658960	0.2344958	2.3080398
	lateral	SE	0.4411586	0.4132487	0.4526247
PC		p-value	0.0596065	0.5704120	0.000001 \$\$\$
	Contra-	M. estim.	0.9761357	1.1151545	2.8651783
	lateral	SE	0.4632686	0.4367738	0.4742004
		p-value	0.0526683	0.02135 \$	0.0000000 \$\$\$
	Insi-	M. estim.	0.8401741	0.2690756	3.8532811
	lateral	SE	0.5625158	0.5303450	0.6404524
Ent		p-value	0.2029200	0.6119026	0.000000 \$\$\$
	Contra-	M. estim.	0.9791010	0.6301184	5.2877552
	lateral	SE	0.5625158	0.5303450	0.6404524
	ateral	p-value	0.1635162	0.2817390	0.0000000 \$\$\$

d. Comparison between quantifications in aPC and pPC

	aPC vs pPC
M. estim.	0.0426258
SE	0.1344211
p-value	0.7511627

Online resource 6: Linear mixed effect model analysis of cresyl-positive cells quantifications

Delay	Cell type	Linear mixed effect model	Ctl	mMs	HuPFFs	mPFFs
		M. Estim.	0.1273718	0.0932906	-0.0660213	-0.0457503
	All	SE	0.1048393	0.0813596	0.0910254	0.0814151
		p-value	0.6707416	0.6707416	0.9186515	0.9186515
	Dark	M. Estim.	0.1303246	0.1123022	-0.1992801	-0.0124842
6 mo	Dark	SE	0.1390759	0.1078551	0.1210392	0.1081838
	stameu	p-value	0.9081295	0.9081295	0.7974361	0.9081295
	Light stained	M. Estim.	0.1273563	0.0908026	0.0487940	-0.0652603
		SE	0.1518321	0.1179213	0.1318078	0.1178177
		p-value	0.7710894	0.7710894	0.8128464	0.7728550
		M. Estim.	0.0233055	0.1347899	0.0048061	-0.0301928
	All	SE	0.1049368	0.0913747	0.0822450	0.1049764
		p-value	0.9419926	0.6707416	0.9534006	0.9419926
	Dark	M. Estim.	-0.0645168	0.0877502	0.0236020	-0.0544401
18 mo	Dark	SE	0.1391695	0.1223140	0.1104617	0.1394721
	staineu	p-value	0.9081295	0.9081295	0.9081295	0.9081295
	Light	M. Estim.	0.1069331	0.1256423	0.5736342	-0.0139157
	stained	SE	0.1520664	0.1319961	0.1206111	0.1519505
	stained	p-value	0.7710894	0.7710894	0.0000158 ^^^	0.9270315

a. Comparison of ipsilateral versus contralateral sides for each experimental group and delay. ^ p<0.05, ^^ p<0.01, ^^^ p<0.001. M. estim. = Model estimate

b. Comparison between experimental groups within same side of the AON and the same delay.

* p<0.05, ** p<0.01, *** p<0.001 for comparisons to mMs and to Ctl; # p<0.05, ## p<0.01, ### p<0.001 for comparisons between mPFFs and huPFFs. M. estim. = Model estimate

			Linear						huPFFs/ mPFFs
Delav	Cell	Side	mixed	Ctl/ mMs	Ctl/ huPFFs	Ctl / mPFFs	mMs/ huPFFs	mMs/ mPFFs	
	type		effect	-		•	•		•
			M Latim	0.0217992	0 9904965	0 5960463	0 9576092	0 5551590	0 2025 402
		Ipsi-		0.0317885	0.8834803	0.3803403	0.1695634	0.5551580	0.1696043
		lateral	SE	0.1843031	0.1930231	0.1843404	0.000051 ***	0.1338474	0.1030043
			p-value	0.8632101	1.0929706	0.0044109	1.0170102	0.0020583	0.1276390
	Cells	Contra-	IVI. Estim.	0.0658694	1.0828796	0.7600685	-1.01/0102	0.6941990	-0.3228112
		lateral	SE .	0.1844927	0.1929744	0.1845418	0.1695465	0.1598824	0.1695989
			p-value	0.7210693	0.0000001 ***	0.0001143 ***	0.000000 ***	0.0000565 ***	0.1139819
		lpsi-	M. Estim.	-0.0622179	0.8512679	0.4428020	-0.9134858	0.5050199	-0.4084659
		lateral	SE	0.3086262	0.3229035	0.3087010	0.2831354	0.2668252	0.2832155
6 mo	Dark		p-value	0.8402323	0.0502905	0.2596405	0.0150471 *	0.1401547	0.2596405
	stained	Contra-	M. Estim.	-0.0441954	1.1808727	0.5856109	-1.2250681	0.6298063	-0.5952618
		lateral	SE	0.3085971	0.3228471	0.3086641	0.2831266	0.2668408	0.2831988
			p-value	0.9047783	0.001527 **	0.0990786	0.0001814 ***	0.0730540	0.0990786
		Inci	M. Estim.	0.1177756	1.0155376	0.6841849	-0.8977620	0.5664093	-0.3313527
		lateral	SE	0.1864471	0.1950463	0.1865344	0.1713428	0.1615703	0.1714054
	Light		p-value	0.5755566	0.0000012 ***	0.000587 ***	0.0000012 ***	0.000911 ***	0.0798263
	stained	Contra- lateral	M. Estim.	0.1543293	1.0940999	0.8768015	-0.9397706	0.7224722	-0.2172985
			SE	0.1863414	0.1948616	0.1865573	0.1711917	0.1616636	0.1714330
			p-value	0.5434042	0.0000002 ***	0.0000104 ***	0.0000002 ***	0.0000236 ***	0.4099234
		lpsi- lateral All	M. Estim.	0.4599798	0.3981126	0.1454395	0.0618672	-0.3145402	-0.2526730
			SE	0.1930503	0.1846292	0.2063084	0.1697449	0.1931022	0.1846836
	All		p-value	0.0412475 *	0.0621234	0.5770008	0.7805517	0.1550077	0.2283578
	cells	cells	M. Estim.	0.3484953	0.4166119	0.1989378	-0.0681166	-0.1495575	-0.2176740
		Contra-	SE	0.1930554	0.1846798	0.2063090	0.1698052	0.1931074	0.1847353
		laterai	p-value	0.1218002	0.0577905	0.4465465	0.7210693	0.5263778	0.3580141
			M. Estim.	0.7901024	0.6920332	0.3837566	0.0980692	-0.4063458	-0.3082766
		lpsi-	SE	0.3229044	0.3088852	0.3449538	0.2834357	0.3223640	0.3083203
18	Dark	lateral	p-value	0.0576425	0.0751906	0.3545718	0.7956454	0.3112235	0.3808550
mo	stained		M. Estim.	0.6378355	0.6039144	0.3736800	0.0339210	-0.2641555	-0.2302345
		Contra-	SE	0.3230084	0.3088963	0.3449653	0.2835555	0.3224726	0.3083361
		lateral	p-value	0.0990786	0.0990786	0.4180533	0.9047783	0.5462939	0.5462939
			M. Estim.	0.2382181	0.7460466	-0.0315631	-0.5078285	-0.2697812	-0.7776097
		lpsi-	SE	0.1950609	0.1870274	0.2084143	0.1719291	0.1949954	0.1869467
	Light	lateral	p-value	0.2663896	0.0001991 ***	0.8796255	0.0053825 **	0.2220048	0.0001276 ###
	stained		M. Estim	0.2195089	0.2793455	0.0892857	-0.0598366	-0.1302232	-0.1900598
		Contra-	SF	0.1950501	0.1869135	0.2084113	0.1717607	0.1949313	0.1867961
		lateral	p-value	0.4464353	0.3240967	0.7275608	0.7275608	0.6049246	0.4633932

c. Comparison of 6 months versus 18 months delays, within same experimental groups and same side of the brain.

Analyses for each brain regions were performed separately, but are presented in the same table for easier reading. \$ p<0.05, \$\$ p<0.01, \$\$\$ p<0.001. M. estim. = Model estimate

Cell type	Side	Linear mixed effect model	Ctl	mMs	huPFFs	mPFFs
		M. Estim.	0.6897681	1.1179596	0.1983941	0.2482613
	Ipsi- lateral	SE	0.1050046	0.1696019	0.1697091	0.1845937
	lateral	p-value	0.000000 \$\$\$	0.000000 \$\$\$	0.2770214	0.2766555
All Cells	Contra	M. Estim.	0.7938344	1.0764603	0.1275667	0.2327038
	Contra- lateral	SE	0.1049088	0.1696201	0.1697314	0.1846134
	lateral	p-value	0.000000 \$\$\$	0.0000000 \$\$\$	0.4523038	0.2766555
	lpsi- lateral	M. Estim.	0.4596734	1.3119937	0.3004387	0.4006280
		SE	0.1392783	0.2831452	0.2834250	0.3081286
Dark		p-value	0.001931 \$\$	0.0000096 \$\$\$	0.3304358	0.2580444
cells	Contra- lateral	M. Estim.	0.6545148	1.3365457	0.0775566	0.4425839
		SE	0.1392119	0.2832711	0.2834119	0.3081401
		p-value	0.0000096 \$\$\$	0.0000096 \$\$\$	0.7843511	0.2414639
	Ipsi-	Model estimate	0.8696058	0.9900483	0.6001149	0.1538579
	lateral	SE	0.1520737	0.1713408	0.1719170	0.1864867
Light cells		p-value	0.000000 \$\$\$	0.0000000 \$\$\$	0.0007707 \$\$\$	0.5458032
	Contro	M. Estim.	0.8900290	0.9552086	0.0752746	0.1025133
	lateral	SE	0.1518788	0.1712700	0.1716826	0.1865726
	lateral	p-value	0.000000 \$\$\$	0.000000 \$\$\$	0.6610584	0.6610584