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EXPERIMENTAL DATA PREPROCESSING AND CLASSIFICATION

A large set consisting of more than two million images, containing single hits, as well as

hits from multiple particles and aggregates [see Fig. S1], was classified by the diffusion map

embedding method to extract single-particle hits, as described in ref. [1]. Additional manual

filtering was performed to filter out the remaining alien images corresponding to diffrac-

tion from multiple viruses [see Fig. S1(d)], aggregates [Fig. S1(e)], and spherical droplets

[Fig. S1(f)], as well as the images with visible detector failure, leading to a rejection of 8.6%

and 8% of the images classified as single hits for PR772 and RDV, correspondingly. An

intensity threshold was then applied to the extracted single-hits to reject all images with an

average intensity smaller than 4500 ADUs/pixel (analog-to-digital units per pixel), leading

to the final datasets consisting of 1400 “high-intensity” single PR772 hits and 760 “high-

intensity” single RDV hits, where the scattered signal in most of the images was recorded

up to the edges of the detector. For the last preprocessing step, the centers of the diffraction

patterns were refined individually for each image in each of the datasets, as required for

x-ray cross-correlation analysis (XCCA).

FIG. S1. Scattering data measured from RDV samples (logarithmic scale). High-intensity (a),(b)

and low-intensity (c) diffraction patterns from single RDV particles. Diffraction patterns from

multiple viruses (d), aggregates (e), and spherical droplets of buffer (f).
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PARTICLE SIZE DETERMINATION

By inspecting individual radial intensity profiles 〈I(q, ϕ)〉ϕ, one can find that the two

datasets are characterized by a certain size distribution of RDV and PR772 particles, which

was used to further classify the diffraction patterns according to their corresponding particle

sizes. Here we explicitly define the size of an icosahedral particle to be equal to dmax, the

maximum pair distance in the particle. Note that dmax = 2Rcirscr, where Rcirscr is the radius of

a circumscribed sphere [see inset in Fig. S2(a)]. Image classification was performed based on

two types of fits of 〈I(q, ϕ)〉ϕ as a function of q for individual diffraction patterns: a Guinier-

type fit [2] 〈I(q, ϕ)〉ϕ = I(0) exp(−q2R2
g/3) in the low-q range and a fit with a form factor

of a spherical particle, 〈I(q, ϕ)〉ϕ = A[(sin(qRs) − qRs cos(qRs))/q
3]2, in the neighborhood

of the first minimum of 〈I(q, ϕ)〉ϕ [see Fig. S2(a)]. Here I(0) and A are scaling parameters,

Rg is the radius of gyration [2], and Rs is the radius of the corresponding spherical particle.

Fitting with the form factor of a sphere was restricted to the range of q = (0.08, 0.17) nm−1

for RDV and q = (0.11, 0.17) nm−1 for PR772 viruses, and the Guinier fitting was performed

in the range q = (0.054, 0.077) nm−1 for both types of particles.

Simulations show that, for particles with small shape anisotropy (like icosahedral-shaped

RDV or PR772), the position of the first minimum is almost independent of particle orienta-

tion, and therefore, it can be used to characterize particle size, while positions of higher-order

minima become dependent on particle orientation. Our results of simulations for solid icosa-

hedral particles of different sizes show that particle sizes determined from the Guinier-type

fits (2Rg) and spherical form-factor fits (2Rs) give systematically lower values as compared

to the real particle size (2Rcirscr) [see Fig. S2(b)]. Inaccuracies in the Guinier analysis ap-

pear because we perform fitting 〈I(q, ϕ)〉ϕ outside of the proper Guinier q−range, defined

as q < 1/Rg (or q < 1.3/Rg in the worst case) [2], and also because we actually do not fit a

proper SAXS intensity, but rather 〈I(q, ϕ)〉ϕ corresponding to a certain particle orientation

(this is why we call it a “Guinier-type” fit). The parameter Rs determined from the spherical

form-factor fit is equal to the radius of the volume-equivalent spherical particle. In principle,

the size of an ideal icosahedral particle dmax defined above can be expressed just in terms of

Rs as, dmax = Rs2
5/6(5 +

√
5)1/2(π/[5 + (3 +

√
5)])1/3 ≈ 2.364Rs. Alternatively, we empiri-

cally found that the value of the diameter of the inscribed sphere 2Rinscr [see Fig. S2(a)] can

be also quite accurately approximated by a combination of the size parameters determined
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FIG. S2. Size determination of the virus particles. (a) Example of a radial intensity profile

〈I(q, ϕ)〉ϕ of an icosahedral particle approximated by the Guinier-type fit (1) in the low-q range,

and fitted with a form factor of a spherical particle (2) around the position of the first minimum of

〈I(q, ϕ)〉ϕ. The inset in (a) schematically shows an icosahedron with the specified radii of inscribed

Rinscr and circumscribed Rcirscr spheres. (b) Dependence of the fitting parameters Rs and Rg, as

well as other size parameters on the size of icosahedron, used in the size-determination procedure

(see text). (c),(d) Size distribution histograms determined for the experimental RDV (c) and

PR772 (d) diffraction patterns. Data portions corresponding to polydispersity PD = 1 nm, 3 nm

and 5 nm are indicated by different shaded areas in (c) and (d).

from the two fits as 2Rinscr = Rg + Rs [Fig. S2(b)]. By using the exact geometric relation

Rcirscr = (15−6
√
5)0.5Rinscr, the size of an icosahedral particle can be quite accurately deter-

mined from the fitted parameters as, size ≈ 1.26(Rg +Rs). As one can see from Fig. S2(b),

the particle size that is determined from this approach is in very good agreement with the

exact value of 2Rcirscr.

The size distribution histograms determined as size ≈ 1.26(Rg +Rs), with the maximum

allowed root-mean-square (RMS) errors for the spherical form-factor fits RMSs
RDV = 0.2

and RMSs
PR772 = 0.12, and for the Guinier fits RMSg

RDV = 0.02 and RMSg
PR772 = 0.01, are
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shown in Figs. S2(c) and S2(d) for RDV and PR772 viruses, respectively. After rejecting

additional patterns using this RMS filtering of the fits, the histograms show size distributions

for the remaining 619 RDV hits and 1058 PR772 hits. As one can see, the size distributions

for both viruses have a Gaussian-like shape, with a bit steeper left wing due to missing

“low-intensity” hits from smaller particles, which were rejected on the initial preprocessing

stage.

X-RAY CROSS-CORRELATION ANALYSIS

The scattered intensity distribution from a single particle in an arbitrary orientation can

be expressed as

I(q) =

∣∣∣∣
∫

ρ(r) exp(iq · r)dr
∣∣∣∣
2

. (1)

where q is the scattering vector, r is the real-space vector, ρ is the 3D electron density

distribution of the particle. A diffraction pattern measured on a 2D detector samples the

3D intensity distribution in Eq. (1) along the Ewald sphere, and can be expanded into the

angular Fourier series

I(q, ϕ) =
∞∑

n=−∞

In(q) exp(inϕ), (2)

where the angular Fourier transform is defined in the polar coordinate system of the detector

(q, ϕ), and In(q) are the Fourier components (FCs) of I(q, ϕ).

The basic element of x-ray cross-correlation analysis (XCCA) is the two-point cross-

correlation function (CCF), which can be defined at two momentum transfer values q1 and

q2 as [3–5],

Cij(q1, q2,∆) = 〈Ii(q1, ϕ)Ij(q2, ϕ+∆)〉ϕ , (3)

where ∆ is the angular separation, 〈. . . 〉ϕ defines averaging over the angular coordinate ϕ,

and the subscripts i and j indicate that intensities are correlated between the i-th and j-th

diffraction patterns. It is customary to operate with the FCs Cn
ij(q1, q2) of the CCF (3),

with angular Fourier series of Cij(q1, q2,∆) written as

Cij(q1, q2,∆) =
∞∑

n=−∞

Cn
ij(q1, q2) exp(in∆). (4)
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It has been shown that the following relation holds between the FCs of intensity and of the

CCF Cn
ij(q1, q2) [3–5],

Cn
ij(q1, q2) = In∗i (q1)I

n
j (q2). (5)

As one can see, the FCs Cn
ij(q1, q2) are directly related to the FCs of intensity Ini (q1) and

Inj (q2).

Eqs. (3) and (5) reduce to a commonly used single-diffraction-pattern CCF Cii(q1, q2,∆)

and its FCs Cn
ii(q1, q2) when intensities are correlated on the same diffraction pattern i. Also,

the CCF can be calculated for a single momentum transfer q1 = q2 = q, with Eqs. (3) and

(5) further reducing to Cii(q,∆) = 〈Ii(q, ϕ)Ii(q, ϕ+∆)〉ϕ and Cn
ii(q) = |Ini (q)|2.

The CCF and its FCs can be averaged over a set of M diffraction patterns to obtain the

orientationally averaged result,

〈Cii(q1, q2,∆)〉i=
1

M

M∑

i=1

Cii(q1, q2,∆), (6)

〈Cij(q1, q2,∆)〉i 6=j=
1

M(M − 1)

M∑

i,j=1
i 6=j

Cij(q1, q2,∆), (7)

〈Cn
ii(q1, q2)〉i=

1

M

M∑

i=1

Cn
ii(q1, q2)

=
1

M

M∑

i=1

In∗i (q1)I
n
i (q2), (8)

〈Cn
ij(q1, q2)〉i 6=j=

1

M(M − 1)

M∑

i,j=1
i 6=j

Cn
ij(q1, q2)

=
1

M(M − 1)

M∑

i,j=1
i 6=j

In∗i (q1)I
n
j (q2), (9)

where 〈. . . 〉i and 〈. . . 〉i 6=j denote statistical averages over M patterns and M(M−1) pairs of

diffraction patterns, respectively. Notice, that due to symmetry properties of Cij(q1, q2,∆),

for a set of M measured diffraction patterns there are M(M − 1) nonequivalent pairs of

patterns for q1 6= q2, and M(M − 1)/2 pairs for q1 = q2 = q.

For practical application, it is useful to define the difference CCF

C̃(q1, q2,∆) = 〈Cii(q1, q2,∆)〉i − 〈Cij(q1, q2,∆)〉i 6=j (10)
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and its Fourier series,

C̃(q1, q2,∆) =
∞∑

n=−∞

C̃n(q1, q2) exp(in∆). (11)

Due to the linear properties of the Fourier transform, the average difference Fourier spectrum

can be also determined as [5],

C̃n(q1, q2) = 〈Cn
ii(q1, q2)〉i − 〈Cn

ij(q1, q2)〉i 6=j. (12)

The key property of the ensemble averaged 〈Cii(q1, q2,∆)〉i and 〈Cn
ii(q1, q2)〉i is that they

preserve higher-order structural information of the 3D structure of a particle. In contrast,

such information cannot be accessed in conventional SAXS analysis, where only orienta-

tionally averaged intensity 〈Ii(q, ϕ)〉ϕ,i is measured. In the absence of any background and

uniform distribution of particle orientations the term 〈Cn
ij(q1, q2)〉i 6=j vanishes for n > 0,

therefore C̃n(q1, q2) should contain undistorted information about a particle, apart from the

n = 0 term which can be recovered from the SAXS pattern. In the presence of nonuni-

formities in the measured data (for instance, structured background, nonuniform response

of detector tiles, etc.), the difference FCs C̃n(q1, q2) help to reduce the effect of various

undesirable experimental factors that can contaminate 〈Cn
ii(q1, q2)〉i [5].

The ability of the difference FCs to filter out undesirable experimental factors is illustrated

in Fig. S3, where the Fourier components 〈Cn
ii(q1, q2)〉i and C̃n(q1, q2) are plotted for the

case q1 = q2 = q, both for PR772 and RDV experimental data. It is clearly visible that

the difference Fourier components C̃n(q1, q2) look much cleaner than 〈Cn
ii(q1, q2)〉i, and the

FCs of even orders n can be clearly distinguished from the odd orders, which have vanishing

values in the small-angle scattering geometry of our experiment [1].

SIMILARITY METRIC FOR CORRELATION DATA

While 2D maps of correlation coefficients C̃n(q1, q2) provide convenient visual means for

comparison of different experimental data and simulations, from a practical point of view,

it is important to have a quantitative measure of similarity for correlation data. Here

we adopted a similarity metric for correlation datasets based on the idea of Fourier ring

correlation (FRC), which is commonly used as a resolution-dependent metric for comparison

of 2D images in electron microscopy and x-ray imaging [6–8]. To compare 2D maps of the

8



FIG. S3. Amplitudes (log scale) of the FCs (a),(b) 〈Cn
ii(q1, q2)〉i [see Eq. (8)] and (c),(d) C̃n(q1, q2)

[Eq. (12)] for n = 1, . . . , 12 determined at q1 = q2 = q for (a),(c) RDV and (b),(d) PR772 viruses,

respectively.

Fourier components C̃n(q1, q2) [Eq. 12] of different orders n, we propose to use the Fourier

quadrant correlation (FQC) between two maps defined as

FQCn(q) =
|CCn

1,2(q)|√
CCn

1,1(q)CCn
2,2(q)

, (13)

where

CCn
v,w(q) =

∑

q1≤q

C̃n
v (q1, q) · C̃n

w(q1, q)
∗ +

∑

q2<q

C̃n
v (q, q2) · C̃n

w(q, q2)
∗, (14)

and C̃n
v (q1, q2) [Eq. 12] defines the FC of the n-th order corresponding to the v-th map

(v, w = 1, 2). The two summations in Eq. (14) are performed for each q over two orthogonal

sections of the 2D maps that form edges of a quadrant (see Fig. S4), hence defining the name

“FQC” of the similarity metric. Such a choice of the similarity metric is justified by the

rather rectangular symmetry of the 2D correlation maps (compared to the rather circular

symmetry of diffraction patterns) and also by its independence of experimental geometry

(similar to classical FRC used for diffraction patterns).
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Note that due to imperfections in the experimental data (e.g, limited statistics) the FCs

C̃n(q1, q2) are not precisely real-valued. This is reflected in Fig. S5, where the phases of

C̃n(q1, q2) are shown, determined for the experimental RDB and PR772 datasets for particle

polydispersity PD = 3 nm (see next section for polydispersity effects). For this reason,

Eq. (14) is in general defined for complex values of C̃n(q1, q2).

FIG. S4. Quadrants used for the summations in the definition of the FQC, as given by Eqs. (13)

and (14). The two summations in Eq. (14) are performed for each q over two orthogonal sections,

q1 = q, q2 ≤ q and q1 < q, q2 = q, forming edges of a quadrant. Edges of three quadrants

corresponding to different values of q in Eq. (14) are shown in different color.

FIG. S5. Experimental 2D maps of the absolute values of phases |arg[C̃n(q1, q2)]| for n = 2, 4, 6, 8, 10

and 12, determined for (a)-(f) RDV and (g-l) PR772 viruses.

While the similarity metric defined in Eq. (13) can be used to compare FCs of different

orders n separately, it cannot be used to characterize the correlation dataset as a whole
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because FCs of different orders n can have different orders of magnitude. For single-particle

structure recovery by the MTIP algorithm, we use the whole correlation dataset including

SAXS intensities. Therefore, we also defined a cumulative correlation metric CC(q1, q2) in

terms of the difference CCF C̃(q1, q2,∆) [Eq. (10)] and SAXS intensities 〈Ii(q, ϕ)〉ϕ,i,

CC(q1, q2) =
CC1,2(q1, q2)√

CC1,1(q1, q2)CC2,2(q1, q2)
, (15)

where

CCv,w(q1, q2)= 〈C̃v(q1, q2,∆)C̃w(q1, q2,∆)〉∆
+〈Ivi (q1, ϕ)〉ϕ,i〈Ivi (q2, ϕ)〉ϕ,i〈Iwi (q1, ϕ)〉ϕ,i〈Iwi (q2, ϕ)〉ϕ,i, (16)

and the CCF C̃v(q1, q2,∆) and SAXS intensity 〈Ivi (q, ϕ)〉ϕ,i are specified for the v-th dataset

(v, w = 1, 2). The two-dimensional metric CC(q1, q2) defined in Eq. (15) can be averaged

over the quadrants to produce a 1D FQC as a function of q,

FQC(q) =
1

N(q)

(
∑

q1≤q

CC(q1, q) +
∑

q2<q

CC(q, q2)

)
, (17)

where N(q) =
∑

q1≤q 1 +
∑

q2<q 1 is the number of sampled (q1, q2) pairs in the quadrant

associated to q, which is described above [see Fig. S4]. The FQC defined in Eq. (17) can be

used to compare entire correlation datasets, including SAXS intensities.

We should note, that there is no direct correspondence between the classical FRC, which

is a linear function of the momentum transfer q, and the FQC introduced here, which has

a nonlinear dependence on q. At each q both FQCn(q) [Eq. (13)] and FQC(q) [Eq. (17)]

are determined as an average over FCs or CCFs which are functions of two arguments,

q1 and q2. However, our results show that the FQC-type metric can be used in a similar

manner (to classical FRC for diffraction data) to estimate the data quality and similarity

between different sets of correlation data. As an example, Fig. S6 shows the results of

application of Eqs. (13), (15) and (17) to the RDV and PR772 datasets determined for

particle polydispersity PD = 3 nm (the data used for structure analysis in the main text).

As one can see, the FQC metric shows that the structures are indeed substantially different

even at low resolution, in agreement with the visual observations of the 2D correlation maps

in Fig. 2 of the main text.

It should also be stressed that when this metric is used to compare random-half datasets,

it only measures the influence of random noise on the data, and doesn’t gauge the impact
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that systematic effects, such as inadequate masking of bad pixels or incorrect background

subtraction, have on the quality of the dataset.

FIG. S6. Similarity analysis for the RDV and PR772 datasets at PD = 3 nm. (a) FQCn(q)

[Eq. (13)] for n = 2, 4, 6, 8, 10 an 12, (b) CC(q1, q2) [Eq. (15)] and (c) FQC(q) [Eq. (17)]. All three

similarity metrics reach values ≪ 1 indicating substantial differences between the RDV and PR772

structures even at low resolution.

POLYDISPERSITY EFFECTS

To analyze polydispersity (PD) effects, for each experiment we selected three subsets of

diffraction patterns corresponding to PD = 1 nm, 3 nm and 5 nm, as shown in Figs. S2(c)

and S2(d) by shaded areas of different colors. The correlation data were averaged over a

different number M of diffraction patters for different PD, i.e, M = 132 (PD = 1 nm),

M = 332 (PD = 3 nm), and M = 459 (PD = 5 nm) in the case of RDV, and M = 217

(PD = 1 nm), M = 566 (PD = 3 nm), and M = 796 (PD = 5 nm) in the case of PR772.

The experimental correlation maps corresponding to different PD are shown in Figs. S7 and

S8 for RDV and PR772, respectively. One can clearly see that correlation maps for each of

the viruses look very similar at different degrees of polydispersity. For instance, the features

attributed to a 3% distortion (which corresponds to about 2 nm) of the RDV particle are

still perfectly preserved on the maps even for PD = 5 nm [Fig. S7]. Even at high degree of

polydispersity the correlation maps still contain features characteristic of each of the virus

particles.

We also performed similarity analysis using the proposed FQC metric to quantify the

differences between the results shown in Figs. S7 and S8. The results for the datasets corre-

sponding to different PD are shown in Figs. S9 and S10 for RDV and PR772, respectively.

12



FIG. S7. Experimental amplitudes (log scale) of the FCs |C̃n(q1, q2)| [Eq. (12)] for n = 1, . . . , 12

determined for RDV with polydispersity of (a)-(f) PD = 1 nm, (g)-(l) PD = 3 nm, and (m)-(r)

PD = 5 nm, respectively. Portions of the data corresponding to different PD are indicated in

Fig. S2(c).

In Figs. S9(g)-(i) and S10(g)-(i) we show the similarity of two split subsets (containing equal

number of patterns) of data for PD = 3 nm for RDV and PR772, respectively. We would

like to note that in all calculations of FQCn(q) [Eq. (13)] we excluded from the analysis the

low-q region (q1, q2 < 0.16 nm−1) on each 2D map, to improve the visibility of the high-q

data. In contrast, the low-q region is included in the calculations of CC(q1, q2) [Eq. (15)] and

FQC(q) [Eq. (17)]. Even if the low-q range is masked for the correlation data (but not for the

SAXS terms) in the calculation of CC(q1, q2) and FQC(q), the results look almost identical

to those without masking. This indicates that SAXS terms make dominant contribution to

CC(q1, q2)and FQC(q) at low q.

Inspection of the results shown in Figs. S9 and S10 allows us to make the following conclu-

sions. In general, major differences between the correlation data for different PD are caused

by the FCs C̃n(q1, q2) of higher orders n = 8, 10 and 12, as evident from Figs. S9(a),(d),(g)

and S10(a),(d),(g). Relatively small differences between the lower-order FCs (n = 2, 4

and 6) for different PD are observed mostly in the locations where the corresponding 2D
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FIG. S8. Experimental amplitudes (log scale) of the FCs |C̃n(q1, q2)| [Eq. (12)] for n = 1, . . . , 12

determined for PR772 with polydispersity of (a)-(f) PD = 1 nm, (g)-(l) PD = 3 nm, and (m)-(r)

PD = 5 nm, respectively. Portions of the data corresponding to different PD are indicated in

Fig. S2(d).

maps of C̃n(q1, q2) have minima. Such behavior is also typical for the metric CC(q1, q2)

[Figs. S9(b),(e),(h) and S10(b),(e),(h)] attributed to the whole correlation dataset, where

the minima of the metric are observed at the same positions as the minima of the correlation

maps [compare with Figs. S7 and S8]. Clearly, such behavior can be explained by limited

statistics of the present experiment. However, noisier higher-order FCs have a comparably

smaller contribution to CC(q1, q2) and FQC(q), which leads to a substantial similarity of

the whole correlation datasets at different PD [see Figs. S9(c),(f),(i) and S10(c),(f),(i)]. One

may note that, according to the FQC(q), there is more similarity between the datasets for

PD = 1 nm and PD = 3 nm [Figs. S9(f) and S10(f)], than between PD = 1 nm and PD

= 5 nm [Figs. S9(c) and S10(c)]. This can be attributed to a different number of patterns

in the datasets with different PD, and to the effect of polydispersity itself, which is hard to

distinguish due to the limited statistics of our experiment. General comparison of the results

for RDV [Fig. S9] and PR772 [Fig. S10] suggests that the major difference between results

for different PD has statistical origin, since all metrics have systematically higher values for
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FIG. S9. Results of similarity analysis for RDV, showing (left column) FQCn(q) [Eq. (13)] for

n = 2, 4, 6, 8, 10 an 12, (middle column) CC(q1, q2) [Eq. (15)] and (right column) FQC(q) [Eq. (17)].

A pairwise comparison is done for the correlation data corresponding to (a)-(c) PD = 1 nm and

PD = 5 nm, (d)-(f) PD = 1 nm and PD = 3 nm, and (g)-(i) two subsets of PD = 3 nm.

PR772, for which more diffraction patterns were available. For the major analysis of the

present work we have chosen the datasets corresponding to PD = 3 nm, as a compromise

between possible polydispersity effects and statistical issues.

The results of this section suggest that cross-correlation data can still be used to analyze

particle structure by scattering from a system of N reproducible particles with a limited

degree of polydispersity. This would enable one to exploit the full potential of the FXS

approach and to go beyond the single-particle imaging scheme.

15



FIG. S10. Results of similarity analysis for PR772, showing (left column) FQCn(q) [Eq. (13)] for

n = 2, 4, 6, 8, 10 an 12, (middle column) CC(q1, q2) [Eq. (15)] and (right column) FQC(q) [Eq. (17)].

A pairwise comparison is done for the correlation data corresponding to (a)-(c) PD = 1 nm and

PD = 5 nm, (d)-(f) PD = 1 nm and PD = 3 nm, and (g)-(i) two subsets of PD = 3 nm.

MODEL COMPARISON

To understand the correlation maps determined from the experimental data for RDV and

PR772 (see Fig. 2 in the main text) we performed simulations using bead models of various

structures, with a bead diameter of 1 nm and average electron density of 0.325 electrons/Å.

We also did simulations with the empty RDV capsid atomic structure determined at 3.5 Å

resolution by x-ray crystallography [Protein Data Bank (PDB) entry 1UF2] [9], and reduced

to a resolution matching the resolution of the single particle data of our experiment. Our

simulations of x-ray diffraction were performed with parameters similar to those of the

experiment [1]. The simulated 2D maps of the amplitudes of the FCs |C̃n(q1, q2)| for several
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model particles possessing icosahedral symmetry are shown in Fig. S11. Direct comparison

of these maps with the experimental results (see Fig. 2 in main text) shows that none of

these model particles can adequately reproduce the experimental data for RDV or PR772.

We then applied simple types of distortions to the ideal empty RDV capsid and bead model

of a solid icosahedral particle, with the results shown in Fig. S12. One may notice that

the correlation maps for the FCs of the 2-nd order shown in Figs. S12(g) and S12(m) are

in very good agreement with the experimental maps shown in Figs. 2(a) and 2(g) of the

main text for RDV and PR772, correspondingly. Our simulations show that such similarity

observed for FCs (n = 2) can be explained by the deviations of the particle shape from an

exact icosahedron, as well as by particle “caking” induced during buffer evaporation (see

Fig. S13). For example, the 2D maps for n = 2 can be quite closely reproduced in the

case of ellipsoidal caking of ideal icosahedral particle, with a longer axis of the ellipsoid

coinciding with one of the five-fold symmetry axis of an icosahedron [compare Figs. S13(a)

and S13(g) with the experimental results in Fig. 2(a) and 2(g) in main text, for RDV and

PR772 respectively]. Also, observed similarity can be a result of a combined effect of both

article distortion and caking [compare Figs. S13(a), S13(s) and S12(g)]. At the same time

we were not able to reproduce the observed characteristic features for FCs of the 2-nd order

with more symmetric model of spherical caking [compare Figs. S13(m) with S13(a) and

S13(s)].

All other FCs of higher orders (n > 2) cannot be accurately reproduced by simple dis-

tortions, and require a more advanced modeling approach which goes beyond a uniform

density approximation applied in our bead modeling. Instead of doing such sophisticated

modeling, we perform ab initio reconstructions of the virus structures by applying the MTIP

algorithm to the experimental correlation data (see next section). However, we would like

to note that the correlation maps can still be used for model based comparison as illustrated

in this section, to get an idea about the possible particle structure. The 2D correlation

maps can be especially useful for following fast dynamical changes in the structure, for in-

stance, as a response to external stimulus, which is a key component of structural studies at

XFELs [see supplementary gif-animations showing evolution of the FCs |C̃n(q1, q2)| of orders
n = 2, 4, 6, 8, 10 and 12 during uni-axial distortion of an ideal icosahedral particle (icosahe-

dron distortion.gif) and caking of the ideal icosahedral particle during solution evaporation

(icosahedron caking.gif)].
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FIG. S11. Simulated 2D maps (log scale, arb. units) of the amplitudes of the FCs |C̃n(q1, q2)|

for n = 2, 4, 6, 8, 10 and 12 for ideal icosahedral particles. The results are shown for the atomistic

model of empty RDV capsid (a)-(f), as well as for bead models of a hollow icosahedral particle of

71 nm in size with a spherical void of a diameter d = 30 nm (g)-(l), with an icosahedral void of

size d = 30 nm (m)-(r), and a solid icosahedral particle of 71 nm in size (s)-(x). The corresponding

particles are schematically shown in (f),(l),(r) and (x).

STRUCTURE RECOVERY BY THE MTIP ALGORITHM

In addition to the modeling discussed above, we obtain ab initio reconstructions using

the multi-tiered iterative phasing (MTIP) algorithm introduced in ref. [10]. This approach

to structure determination from correlation data is based on the theory developed by Kam

in ref. [11], where it is shown that the angular correlations can be directly related to the

spherical harmonic expansion of the 3D intensity function, given by

I(q, θ, φ) =
∞∑

l=0

l∑

m=−l

Ilm(q)Y
m
l (θ, φ). (18)
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FIG. S12. Simulated 2D maps (log scale, arb. units) of the amplitudes of the FCs |C̃n(q1, q2)| for

n = 2, 4, 6, 8, 10 and 12 for distorted icosahedral particles. The results are shown for the atomistic

model of empty RDV capsid compressed by 3 %, as well as for bead models of a solid icosahedral

particle of 71 nm in size, compressed by 3 % (g)-(l), compressed by 7 % (m)-(r), and extended

by 7 % (s)-(x) relative to the initial size of an undistorted particle. The applied compressive and

extensive distortions are schematically shown in (r) and (x).

The average correlation function can be shown to be related to the Ilm(q) expansion co-

efficients via the Legendre decomposition [in order to simplify the following presentation,

hereafter we denote the theoretical orientationally averaged cross-correlation function simply

as C(q1, q2,∆)]

C(q1, q2,∆) =
∞∑

l=0

Pl(cos θ(q1) cos θ(q2) + sin θ(q1) sin θ(q2) cos∆)Bl(q1, q2), (19)

where

Bl(q1, q2) =
l∑

m=−l

Ilm(q1)I
∗
lm(q2), (20)
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FIG. S13. Simulated 2D maps (log scale, arb. units) of the amplitudes of the FCs |C̃n(q1, q2)|

for n = 2, 4, 6, 8, 10 and 12 for icosahedral particles with different types of caking. The results

are shown for bead models of an ideal solid icosahedral particle of 71 nm in size with ellipsoidal

caking with ellipsoid semiaxes a = b = 29.5 nm, c = 31.5 nm (a)-(f) and ellipsoid semiaxes

a = b = 29.5 nm, c = 32.5 nm (g)-(l), with spherical caking of radius r = 31.5 nm (m)-(r), and

for icosahedral particle compressed by 7.5 % with spherical caking of radius r = 31.5 nm (s)-(x).

In the case of ellipsoidal caking the longest c-axis coincides with one of the 5-fold symmetry axis.

Particle models illustrating caking (green) are schematically shown in (f),(l),(r) and (e), where

caking size is exaggerated for visibility purpose.

Pl is the l-th order Legendre polynomials, and θ(q) = arccos( qλ
4π
). Eq. (20) can also be

written in matrix notation, with indices q1 and q2, as

Bl = IlI
∗
l , (21)

where Il is the N × 2l + 1 matrix of spherical harmonic coefficients, with rows indexed by

q and columns indexed by m. Additionally, each Bl matrix can be viewed as a rank 2l + 1
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Gram matrix, and thus has the compact eigenvalue decomposition

Bl = VlΛlV
∗
l , (22)

where Vl in an N×2l+1 unitary matrix, Λl is a 2l+1×2l+1 diagonal matrix of nonnegative

eigenvalues, and N is the number of sampled q points. A standard linear algebra theorem

allows us to relate the decompositions in Eqs. (21) and (22) via

Il = Vl

√
ΛlUl, (23)

where Ul is an unknown 2l + 1-dimensional unitary matrix.

The relation in Eq. (23) is essentially a hyperphase generalization of the classical phase

problem, where Vl

√
Λl can be thought of as the known “amplitude matrix” and Ul can

be thought of as the unknown “phase matrix”, which needs to be determined in order to

reconstruct the 3D intensity function. Therefore, in order to determine the 3D electron

density ρ of the imaged structure, one must solve the hyperphase problem [i.e. determine

the Ul matrices in Eq. (23)] in order to reconstruct the 3D intensity function I, in addition

to the classical phase problem, in order to reconstruct the electron density ρ from I.

The MTIP scheme reconstructs an electron density from the correlation data by simulta-

neously solving the phase and hyperphase problems via a generalization of classical iterative

phasing schemes that are typically used to solve the standard phase problem. In particu-

lar, this is accomplished by applying a series of projection operators, each of which seeks

to find the minimum-norm perturbation of a model which is consistent with a given con-

straint, several times in an iterative scheme. These projections include the cross-correlation

projector to project a 3D intensity model to be consistent with the Bl data, a magnitude

projector to project a 3D electron density model to be consistent with a model intensity, and

a support projector to project a density model to be 0 outside of a specified support region,

which can be determined during the reconstruction. To reconstruct an electron density from

the correlation data, these projection operators are applied in a combination of the error-

reducing (ER) [12] and hybrid input-output (HIO) [13] iterative schemes and the shrinkwrap

technique [14], which periodically updates an estimate of the support. The details of this

procedure can be found in ref. [10].
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NOISE MODELING IN MTIP

Here, we add one additional step to the original MTIP scheme in order to model noise

in the correlations calculated from experimental data, based on the concept of the noise

projection operator introduced in ref. [15]. Instead of first extracting the Bl coefficients

from the correlations and then directly fitting to them, we instead update the Bl data

during each iteration of MTIP. In particular, during each iteration, we generate a correlation

function from the current intensity model, via equations Eqs. (19) and (20), and then use

a noise projector PN to project the correlation function Cmod of the current model so that

the weighted second order moment of the data about the projected correlation function is

less than the weighted sum of an estimated set of variances, i.e. the projected quantity

Cproj = PNC
mod is given by the solution to

min
Cproj

∑

q1,q2,∆

(
Cproj(q1, q2,∆)− Cmod(q1, q2,∆)

)2
w(q1, q2),

subject to
∑

q1,q2,∆

(
Cproj(q1, q2,∆)− Cdata(q1, q2,∆)

)2
w(q1, q2) ≤

∑

q1,q2,∆

σ2
q1,q2

w(q1, q2),

(24)

where σq1,q2 is an estimate of the standard deviation for Cdata(q1, q2,∆), and w(q1, q2) is

a weighting function that can be used to alter the contribution of certain parts of the

correlation function, depending on their relevance or noise levels.

The advantage of using the above weighting scheme, where the same weight is used in

both the objective and constraint, is that the theory of Lagrange multipliers can be used to

give a simple analytic expression for the solution to Eq. (24) as

Cproj(q1, q2,∆) =





Cmod(q1, q2,∆), if λ ≥ 0

Cmod(q1,q2,∆)−λCdata(q1,q2,∆)
1−λ

, if λ < 0,
(25)

where the Lagrange multiplier is given by

λ = 1−

√√√√
∑

q1,q2,∆
(Cmod(q1, q2,∆)− Cdata(q1, q2,∆))2w(q1, q2)∑

q1,q2,∆
σ2
q1,q2

w(q1, q2)
. (26)

Any unmeasured or masked quantities are not included in the above optimization and are

allowed to float during the reconstruction.
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Once we have an updated correlation function Cproj, we would like to extract the Bl coef-

ficients from its Legendre decomposition. Note that, for a curved Ewald sphere, even though

the Legendre polynomials form an orthogonal basis on the interval [−1, 1], the Bl coefficients

cannot be computed via an inner product with the correlation function in Eq. (19) since

cos θ(q1) cos θ(q2) + sin θ(q1) sin θ(q2) cos∆ does not span the entire interval. Alternatively,

we can bypass this orthogonality issue by calculating an approximation to the curvature-

corrected correlation function Cproj
cc , which estimates the correlation function that would be

obtained if one had a flat Ewald sphere. However, since the argument of Legendre polyno-

mials for the curved Ewald sphere case does not span [−1, 1], there are regions of Cproj
cc that

are not sampled by the data, and so in these regions we allow the the values of Cproj
cc to float.

More specifically, we calculate the curvature-corrected projected correlation for 0 ≤ ∆ ≤ π

as

Cproj
cc (q1, q2,∆) =





Cproj(q1, q2, cc(q1, q2,∆)), if − 1 ≤ cos(∆)−cos θ(q1) cos θ(q2)
sin θ(q1) sin θ(q2)

≤ 1

∑∞

l=0 Pl(cos∆)Bmod
l (q1, q2) otherwise,

(27)

where the curvature correction function is

cc(q1, q2,∆) = arccos

(
cos(∆)− cos θ(q1) cos θ(q2)

sin θ(q1) sin θ(q2)

)
, (28)

and where the Bmod
l are calculated from the most recent intensity model via Eq. (20).

Once Cproj
cc is computed, we use it to update the Bl coefficients by integrating the Legendre

polynomials against the curvature-corrected correlation function via

Bl(q1, q2) =
2l + 1

2

∫ 1

−1

Cproj
cc (q1, q2, arccos(x))Pl(x)dx. (29)

The above operations are performed during each iteration of MTIP to update the set of

Bl data in which MTIP fits a model density to. More specifically, during each iteration of

the reconstruction, we perform the operations above to update an estimate of the Bl data

from the correlation data and then perform one step of the MTIP procedure outlined in

ref. [10] to fit to that Bl data, and repeat until convergence.

MTIP RECONSTRUCTION PARAMETERS

Here we discuss the parameters used in the MTIP reconstructions, each defined in detail

in ref. [10]. We use β = 0.5 in the MTIP HIO scheme, and for shrinkwrap we set ǫ to 5%
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of the maximum density and σ to the size of a pixel on the computational grid. We apply

15 cycles of the MTIP algorithm, each consisting of 60 MTIP HIO iterations, followed by

40 MTIP ER iterations, and then shrinkwrap. The result is then refined by applying 200

MTIP ER iterations. During each iteration of MTIP, we extracted and fit to Bl values for

even l values in the range 0 ≤ l ≤ 20 because odd orders vanish in the presence of Friedel

symmetry. Computations were done using a spherical-polar grid for both real and Fourier

space with 64 radial nodes, up to 207 inclination angles, and 413 azimuthal angles.

The reconstructions were performed using the difference CCFs defined in Eq. (10) to

extract Bl data for l ≥ 2. However, the difference CCFs do not contain a DC compo-

nent and, thus, the B0 coefficients were obtained from the SAXS curves via B0(q1, q2) =

〈Ii(q1, ϕ)〉φ,i 〈Ii(q2, ϕ)〉φ,i. Prior to analysis, the correlations were symmetry averaged about

∆ = π in order to reduce noise levels. Due to noise, the autocorrelation curves, i.e.

C(q, q,∆), contain a large noise peak around ∆ = 0, which was masked out of the analysis.

Further masking was performed on the correlation data for very low q, which appeared to

suffer from large systematic issues; see the section “Generalized Guinier analysis” for details.

In order to compute the average reconstructions and the reconstruction statistics (see next

section) for each virus, we ran 48 independent MTIP reconstructions from different random

starting conditions and aligned the reconstructions.

The standard deviations used in the noise projector were calculated by computing the

ℓ2 difference between Friedel-symmetric components of the correlation curves. More specif-

ically, in the presence of Friedel symmetry, the Legendre decomposition in Eq. (19) only

contains even orders of l, which are symmetric about 0, allowing us to estimate the variance

of the data via

σ2
q1,q2

=
1

N∆

∑

∆min≤∆≤∆max

(
Cdata

cc (q1, q2,∆)− Cdata
cc (q1, q2, π −∆)

)2
, (30)

where ∆min is the smallest sampled value of ∆, ∆max is the largest sampled value of ∆ ≤ π,

and N∆ is the number of measured values of ∆ in the range [∆min,∆max]. For the noise pro-

jector, we used the weight w(q1, q2) = (q1q2)
3/σ2

q1,q2
, which balances between compensating

for the decay in signal as a function of q and weighting down the contribution from noisier

components of the correlation function.
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RECONSTRUCTION STATISTICS AND DISCUSSION

In order to the assess the quality of the reconstructions, we compute both a phase retrieval

transfer function (PRTF) [16–18] from the full dataset, as well as the Fourier shell corre-

lations (FSC) [19] between the average structure determined from two randomly generated

halves of the correlation data. The PRTF quantifies the uniqueness of the reconstructions

obtainable from a single dataset, whereas the FSC on the average structures quantifies the

reproducibility of the features observed on the average structures, which are the main objects

of interest.

However, one key difference in how MTIP works versus classical single-particle imaging

(SPI) techniques, is that MTIP generates a different intensity function for each reconstruc-

tion, whereas classical SPI techniques generally reconstruct only one intensity function and

then compute the PRTF by solving the phase problem multiple times from the same inten-

sity function. In order to capture the possible variance in the intensity functions recovered

from MTIP, we use a modification of the standard PRTF [16]

PRTF(q) =
| 〈ρ̂k(q)〉k |√
〈Ik(q)〉k

, (31)

where ρ̂k is the Fourier transform of the k-th reconstructed electron density and Ik is the

k-th reconstructed intensity function.

In addition to using the PRTF and FSC to measure consistency of the reconstructed

structures, we also compute the average FQC, defined earlier, to assess how well the recon-

structions fit the data. The PRTF, FSC, and FQC plots are shown in Fig. S14. Using the

established cutoff values, 1/e for the PRTF and 0.5 for the FSC, we arrive at resolution

estimates of 17.7 nm for RDV and 16.9 nm for PR772 using the PRTF, and 13.5 nm for

RDV and 12.6 nm for PR772 using the FSC. The FQC lies above 0.84 for RDV and above

0.91 for PR772 over the entire resolution range, indicating that the reconstructed structures

have an excellent amount of agreement with the data.

In order to visualize the distortions in the capsid of the reconstructed viruses, we compare

the reconstructed viruses with their icosahedral projections [10] in Fig. S15. It can clearly be

seen that the reconstructed RDV capsid is much less distorted than the PR772 capsid, which

is extended along one direction. These features are consistent with the results described in

the “Model comparison” section above and the “Generalized Guinier analysis” section below.
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FIG. S14. PRTF, FSC, and FQC plots for the MTIP reconstructions of RDV (a)-(c) and PR772

(d)-(f). The dashed lines represent the cutoff values for the PRTF and FSC, given by 1/e and 0.5,

respectively.

GENERALIZED GUINIER ANALYSIS

A generalized Guinier analysis on the Legendre-decomposed correlations, as outlined in

ref. [20], was performed on the RDV and PR772 data. This type of analysis allows a very

rapid, model-free determination of whether the shape of an object is prolate or oblate. The
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FIG. S15. Comparison of the averaged reconstructions of RDV (a) and PR772 (c) to their respective

icosahedral projections (b) and (d).

generalized Guinier equation describing the low-resolution behavior of the Bl data is given

by

logBl − 2l log q = logB∗
l −

2q2R2
l

2l + 3
, (32)

where B∗
l and Rl are sample-dependent quantities that are related to the multipole moments

of the sample’s autocorrelation function and can be determined from a simple least squares

fit. For l = 0, this can be related to the radius of gyration via Rg =
√
2R0. In ref. [20],

it was empirically determined that R2/Rg serves as an indicator of whether the underlying

shape is oblate or prolate. Furthermore, it was shown that the first local maximum q̂l of

Bl(q) can be approximated by

q̂l =

√
l(2l + 3)

2

1

Rl

. (33)

We performed the generalized Guinier analysis described above on the experimental cor-

relation data and found that Rg for PR772 and RDV were 26.2 and 26.4 nm, respectively.

A least squares analysis found R2 to be equal to 36.2 nm for PR772 and 36.4 nm for RDV,

corresponding to the first local maximum of B2(q) occurring around 0.073 nm−1, which is

consistent with the observed B2(q) curves extracted from both data sets [Fig. S16].
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The ratio R2/Rg is approximately 1.38, which indicates that the particles have an oblate

character, as also suggested by the model-based analyses outlined in the main text.

FIG. S16. (a) A generalized Guinier plot of B2(q, q) shows the expected linear dependence between

q2 and log[B2(q, q)] − 4log[q] for PR772. A strong departure from linearity is observed for RDV,

indicating poor quality of the very low-resolution part of the data. The least-squares analyses of

the generalized Guinier plot estimates the first maximum of B2(q, q) at 0.073 nm−1, consistent

with a plot of B2(q, q) vs q (b). Due to poor quality of the very low resolution RDV data, the

generalized Guinier analyses on RDV data was unsuccessful. It is worth noting that the magnitude

of B2(q, q) is substantially lower for RDV than for PR772, indicating that the latter has a large

departure from icosahedral symmetry than the former.

A visual inspection of the RDV data [see Fig. S16] indicates that the very low resolution

Bl data has poorer generalized Guinier properties as compared to the same resolution range

in PR772. As is the case in the analyses of standard SAXS data, a deviation from the

expected low resolution behavior is indicative of sample or experimental problems, and is

typically corrected post hoc by omitting this region from any further analyses, as was done

in the ab initio MTIP reconstructions.
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