-Supplementary Information-

Genomic diversity and distribution of *Bifidobacterium longum* subsp. *longum* across the human lifespan

Toshitaka Odamaki^{1,2*}, Francesca Bottacini², Kumiko Kato¹, Eri Mitsuyama¹, Keisuke Yoshida¹, Ayako Horigome¹, Jin-zhong Xiao¹ and Douwe van Sinderen²

¹Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan

²APC Microbiome Institute and School of Microbiology, National University of Ireland,

Western Road, Cork, Ireland

Inventory of Supplementary Information

- Supplementary Figures and Legends Supplementary Figure S1-S5
- 2. Supplementary Tables Supplementary Table S1-S11

Supplementary Figure S1 Cladgram of *B. longum* strains

A phylogenetic supertree showing the relationship between 145 *B. longum* strains analysed in this study. The tree was calculated based on the nucleotide sequence of 642 single-core gene families among all strains analysed in this study. Group A and B are composed of *B. longum* subsp. *suis* strains. Strains in Group C are *B. longum* subsp. *infantis*. All of strains isolated in this study (MCC strains) and *B. longum* subsp. *longum* are clustered together in Group D.

Rate of gene family assigned to COG category

86

Supplementary Figure S2

Cluster of Orthologue (COG) classification of 113 newly isolated B. longum subsp. longum strains Heatmap showing the COG classification of *B. longum* subsp. longum computed ORFs. Strains are sorted by subject age. For each COG entry, the average percentage of hits among B. longum subsp. longum has been indicated in the legend.

Supplementary Figure S3

Matrix of blastn result against prophage, integrated episome or megaplasmid sequences

Heat map represents the similarity percentage of blastn result of genes belonging to the *B. longum* mobilome. Blue Greece indicates the longum cluster in Figure 2. (a) Megaplasmid pMP7017 homologues detected in 1 and 14 strains belong to longum cluster I and III, respectively. (b) Homologues of *B. longum* subsp. *longum* JCM1217 prophage region (BLLJ_0988-BLLJ_1066) found from 5 strains in longum cluster II. (c) Homologues of *B. longum* subsp. *longum* AH1206 episome region (BL1206_0692-BL1206_0756) detected in 4, 3 and 37 strains belong longum cluster III, IV and V. (d) Homologues of *B. longum* subsp. *longum* AH1206 prophage region (BL1206_0955-BL1206_1054) detected in all strains belonging to longum cluster IV and VI.

(a) Subtype I-E (on the pMP7017 homologue)

Supplementary Figure S4

Subtype of CRISPR-cas system found in this study.

(a) Subtype I-E were located on the predicted megaplasmid sequences in 14 strains. (b) Subtype II-C without tracrRNA were located on the chromosome sequences in 39 strains. (c) Subtype I-U was located on the chromosome sequences of MCC10117 strain. Each strain was shown in Supplementary Table S7.

Supplementary Figure S5

Sequence similarity between strains predicted to be transmitted among family members

Mauve whole nucleotidic alignment performed to assess the similarity between transmitted strains. Coloured boxes represent Mauve-deduced linear collinear blocks (LCB), while white gaps represent insertions and deletions. Vertical blocks represent protospacers in CRISPR-cas system, where the black and red colours indicate completely matched or not matched sequence between transmitted strains, respectively.