Appendix 1: Supplementary methods, tables, and figures [posted as supplied by author]

Supplementary Methods

Description of ProtecT Cohort (Validation Set) Selection

As part of the ProtecT study, genotyping with the iCOGS custom Illumina array was performed on cases diagnosed by PSA screening¹. After quality control steps described previously, there were 1,558 cases available for analysis¹. Controls with normal (<3 ng/ml) or elevated (\geq 3 ng/ml) PSA were selected using the same 5-year age band as the cases and from the same GP register (1,464 analyzed after quality control; 739 with normal PSA, 725 with elevated PSA)¹. Additionally, genotyping was performed for the iCOGS project on ProtecT trial participants who were selected as geographically matched controls for the UK Genetic Prostate Cancer Study (UKGPCS)^{1,2}. This category comprised 3,395 men from ProtecT; 31 of these subsequently developed PCa after initial selection as controls and are therefore analyzed as cases in the present study.

PHS Model SNP Selection and Model Generation

Because prostate cancer risk increases with age^3 and anticipated age of developing prostate cancer is highly relevant to clinical management, we applied PHS for deriving both predicted absolute risk and potential age at PCa onset⁴. A univariate trend test was applied to the entire Development Set (31,747 patients x 201,043 SNPs) to assess association with case or control status. All SNPs with resulting *p*-values <10⁻⁶ in the trend test were then entered in a forward, stepwise, greedy algorithm, to select the most predictive SNPs. In each step, logistic regression was used first to improve computational efficiency. SNPs were selected for the model only if they improved prediction of case-control status. After forward, stepwise selection, coefficients for selected SNPs were estimated using a Cox proportional hazard model to predict age at diagnosis with PCa.

Evaluation of Proportional Hazards Assumption

The proportionality of each selected SNP was checked by correlating their Schoenfeld residuals and PCa-free survival. In addition, Kaplan-Meier curves and the predicted values from Cox regression were overlaid on a single plot to assess for overlap that would suggest that the proportionality assumption held for the final PHS model.

Accounting for Potential Sampling Bias

The PHS method includes Cox proportional hazards modeling, a method ideally applied to a cohort design with unbiased samples. The Development Set here has the essential advantage of being large enough to support inquiries into modest single-SNP associations, but the contributing studies include case-control and other designs with a net effect of over-representing cases compared to the general population. This disproportionate number of cases in the Development Set would tend to overestimate the general risk of PCa and therefore underestimate the risk (among cases) attributable to a given SNP. Overall, this means our method yields a conservative estimate of SNP effect sizes in the general population⁵.

A Cox model was also used to test PHS prediction of age of PCa onset in the Validation Set. Here, we have the advantage of ProtecT's cohort design, and the Validation Set can be treated as a nested case-control design, with known sampling rates. The sampling weights for cases and controls were determined from the overall ProtecT numbers⁶, and adjustments to the Cox model were made according to previously published and validated methods⁷ using the R 'survival' package (R version 3.2.2)^{8,9}. Results from the adjusted model were compared to results from the simple model to see whether accounting for potential sampling bias affected PHS performance in the Validation Set.

Calculation of Confidence Intervals for Cox prediction

Based on the variance in genotypes, X, in the Development Set and the uncertainty of the Cox parameter estimates, $\hat{\beta}$, we calculated 95% confidence intervals for the Cox prediction, applicable to Δ Age and Prostate Cancer-Risk (PCaR). Assuming the genotypes distribute independently with the effect sizes on the trait of interest, we can estimate the variance of \widehat{XB} :

$$\operatorname{Var}(\hat{X\beta}) = \operatorname{Var}(\hat{\beta})\operatorname{Var}(\bar{X}) + \operatorname{E}(\hat{\beta})^{2}\operatorname{Var}(\bar{X}) + \operatorname{Var}(\hat{\beta})\operatorname{E}(\bar{X})^{2}$$

The 95% confidence interval of $\widehat{X\beta}$ can then be derived accordingly, such that the confidence interval of instantaneous hazard at a given age *T* is:

$$\lambda_0(T) \exp(95\% CI)$$

where λ_0 is the baseline hazard.

Calculation of Positive Predictive Value in Validation Set

In the Validation Set, 2,555 patients had positive PSA: 1,580 were then diagnosed with PCa, while 975 were designated controls without PCa. Because genotype information was collected in more cases than controls, we matched the overall ProtecT control:case ratio⁶ by taking a random sample of 471 cases with the 975 controls and calculating the positive predictive value of PSA testing without regard to PHS, as well as in subsets based on PHS percentile thresholds of $<20^{\text{th}}$, $>50^{\text{th}}$, $>80^{\text{th}}$, and $>95^{\text{th}}$. This process was repeated for a total of 1,000 random samples of 471 cases.

Polygenic Risk Score Analysis using Previously Reported SNPs from GWAS

Traditional GWAS have revealed a number of SNPs associated with prostate cancer. In the present study, the PHS model was built without prior assumptions on which SNPs would be most useful and then optimized parameter estimates for prediction of age of PCa onset. However, it may also be of interest to consider the performance of a traditional polygenic risk score (PRS), built with previously published SNPs and their corresponding odds ratios (OR). We therefore conducted a post-hoc analysis, reported here.

Two recent papers together published a total of 99 SNPs associated with PCa, along with ORs^{14,15}. Genotype data were available for 63 of those SNPs in our Validation Set. A PRS model was constructed using the log odds ratios (from published ORs) for these SNPs and the allele counts in the 6,411 men from the Validation Set. The resulting PRS was used as the sole predictor in a Cox proportional hazards model, analogous to what was done for PHS in the main manuscript. As before, statistical significance was set at alpha of 0.01.

Supplementary Results

Evaluation of Proportional Hazards Assumption

Figure A shows the correlation of Schoenfeld residuals and PCa-free survival. Additionally, Figure A demonstrates reasonable overlap of the Kaplan-Meier and Cox regression estimates of PCa-free survival in the Development Set.

Accounting for Potential Sampling Bias

After accounting for sampling weights in an adjusted Cox model⁷, PHS showed similar performance, with highly significant prediction of age of onset of aggressive PCa (z=21.7, $p<10^{-16}$). The hazard ratio for high PHS men (>98th percentile) compared to average risk was 4.6 [95% CI: 4.0, 5.2]. Overall, these results confirm that sampling bias in the main results leads to a conservative estimate of PHS predictive power.

Positive Predictive Value in Validation Set

As PHS is predictive of PCa risk, we expected it to modulate the PPV of PSA testing. Indeed, risk-stratification with PHS had considerable impact on PPV in the Validation Set. In terms of any PCa (which is what the PSA biopsy threshold was set for in ProtecT), only 18% of those with low PHS were true positives, whereas over half of those with high PHS had PCa (Figure B). A similar pattern was seen for aggressive PCa, though the absolute numbers are much lower, as is to be expected (Figure B).

Polygenic Risk Score Analysis using Previously Reported SNPs from GWAS

The PRS calculated from 63 previously published SNPs^{14,15} was predictive of age of aggressive PCa onset in the Validation Set (*z*=9.2, *p*<10⁻¹⁶, HR=1.4 [95% CI: 1.3, 1.4]), though its performance was not as good as that of PHS (*z*=11.2, *p*<10⁻¹⁶, HR=2.9 [2.4, 3.4]).

Table A: Study names and p	participant numbers
----------------------------	---------------------

	Country	Dates	Source ^b	Number of participants			Age - median (interquartile range)				PHS - median (range)	
Development Set				All	Any PCa	Aggressiv e PCa	Contro 1	All	Any PCa	Aggressive PCa	Control	
CAPS	Sweden	2001- 2003	Population-based	1,817	1,153	792	664	66.3 (60.3-72.7)	65.7 (59.5- 72.0)	67.0 (60.7- 73.8)	68.5 (61.2- 73.9)	0.16 (-1.30-1.18)
CPCS1	Denmark	2008- 2011	Hospital recruitment	3,610	840	557	2,770	62.0 (51.0-71.0)	69.1 (63.7- 75.0)	69.1 (64.0- 74.7)	58.0 (46.0- 68.0)	0.02 (-2.65-1.02)
CPCS2	Denmark	2010- 2011	Hospital recruitment	1,273	264	161	1,009	60.7 (49.0-68.7)	64.5 (60.5- 68.5)	64.5 (60.6- 68.4)	58.0 (45.0- 69.0)	0.00 (-0.99-1.01)
EPIC	EU	1992- 2000	Population-based	1,801	722	137	1,079	61.1 (58.1-66.0)	65.2 (61.3- 68.7)	65.9 (62.4- 69.3)	60.0 (56.0- 63.0)	0.08 (-1.01-1.08)
EPIC-Norfolk	UK	1992- 2000	Population-based	1,401	484	28	917	73.2 (65.9-80.0)	72.8 (66.8-77.9)	71.3 (65.5-76.2)	73.7 (65.2- 81.5)	0.01 (-3.79-1.20)
ESTHER	Germany	2000- 2002	Population-based	631	313	175	318	66.0 (62.3-69.0)	66.1 (62.8- 68.8)	66.2 (62.8- 68.9)	66.0 (62.0- 69.0)	0.08 (-0.99-1.14)
IPO-Porto	Portugal	1999- 2011	Hospital recruitment	242	183	166	59	58.5 (51.9-62.5)	60.7 (56.9- 63.0)	60.8 (57.0- 63.0)	34.0 (25.0- 47.5)	0.15 (-0.64-0.89)
MAYO	USA	1994- 2007	Hospital recruitment	1,254	766	548	488	65.4 (60.0-70.0)	65.7 (61.3- 69.7)	66.2 (61.9- 70.0)	65.0 (59.0- 71.5)	0.11 (-1.07-1.53)
MOFFITT	USA	2002- 2009	Hospital recruitment	513	413	195	100	64.0 (59.0-71.0)	65.0 (59.8- 71.0)	66.0 (61.0- 73.0)	62.0 (57.0- 67.0)	0.14 (-0.72-0.97)
PCMUS	Bulgaria	1993- 2011	Hospital recruitment	291	151	122	140	68.0 (62.0-74.0)	69.3 (63.4- 74.4)	69.9 (63.5- 75.4)	67.0 (60.0- 73.3)	0.07 (-2.61-0.84)
PPF-UNIS	UK	1993- 2011	Hospital recruitment	433	245	151	188	68.3 (62.1-73.6)	69.4 (63.2- 73.5)	70.9 (65.2- 75.0)	67.2 (59.8- 73.8)	0.12 (-2.28-1.10)
Poland	Poland	1999- 2009	Hospital recruitment	790	438	259	352	67.0 (58.0-72.0)	68.0 (63.0- 73.0)	69.0 (63.0- 73.8)	62.0 (54.0- 71.0)	0.12 (-0.78-0.93)
ProMPT	UK	2001- 2009	Population-based	168	166	130	2	65.0 (61.5-72.0)	65.0 (61.4- 72.0)	66.0 (62.2- 72.0)	70.1 (65.0- 75.2)	0.14 (-0.61-0.98)
QLD	Australia	2004- 2011	Hospital recruitment	212	127	100	85	65.8 (59.5-69.0)	61.0 (57.0- 66.0)	62.0 (58.0- 67.5)	68.7 (66.4- 72.5)	0.13 (-2.74-0.98)
SEARCH	UK	2005- 2013	Population-based	2,613	1,371	565	1,242	60.0 (54.0-65.0)	64.0 (60.0- 67.0)	64.0 (61.0- 67.0)	55.0 (50.0- 60.0)	0.12 (-2.78-1.24)
STHM1	Sweden	2005- 2007	Population-based cohort	4,228	2,005	758	2,223	66.2 (62.1-71.5)	65.6 (61.4- 71.2)	67.3 (62.5- 73.2)	66.6 (62.7- 71.6)	0.09 (-3.85-1.27)
TAMPERE	Finland	1993- 2008	Population-based	2,754	2,754	1,642	-	67.5 (63.0-73.1)	67.5 (63.0- 73.1)	68.7 (63.7- 74.6)	-	0.19 (-0.64-1.05)
UKGPCS	UK	1993- 2011	Hospital recruitment	5,287	4,497	3,083	790	60.3 (57.0-68.8)	62.9 (58.0- 70.0)	63.8 (58.4- 70.8)	56.0 (53.0- 59.0)	0.18 (-2.31-1.35)
ULM	Germany	1998- 2007	Hospital recruitment	800	592	406	208	63.1 (57.6-68.0)	63.8 (59.6- 68.2)	64.1 (60.1- 68.4)	58.0 (49.0- 67.0)	0.16 (-0.86-1.30)
UTAH	USA	1991- 2007	Population-based	685	440	68	245	64.0 (57.0-71.0)	63.0 (56.5- 68.0)	64.0 (57.0- 71.0)	68.0 (60.0- 74.0)	0.16 (-0.83-1.07)
WUGS	USA	2004- 2011	Hospital recruitment	944	944	592	-	61.0 (56.0-66.0)	61.0 (56.0- 66.0)	62.0 (56.0- 67.0)	-	0.29 (-0.62-2.43)
All				31,747	18,868	10,635	12,879	64.0 (58.2-70.1)	65.1 (59.9- 70.5)	66.0 (60.1- 71.3)	62.0 (55.0- 69.6)	0.12 (-3.85-2.43)
Validation Set												
ProtecT ^a	UK	2001- 2009	Population-based cohort	6,411	1,583	628	4,828	60.0 (55.7-64.4)	63.4 (59.0- 67.0)	64.3 (60.2- 67.5)	59.0 (55.0- 63.0)	0.06 (-4.13-1.09)

"Includes the 31 cases and 3,364 controls who participated in both ProtecT and UKGPCS. ^bCase-control design unless otherwise specified. More detailed descriptions of each study are provided in the supplementary material from the original iCOGS publication¹

Table B: SNPs in final PHS model

SNP name	log(p-value), univariate ^a	log(p-value), multivariate ^b	β from PHS		
rs6983267 ^c	-53	-25	-0.095		
c8_pos128146328	-48	-19	0.174		
rs10993994 °	-48	-30	0.100		
rs9297759	-42	-22	0.073		
rs11651052	-37	-37	-0.093		
rs12275055	-35	-9	-0.076		
rs7929962	-32	-7	0.048		
rs7679673 °	-27	-22	-0.066		
rs7841060	-26	-21	-0.082		
rs28556804	-25	-11	0.077		
rs12549761	-25	-10	0.054		
rs5945631	-24	-12	-0.192		
rs9889335	-23	-22	0.077		
c8_pos128389706	-22	-6	0.066		
rs6545977	-22	-15	-0.066		
rs13265330	-22	-12	-0.060		
rs4907775	-21	-8	0.131		
rs16860513	-20	-16	0.198		
rs718961	-20	-6	-0.075		
rs9297746	-19	-7	0.055		
c17_pos44175675	-19	-10	0.142		
rs17632542	-18	-9	0.140		
rs232964	-18	-15	1.031		
c11_pos2181240	-17	-14	0.068		
rs7725218	-17	-16	-0.070		
rs651164	-16	-8	-0.050		
c3_pos171557211	-16	-13	0.073		
rs6788616	-15	-7	-0.040		
rs4643253	-14	-7	0.052		
rs7769879	-14	-10	0.054		
c10_pos8072007	-14	-11	-1.530		
c3_pos87230612	-13	-7	-0.115		
rs11672691 ^c	-13	-7	-0.059		
rs2736108	-12	-12	0.050		
rs6965016	-11	-9	-0.052		
rs747745	-11	-5	0.044		
rs3910736	-11	-9	-0.068		
rs11568818 ^c	-10	-9	0.041		
rs17596465	-10	-7	0.114		
c22_pos41831564	-10	-6	0.084		

rs1010	-10	-9	0.050
rs2136486	-9	-2	0.024
rs4919763	-9	-11	-0.050
rs10866528	-9	-7	-0.045
rs3861106	-9	-7	-0.914
rs4809311	-8	-6	0.049
rs6853490	-8	-6	-0.054
rs13252265	-8	-7	-0.055
rs4857841	-8	-7	0.029
rs11795627	-8	-7	-0.042
rs7888856	-7	-7	0.049
rs684232°	-7	-8	-0.039
rs10875943 °	-7	-7	-0.041
rs10051795	-7	-8	-1.501

^aFrom trend test for this SNP only on Development Set case/control status. ^bFrom logistic regression for prediction of case/control with all SNPs in this table included as predictors, in addition to age and six principal components for European ancestry. ^cPreviously listed among 99 SNPs associated with prostate cancer in GWAS studies^{14,15}.

Figure A: Each column shows the rho value for Schoenfeld residuals for a single SNP (variable) in the final PHS model.¹⁶

Figure B: Positive predictive value (PPV) of PSA testing by PHS percentile thresholds for patients in the Validation Set. This is PPV for any PCa. Percentiles refer to the PHS distribution among young controls in the Development Set. Colored lines are 95% confidence intervals from random samples of cases in the Validation Set (see Methods). For reference, the expected PPV for PSA testing at this threshold is displayed as a gray, dashed line, based on a pooled analysis¹⁷.

Figure C: Lorenz curve to show the percent of the 632 aggressive PCa cases in the Validation Set (ProtecT) that were accounted for with various thresholds for PHS percentile. Dotted lines represent 95% confidence intervals calculated via 1,000 bootstrap samples of 632 aggressive cases. For example, the upper quintile of PHS (20 on upper x-axis, 80th PHS percentile) accounted for approximately 42% of all aggressive cases in the Validation Set.

References from Supplementary Material

- 1 Eeles RA, Olama AAA, Benlloch S, *et al.* Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. *Nat Genet* 2013; **45**: 385–91.
- 2 Eeles RA, Kote-Jarai Z, Al Olama AA, *et al.* Identification of seven new prostate cancer susceptibility loci through a genomewide association study. *Nat Genet* 2009; **41**: 1116–21.
- 3 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7-30.
- 4 Desikan RS, Fan CC, Wang Y, et al. Personalized genetic assessment of age associated Alzheimers disease risk. BioRxiv Press PLOS Med 2016; : 74864.
- 5 Borgan O, Goldstein L, Langholz B. Methods for the Analysis of Sampled Cohort Data in the Cox Proportional Hazards Model. *Ann Stat* 1995; **23**: 1749–78.
- 6 Lane JA, Donovan JL, Davis M, *et al.* Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. *Lancet Oncol* 2014; **15**: 1109–18.
- 7 Therneau TM, Li H. Computing the Cox Model for Case Cohort Designs. Lifetime Data Anal; 5: 99–112.
- 8 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2015 https://www.R-project.org/.
- 9 Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model. New York: Springer, 2000.
- 10 Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011. CA Cancer J Clin 2011; 61: 212–36.
- 11 Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2006. CA Cancer J Clin 2006; 56: 106–30.
- 12 Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer Statistics, 2001. CA Cancer J Clin 2001; 51: 15–36.
- 13 Arias E. United States life tables, 2008. Hyattsville, MD: National Center for Health Statistics, 2012 http://www.cdc.gov/nchs/data/nvsr/nvsr61_03.pdf.
- 14 Eeles R, Goh C, Castro E, *et al.* The genetic epidemiology of prostate cancer and its clinical implications. *Nat Rev Urol* 2014; **11**: 18–31.
- 15 Al Olama AA, Kote-Jarai Z, Berndt SI, *et al.* A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. *Nat Genet* 2014; **46**: 1103–9.
- 16 Schoenfeld D. Partial residuals for the proportional hazards regression model. *Biometrika* 1982; **69**: 239–41.
- 17 Wolf AMD, Wender RC, Etzioni RB, *et al.* American Cancer Society Guideline for the Early Detection of Prostate Cancer: Update 2010. *CA Cancer J Clin* 2010; **60**: 70–98.