SUPPLEMENTARY TABELS INSULT LEVELS/PRESSURE TRANSDUCER READOUT (Well PSI) (Each Table Represents Different Neuron Culture Experiments Done on Different Days)

Table 1: Insult Details for Figure 3 Experiments.

	N=1	N=2	N=3
~38% Biaxial Stretch	2.6 PSI	2.5 PSI	2.8 PSI
~54% Biaxial Stretch	4.1 PSI	4.1 PSI	4.0 PSI

Table 2: Insult Details for Figures 4-6 Experiments.

	N=1 (GFAP)	N=2 (GFAP)	N=1	(NFL)	N=2	(NFL)	N=1	(Tau)	N=2	(Tau)
~54 Biaxial Strain	4.3	PSI	4.3	PSI	4.1	PSI	4.1	PSI	4.1	PSI	4.2	PSI
(Single Insult)												
	т0	T1h	т0	T1h	т0	T1h	т0	T1h	т0	T1h	Т0	T1h
~54 Biaxial Strain												
(Dual Insult)	4.2	3.8	4.2	4.2	4.1	4.1	4.1	4.0	3.9	4.2	4.1	4.1
	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI

Yellow = Post-fix Permeabilization with Triton-X100

T0=time zero (first injury); T1h=time after first injury (second injury)

Table 3: Insult Details for Figure 7 Experiments.

	N	=1	N	=2	N=3	
~54 Biaxial Strain	4.1 PSI		4.1 PSI		4.1 PSI	
(Single Insult)						
~54 Biaxial Strain	Т0	T1h	т0	T1h	т0	T1h
(Dual Insult)						
1h Between Injuries	4.2 PSI	4.1 PSI	4.2 PSI	4.2 PSI	4.1 PSI	4.1 PSI
~54 Biaxial Strain	Т0	T4h	т0	T4h	т0	T4h
(Dual Insult)						
4h Between Injuries	4.1 PSI	4.2 PSI	4.2 PSI	4.1 PSI	4.1 PSI	4.1 PSI
~54 Biaxial Strain	Т0	T8h	Т0	T8h	т0	T8h
(Dual Insult)						
8h Between Injuries	4.1 PSI	4.1 PSI	4.1 PSI	4.2 PSI	4.0 PSI	4.1 PSI

Table 4: Insult Details for Figure 8 Experiments (Neurobasal/B27 vs. BrainPhys/SM1).

	N=1	N=2	N=3	N=4
~54% Biaxial Strain (Neurobasal)	4.4 PSI	4.2 PSI	4.2 PSI	4.1 PSI
~54% Biaxial Strain (BrainPhys)	4.3 PSI	4.3 PSI	4.2 PSI	4.1 PSI

Table 5: Insult Details for Figure 9 Experiments (30MOI).

	N=1	N=2	N=3	N=4
~54% Biaxial Strain	4.1 PSI	4.2 PSI	4.2 PSI	4.1 PSI
(30 MOI – Control				
vector)				
~54% Biaxial Strain	4.2 PSI	4.2 PSI	4.1 PSI	4.1 PSI
(30 MOI – RBM5				
Vector)				

(Tables Continued)

	N=1	N=2	N=3	N=4
~54% Biaxial Strain	4.1 PSI	4.0 PSI	4.1 PSI	4.1 PSI
(60 MOI – Control				
vector)				
~54% Biaxial Strain	4.0 PSI	3.9 PSI	4.0 PSI	4.1 PSI
(60 MOI – RBM5				
Vector)				

 Table 6: Insult Details for Figure 9 Experiments (60 MOI).

Supplementray Fig. 1: Detection of GluN2B and GluR1 in aged DIV18 Primary Cortical Neurons Maintained in Neurobasal®/B27. Primary mouse neurons were grown on a standard polystyrene 6-well plate. Cells were given ½ media exchange every 3d. Cells were washed with PBS and harvested in RIPA buffer (+Phosphatase inhibitors+Protease Inhibitors +EDTA). Homogenates were analyzed by Western blot for GluN2B and GluR1; Cell Signaling Technology (Danvers, MA, USA): Rabbit Monoclonal Anti-NMDAR2B (Cat# 4212) and Rabbit Monoclonal Anti-GluR1 (Cat# 13185).

Supplementary Fig. 2: BrainPhys®/SM1 Increases Synaptic Response (Activation) to Treatment with 4AP/Bicuculline in Aged CNS Cultures. Mouse and rat primary cortical neurons were prepared as described in methods. Cells maintained in Neurobasal®/B27 were grown on PDL coated plates. Cells maintained in BrainPhys®/SM1were grown on Laminin/Poly-L-ornithine coated plates (as recommeded by the vendor STEMCELL Technologies Inc.). On the final day of experimentation, cells were treated 15min with vehicle (water/DMSO) or 1mM 4-AP/25µM bicuculline (i.e. a potassium channel blocker and GABA_A antagonist). Cells were then immediately washed with ice cold PBS and harvested in RIPA buffer (+Phosphatase inhibitors+Protease Inhibitors +EDTA). Homogenates were analyzed by Western blot for pERK and ERK total levels. Synaptic activation induced by 4-AP/Bic treatment is well established to increase pERK levels in cultured neurons, and is associated with stimulation of synaptic-localized NMDARs.