
S9 Adaptation to high-latitude climates

S9.1 Genome-wide scan for patterns of adaptation

This  study  presents  the  largest  number  of  Mesolithic  Scandinavians  (to  date)  that  have  had  their
genomes sequenced. These individuals were among the first pioneering inhabitants of Scandinavia and
northern  Europe.  While  genetic  variation  of  the  Mesolithic  populations  falls  outside  the  modern-
European genetic variation, it is known that modern-day Europeans trace some ancestry to these groups
[1,2]. Assuming that Mesolithic as well as modern-day northern Europeans were adapted to similar
climatic  conditions,  possibly  by  sharing  some  genetic  material  (i.e.,  continuity)  as  previously
demonstrated [1,3], we investigated if certain alleles or gene-regions show a long term continuity in the
region. Signals of such allele/gene-region continuity will be informative of local adaptation, possibly
linked to the environment at northern latitudes. A strong selective pressure in high-latitude regions is
cold temperature. The response to cold stress is cardiovascular, metabolic and endocrinological while
physiological adaptation to cold climates is mainly insulative or metabolic  [4]. A recently detected
example of adaptation to arctic climates is the gene cluster for fatty acid desaturase enzymes (FADS),
in the Greenlandic Inuit population, which modulate fatty acid composition [5]. 

We scanned  the  genomes  for  SNPs  with  similar  allele  frequencies  in  Mesolithic  and  modern-day
northern Europeans,  and contrast  it  to a  modern-day population from southern latitudes using Dsel.
Outliers detected using this  approach appear  to  have functional  relevance as  the upper  end of  the
distribution of Dsel values is enriched with SNPs at conserved sites (measured by GERP score > 3; [6])
(Figure S9.1).



Figure S9.1 Enrichment of SNPs with high conservation among the outliers of the selection scan

We explored the most extreme and positive values of our statistic since those represent SNPs similar in
modern-day  and  Mesolithic  northern  Europeans,  but  different  to  southern  Europeans.  We  used
SNPnexus [7] to obtain annotation for the top ranking SNPs in our genome-wide scan. Notably, six of
the  ten  SNPs  with  the  highest  Dsel values  are  located  in  the  transmembrane  gene  TMEM131
(https://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=23505). GWAS have associated SNPs in this
gene with performance in exercise tests (rs10520549, p<10-5 [8]) and heart rate (rs1026015, p<10-5 [9]).
The heritability of the 17 tested physical exercise phenotypes are in the range 0.30-0.52  [8]. These
cardiovascular traits are likely connected to the climatic conditions in northern Europe [4]. Four of the
top 100 ranking SNPs (Table S9.1) are located in FHIT, which has been associated with a wide range
of  phenotypes  (Table  S9.2).  These  include  psychological  traits  (sleep  [10],  attention-deficit
hyperactivity  disorder  [11],  major  depressive  disorder  [12],  Tobacco  Use  Disorder  [13],  Asperger
Syndrome  [14], metabolic traits (body mass index  [15], type 2 diabetes  [16]),  cardiovascular traits
(blood pressure  [17]), and developmental traits (Cleft Lip  [17], menopause  [18]). Due to this large
range of different phenotypes it is difficult to find a clear link to adaptation to high-latitude climates,
although several of the traits involved have been linked to cold adaptation [4]. GPC5 harbors three of
the  top  100  ranking  SNPs.  This  gene  has  also  been  associated  with  a  wide  range  of
phenotypes,including metabolic traits (serum metabolites  [19], Cholesterol and HDL  [20]), immune
phenotypes  (Monocyte  Chemoattractant  Protein-1  [21],  multiple  sclerosis  [22–24],  Crohn's  disease

https://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=23505


[25]) and developmental traits (Mental Competency [18], height [26], hair thickness [27], kidney aging
[28]. For both GPC5 and FHIT, a majority of the phenotypes are possibly involved in local adaptation,
e.g.  handling changes in light exposure (psychological and developmental traits) and the increased
energy demand during  cold  seasons (metabolic  and cardiovascular  traits),  or  general  physiological
changes to adapt to the environment (developmental traits). The genes PLD1 and GABPB1 also harbor
three or more SNPs out of the first 100 SNPs of Dsel. Unfortunately, we do not find any GWAS results
for these genes. PLD1 is involved in Ras protein signal transduction [29], so it could be connected to
the response to external signals. GABPB1 might be involved in physical performance in competitions
[30], which is similar to the associations of TMEM131 and may also be well connected to the climatic
conditions in northern Europe. Other genes among the top 100 SNPs are associated with a wide range
of metabolic, cardiovascular and psychological traits (Table S9.2).

All six of the highest scoring SNPs that fell within TMEM131 show similar allele frequency differences
between FIN and TSI which suggests that two different haplotypes are present in high frequencies in
these  two  modern  populations.  In  total,  the  region  comprises  at  least  264  kilobases  with  allele
frequency differences  of  up  to  40%.  This  region is  a  genome-wide  outlier  in  its  allele  frequency
difference  between  FIN and  TSI  compared  to  other  regions  of  similar  length  (Figure  S9.3d).  To
produce Figure S9.3d we defined blocks as follows: For each SNP, we scanned the next 50 kbp for
other SNPs with maximally 5% difference between the allele frequency differences between the two
populations. A block is a sequence of such SNPs with less than 50 kbp between neighboring SNPs
(note that SNPs with highly different allele frequencies were allowed if another SNP within 50 kbp had
a  similar  allele  frequency  difference).  Figure  S9.3d  shows  the  block  with  the  maximum  allele
frequency per 1 Mbp window of the genome. In order to investigate the haplotype structure in the
TMEM131 region, we phased chromosome 2 of all FIN and TSI individuals plus SF12 and Hum2
using FastPHASE 1.4 [31] (with parameters -T25 -C25 -w -Pm -Pp -H100 -K25 -Kp.1). The GNU R
package pegas  [32] was used to draw a haplotype network for the region (Figure S9.3e). All major
haplotype configurations seem to be segregating in both modern populations but there appears to be a
clear gradient between the two populations. Both of the most extreme haplotype configurations are
predominantly  found  in  either  TSI  or  FIN,  and  the  haplotype  found in  SF12 and  Hum2 is  more
common in FIN than in TSI. This pattern of haplotype differentiation is also visible in a haplotype
bifurcation diagram around the highest scoring SNP in  TMEM131 (Figure S9.3c, drawn using the R
package rehh2 [33]). The TMEM131 region is the second strongest signal of haplotype differentiation
on chromosome 2 when using a haplotype based selection scan (rsb [34], calculated with rehh2 [33]).
Only the region around the Lactase gene shows a higher haplotype differentiation between TSI and FIN
(Figure S9.3a,b).  Both alleles at  the highly differentiated SNPs are also found in other prehistoric
Europeans  included  in  this  study. The  SNPs  are  polymorphic  in  both  hunter-gatherers  and  early
farmers,  but  the  haplotype  found  in  sf12  is  found  in  slightly  higher  frequencies  in  other  hunter-
gatherers (e.g.  SF9, Steigen,  Motala12,  Hum1, ajv58, Loschbour) than in early farmers  (LBK is a
homozygous  carrier, while  Gok2 and ne1 are homozygous alternative)  (Figure  S9.4).  Notably, the
haplotype is also found in a Late Neolithic/Bronze Age Scandinavian (RISE98 [35], Figure S9.4).



Figure S9.2 Allele frequencies of rs10432626, one of the SNPs in TMEM131. The plot was obtained
from the HGDP selection browser (http://hgdp.uchicago.edu/).

In addition to investigating the genes among the top 100 SNPs, we also looked at biological process
GO terms among the top 0.5% of Dsel scores (1298 SNPs) compared to all SNPs tested. For GO term
enrichment we used Gowinda [36].  Gowinda employs a  permutation approach to detect  GO terms
overrepresented among a subset of all SNPs analyzed. This accounts for the different lengths of genes
and the number of SNPs expected for each gene. Gowinda was run in gene mode while counting all
SNPs 20kbp up- or downstream to that gene.  We only used categories with at  least  10 genes and
conducted 1,000,000 permutations. Only ten GO terms have a FDR of less than 20%, we show the top
20 GO terms in Table S9.3. In contrast to the genes among the top 100 SNPs, these GO terms mainly
include  developmental  processes  but  also  some  involved  in  signaling  processes.  These  could  be
involved  in  polygenic  adaptation  to  high-latitide  climates  and  may  have  changed  morphology  in
northern  Europeans  as  represented  by  individuals  from Pitted  War  Culture  individuals  (PWC)  in
osteological analyses. Comparing individuals from Funnel beaker (TRB) and PWC contexts in Sweden
osteologically, a certain degree of morphological differences between the skeletons has been found. It
has been shown that PWC individuals exhibit skeletal traits characteristic of cold-adaptation, such as
certain facial features and limb proportions (crural index) which are absent in TRB individuals [37,38]. 



Figure  S9.3 Candidate  gene  TMEM131  for  adaptation  to  high-latitude  climates.  (a)  Haplotype
differentiation measured using rsb between TSI and FIN populations on chromosome 2 (calculated with
rehh2  ,  Supplementary  Information  10),  and  (b)  -log  10  (p-value)  for  rsb.  (c)  Bifurcation  of  the
different haplotypes around the highest scoring SNP (drawn with GNU R and rehh2). (d) Block length
versus allele frequency differences between southern Europeans, TSI, and northern Europeans, FIN.
Blocks are defined as the maximum physical distance (in base-pairs) between two SNPs of similarly
high allele frequency difference between TSI and FIN, requiring that the block contains other SNPs
with  similarly  high  allele  frequency difference,  but  with  a  maximum distance  of  50 kbp between
neighboring SNPs. The red diamond represents the TMEM131 gene region, blue dots represent the
OCA2/HERC region. (e) Haplotype network of the TMEM131 region (drawn with the GNU R package
pegas).



Figure S9.4: TMEM131 haplotype in different ancient individuals. The reference allele is shown in
blue, the alternative allele in orange, the SNPs are colored gray if both alleles are observed. The SNPs
are shaded according to their coverage, sites covered by 5 or more reads are in full color. Diamonds
represent SNPs among the highest ranking Dsel scores.

Table S9.1 Top 100 SNPs of the Dsel analysis
SNP-ID Dsel DAFSHG DAFFIN DAFTSI Consequence type Gene(s)

rs10432626 0.397 0 0.37 0.77 intronic TMEM131
rs13020776 0.393 0.17 0.37 0.77 intronic TMEM131
rs1838797 0.393 0.83 0.63 0.23 intronic TMEM131

rs10210880 0.382 0 0.15 0.53 intronic TMEM131
rs11692671 0.38 0.83 0.64 0.26 intronic ZAP70
rs7402734 0.368 0.83 0.74 0.37 intergenic
rs11894541 0.341 0.17 0.15 0.53 intronic TMEM131
rs35940587 0.341 0.17 0.15 0.53 intronic TMEM131
rs168714 0.332 0.83 0.82 0.49 intergenic
rs6726062 0.325 0.25 0.4 0.73 intronic PARD3B
rs6546608 0.321 0.83 0.74 0.42 intergenic

rs10276954 0.319 0.61 0.58 0.26 intergenic
rs537672 0.318 0.43 0.44 0.76 intronic, non-coding intronic SLC9A8
rs6012753 0.317 0.67 0.56 0.24 intronic, non-coding intronic SLC9A8
rs6118443 0.317 0.29 0.32 0.64 intergenic
rs452203 0.315 0 0.22 0.54 intronic FHIT
rs2734389 0.314 0.08 0.23 0.55 intronic FHIT
rs306169 0.314 0.93 0.7 0.39 intergenic
rs3104821 0.314 0 0.42 0.74 intergenic
rs4882475 0.314 0.17 0.24 0.56 intergenic
rs2218657 0.312 0.83 0.55 0.23 non-coding intronic MIR4435_1HG
rs3112591 0.31 0 0.23 0.54 intergenic
rs369278 0.304 0.08 0.24 0.55 intronic FHIT



rs4845824 0.304 0.58 0.61 0.26 intergenic
rs7963463 0.302 0 0.34 0.64 intergenic
rs11251448 0.3 0.31 0.36 0.66 intergenic
rs7698798 0.3 0 0.18 0.48 intronic MTTP
rs7173127 0.3 0.17 0.37 0.67 intronic GABPB1
rs11638564 0.3 0.83 0.63 0.33 intronic GABPB1
rs1972701 0.3 1 0.63 0.33 intronic GABPB1
rs1972700 0.3 0 0.37 0.67 intronic GABPB1
rs28372114 0.3 0.14 0.37 0.67 intronic GABPB1
rs11853236 0.3 0.17 0.37 0.67 intronic GABPB1
rs11070768 0.3 0.83 0.63 0.33 intronic GABPB1
rs2033115 0.3 0.14 0.37 0.67 intronic GABPB1
rs11069744 0.299 0.08 0.31 0.61 intergenic
rs12465488 0.299 0.08 0.43 0.73 intronic PARD3B
rs556682 0.298 0.93 0.8 0.5 intergenic
rs9571939 0.298 0.94 0.8 0.5 intergenic
rs3784296 0.298 0.71 0.55 0.25 3’ downstream GABPB1
rs12811599 0.297 0.17 0.28 0.58 intronic ANO4
rs11184569 0.295 0.81 0.76 0.46 intergenic
rs12034143 0.294 0.83 0.69 0.39 intergenic
rs6958292 0.294 0.64 0.56 0.26 intergenic
rs11688847 0.293 0.17 0.2 0.5 intergenic
rs62256379 0.292 0.75 0.65 0.36 intronic SUCLG2
rs7129877 0.292 0.42 0.47 0.77 intergenic

rs57090061 0.291 0.25 0.61 0.9 intronic PLD1
rs6806989 0.291 0.93 0.39 0.1 intronic PLD1
rs7616441 0.291 0.44 0.61 0.9 intronic PLD1
rs6773632 0.291 0.42 0.61 0.9 intronic PLD1
rs9839305 0.29 0.79 0.51 0.21 3’ utr GPD1L
rs378022 0.29 0.08 0.25 0.54 intronic FHIT
rs8007792 0.29 0.14 0.19 0.48 intronic TTLL5
rs6434424 0.288 0 0.15 0.44 intergenic
rs2908871 0.287 0.29 0.41 0.7 intergenic
rs7145573 0.287 0.75 0.53 0.24 intronic ACTN1
rs6883098 0.285 0.94 0.75 0.47 non-coding intronic LOC102467224
rs7987488 0.285 0 0.25 0.53 intronic GPC5
rs1002420 0.285 0.14 0.25 0.54 intronic PCSK5
rs6598159 0.285 0.71 0.62 0.34 intergenic
rs2005127 0.284 0.83 0.8 0.51 intergenic
rs4805487 0.284 0.75 0.55 0.26 intergenic

rs28679562 0.283 0.57 0.57 0.86 intergenic
rs79176913 0.283 0.08 0.16 0.44 intergenic
rs7581814 0.283 0.06 0.16 0.44 intergenic

rs12230024 0.283 0.69 0.53 0.25 intergenic
rs2704516 0.282 0.92 0.71 0.43 intergenic

rs41377545 0.282 1 0.96 0.68 intergenic
rs7332756 0.282 0.83 0.77 0.49 intronic GPC5

rs10804805 0.281 0.67 0.57 0.29 intergenic
rs494428 0.281 0 0.25 0.53 intergenic
rs6492597 0.281 0.17 0.25 0.53 intronic GPC5

rs59740759 0.28 0.17 0.26 0.54 intergenic
rs41204 0.28 0.1 0.51 0.79 intergenic

rs62109766 0.279 0.86 0.55 0.27 5’ upstream, intronic ARHGEF18
rs6859099 0.279 0.92 0.73 0.45 non-coding intronic LOC102467224

rs10819439 0.279 0.86 0.79 0.51 intronic ZER1
rs9541386 0.279 0.08 0.15 0.43 intergenic
rs4869761 0.279 0 0.21 0.49 intronic SYNE1

rs10203341 0.278 0.83 0.72 0.44 intronic THSD7B
rs9521695 0.278 0.25 0.4 0.68 intronic COL4A2



rs2819419 0.278 0.75 0.6 0.32 coding AHNAK2
rs7162536 0.278 0.83 0.65 0.37 intergenic

rs80353268 0.278 0.75 0.71 0.43 intronic, non-coding intronic CCNT2
rs1319222 0.277 1 0.83 0.56 intronic, 5’ upstream SEMA5A, SNHG18
rs793084 0.277 0.5 0.45 0.18 intergenic
rs4748302 0.277 0.92 0.64 0.36 3’ downstream, 3’ utr PTER, C1QL3

rs10258475 0.276 0.14 0.24 0.52 intergenic
rs7296207 0.276 0.21 0.37 0.64 intergenic
rs1300237 0.276 0 0.37 0.64 intronic SLC46A3
rs11221793 0.275 0 0.13 0.41 intergenic
rs9884570 0.275 0.25 0.38 0.66 intronic DCHS2
rs6067275 0.275 0.17 0.38 0.66 intergenic
rs7958156 0.275 0 0.32 0.6 intergenic
rs7631636 0.275 0.42 0.45 0.72 intronic SUCLG2
rs9419673 0.274 0.88 0.73 0.46 intergenic
rs7213892 0.274 0.93 0.48 0.21 intronic ALOXE3

rs17050803 0.274 0.33 0.33 0.61 intergenic
rs28647713 0.274 1 0.67 0.39 intergenic



Table S9.2 GWAS results for the genes found among the top 100 SNPs of the Dsel analysis.
Gene GWAS associated phenotype
PCSK5 Dehydroepiandrosterone, Body Height
PTPRN2 C-Reactive Protein
THSD7B Brain, Cholesterol, HDL, Cholesterol, LDL
TPO Respiratory Function Tests
AFF3 Cholesterol, Cholesterol, HDL
TMEM131 Exercise Test, Heart Rate
MLL3 Schizophrenia
CNTNAP2 Heart Failure
IRG1 Waist Circumference
SPEN Heart Failure
EPHB2 Insulin, Insulin Resistance
SEPT10 Blood Pressure
PDE4DIP Respiratory Function Tests
AGBL3 Attention Deficit Disorder with Hyperactivity
MTF1 Hypothyroidism
NAV2 Arteries, Asthma, Cell Adhesion Molecules, Lipoproteins, Myocardial Infarction, Stroke, Attention Deficit Disorder 

with Hyperactivity, HIV-1
FAM23A Blood Coagulation Factors, Body Weight
MRC1L1 Aspartate Aminotransferases
MRC1 Aspartate Aminotransferases
TPH2 Waist Circumference
PUS7 Erythrocyte Indices
PARD3B Knee osteoarthritis, C-Reactive Protein, Platelet Count, Cholesterol, HDL, Body Height, Osteoarthritis, Knee, E-

Selectin, Tuberculosis, Acquired Immunodeficiency Syndrome
SLC26A5 Triglycerides
SEMA5A Autism, Parkinson's disease, Blood Pressure Determination, Breath Tests, Glucose, Myocardial Infarction, Tunica 

Media, Parkinson Disease, Alkaline Phosphatase, Peroxidase, Mortality, Hip, Hemoglobin A, Glycosylated, 
Cholesterol, Cholesterol, LDL, Body Weight, Blood Pressure, Carotid Artery Diseases

HP Apolipoproteins B, Cholesterol, LDL
HPR Apolipoproteins B, Cholesterol, LDL
GC Erythrocytes, Vitamin D
ANK3 Arteries, Creatinine, Glomerular Filtration Rate, Cholesterol, LDL, Triglycerides, Bipolar Disorder, Schizophrenia
ZNF32 Body Mass Index
RET Hirschsprung Disease
FHIT lung cancer and preneoplastic bronchial lesions, tumour kinetics and chromosomal instability, transcriptional 

inactivation of the FHIT gene, smoking, cervical cancer, prostate cancer, ADHD | attention-deficit hyperactivity 
disorder, major depressive disorder , Albumins, Body Composition, Coronary Artery Disease, Erythrocyte Count, 
Lipids, Lipoproteins, Myocardial Infarction, Schizophrenia, Stroke, Waist Circumference, Creatinine, Glomerular 
Filtration Rate, Fibrinogen, Body Mass Index, Body Weight, Blood Pressure, Sleep, Asperger Syndrome, Aorta, 
Anticonvulsants, Cleft Lip

LRRN1 Blood Pressure, Menopause, Cholesterol, HDL, Triglycerides, Body Weight, Echocardiography
TKT Waist Circumference, Heart Function Tests
ZNF717 Hippocampus
IGHG1 Sjogren's syndrome, atopy
ANG Stroke
ABCB1 Phospholipids
TNP2 Diabetes Mellitus, Type 1
C7orf10 Precursor Cell Lymphoblastic Leukemia-Lymphoma
ZNF107 Calcium
UNC13A Hemoglobins, Amyotrophic Lateral Sclerosis
ZNF92 Smoking
ZNF138 Smoking
BMP8A Atrial Natriuretic Factor
BMP8B Atrial Natriuretic Factor
IL12RB2 Liver Cirrhosis, Biliary
SYNE1 Ovarian cancer , tonometry, Body Height, Erythrocyte Count, Forced Vital Capacity, Diabetes Mellitus, Type 2, 

Triglycerides, Echocardiography
PIGF Body Height



STK4 Neuroblastoma
LRRN4 Menopause
TGM6 Stroke
EMR2 Blood Pressure Determination
EMR3 Blood Pressure Determination
GPC5 Serum metabolites, multiple sclerosis, height, Coronary Artery Disease, Glucose, Monocyte Chemoattractant 

Protein-1, Mental Competency, Cholesterol, HDL, Echocardiography, Lung Neoplasms, Nephrotic Syndrome
DAO Erythrocyte Count, Hemoglobins
SF1 Gout
ACTN1 Arteries
TRIM16 Hemoglobin A, Glycosylated
COX10 Echocardiography
MTTP Plasma cholesterol levels and body mass index, ApoB-48, lipid metabolism disorders, diabetes, type 2, blood 

pressure, arterial, steatohepatitis, non-alcoholic, body mass; cholesterol, LDL; cholesterol, total; insulin; apoB, 
atherosclerosis, coronary; lipoprotein; lipids, blood pressure, arterial diabetes, type 2 glucose insulin, Fatty Liver|
Hepatitis C, Chronic

TEC Inflammatory Bowel Diseases
NRAS Erythrocytes
MPP7 Iron, Body Mass Index, Echocardiography, Cardiovascular Diseases, Electrocardiography, Alzheimer Disease, 

Asthma
TTLL5 Body Height
CPN1 Iron, Alkaline Phosphatase
LIPA Coronary Artery Disease
AGK Dehydroepiandrosterone Sulfate
COL4A2 Coronary Artery Disease, Vascular Calcification
COLQ Alcoholism, Body Height, Iron
DCHS2 C-Reactive Protein, Lipoproteins, Blood Coagulation Factors, Erythrocytes, Lipids, Triglycerides, Blood Pressure, 

Fibrinogen, Alzheimer Disease



Table S9.3 Results of the GO-term enrichment analysis.
GO-ID Total number of

genes
Expected

number of
genes among

outliers

Observed
number of genes
among outliers

Nominal p-
value

FDR Description of GO term

GO:0060603 37 1.707 9 0.000018 0.029482 mammary gland duct
morphogenesis

GO:0060443 53 2.48 10 0.000061 0.0506862 mammary gland
morphogenesis

GO:0022612 109 4.591 14 0.000099 0.0506862 gland morphogenesis
GO:0060444 25 0.905 6 0.000134 0.0506862 branching involved in

mammary gland duct
morphogenesis

GO:0021536 63 2.437 9 0.000146 0.0506862 diencephalon development
GO:0061180 68 2.919 10 0.000299 0.0849803333 mammary gland epithelium

development
GO:0071514 22 0.701 5 0.000466 0.1161662857 genetic imprinting
GO:0030879 127 5.523 14 0.000735 0.1490481111 mammary gland development
GO:0048732 266 10.015 21 0.00074 0.1490481111 gland development
GO:0048589 265 12.449 24 0.000866 0.1562793 developmental growth
GO:0033135 62 2.321 8 0.001343 0.2200139091 regulation of peptidyl-serine

phosphorylation
GO:0050432 30 0.935 5 0.001592 0.2226172632 catecholamine secretion
GO:0072077 18 0.617 4 0.001716 0.2226172632 renal vesicle morphogenesis
GO:0035023 165 7.987 17 0.001935 0.2226172632 regulation of Rho protein

signal transduction
GO:0006885 46 1.415 6 0.002005 0.2226172632 regulation of pH
GO:0045740 48 1.368 6 0.00209 0.2226172632 positive regulation of DNA

replication
GO:0051926 21 0.599 4 0.002166 0.2226172632 negative regulation of calcium

ion transport
GO:0006655 10 0.295 3 0.002262 0.2226172632 phosphatidylglycerol

biosynthetic process
GO:0040019 8 0.431 3 0.002278 0.2226172632 positive regulation of

embryonic development
GO:0048754 143 4.78 12 0.002602 0.24296675 branching morphogenesis of

an epithelial tube

S9.2 Testing selection on known pigmentation SNPs

To complement the genome-wide scan above, we specifically looked into signals of selection in known
pigmentation-associated  SNPs as  pigmentation  is  one  of  the  major  traits  under  selection  pressure,
especially in high latitudes [39]. Pigmentation is a trait well studied in populations of European descent
(see also S8 Text). Here we focus on three major-effect SNPs in the genes OCA2/HERC2 affecting eye
pigmentation, and SLC45A2 as well as SLC24A5 affecting skin pigmentation. We observe (Figure 4B)
that the allele frequencies of the derived allele at all three SNPs is higher in SHGs than expected based
on their genome-wide admixture proportions (qpAdm estimates; S6 Text) and the allele frequencies in
EHGs  and  WHGs.  To test  whether  these  allele  frequency  changes  are  significant,  we  performed
simulations. For each SNP and each SHG individual, we randomly sampled the alleles from the two
source populations based on the individual’s genome-wide qpAdm admixture proportions and the allele
frequencies in the source populations. The allele frequencies in the source populations were calculated
as described in S8 Text. We assume that the true frequencies in the source populations follow a normal
distribution with mean as our point estimate and standard deviation as the binomial sampling error
estimated from a normal approximation:



 SE=√ p̂ (1− p̂)

n
Where p̂ is the point estimate of the allele and n is the number of chromosomes. This approximation
can be inaccurate if the allele frequency estimate is close to 0 or 1. Therefore, we take the conservative
choice of always using the maximum standard error possible for a given sample size which is reached
when  p=0.5.  This  approach  will  overestimate  the  uncertainty  in  the  source  populations’  allele
frequencies in most cases but it avoids underestimating the uncertainty in the situations where allele
frequency estimates are close to 0 or 1.
The true admixture proportions per individual are also drawn from a normal distribution with mean
equal to the point estimate and standard deviation equal to the jackknife standard error of that estimate.
Before calculating allele frequencies in the admixed SHGs, we randomly sample the same number of
SHGs for which data was available in the empirical study to account for noise due to missing data. This
simulation is assumed to provide a null distribution of SHG allele frequencies without selection. After
1,000,000 simulations, we find that the allele frequencies in  SLC45A2 (p=0.076862),  OCA2/HERC2
(p=0.060368) and  SLC24A5 (p=0.180055) are elevated but not significantly. These p values may be
overestimated since our simulations can be considered conservative. As all three of them are pointing in
the same direction and as the three SNPs can be considered evolutionary independent, we calculated a
combined p value. We used Fisher’s method  [40] to combine the three p values and the p value for
observing all three SNPs elevated like this is 0.028. The results of this simulation are shown in Figure
4B.
These  results  suggest  that  high  latitude  conditions  exhibited  a selection  pressure  on  pigmentation
phenotypes in SHGs. The polygenic architecture of skin pigmentation as well as the occurrence of
different  combinations  of  depigmentation  mutations  in  different  parts  of  the  world  suggests  that
selection on skin pigmentation is mainly due to physiological advantages of light pigmentation in high
latitudes [41]. Hair and eye-color pigmentation on the other hand could have been affected by drift and
sexual selection as less mutations need to be involved [41]. 
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