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1 Algorithms summaries, simulation settings and run
time comparisons

We first summarize the existing methods on inferring correlations or association on
microbial data (synthetic data in S1 Table). More specifically, we consider the following
algorithms: CCREPE, CCLasso, SparCC, REBACCA, SPIEC-EASI, and our proposed
MPLasso.

For the synthetic and HMP experiments, the settings for each method is as follows:
(1) CCLasso: we use the code1 with the default settings: the number of bootstraps is set
to 20. (2) SparCC: we use the implementation from the SPIEC-EASI package with the
default settings: the number of iterations for the inner and outer loop is set to 10 and
20, respectively. (3) REBACCA: we use the code2 with the default settings: the number
of bootstraps is set to 40. (4) SPIEC (mb) and SPIEC (gl): we use the code3 with the
default settings: the number of different regularization parameter values is set to 15 and
the number of repetitions for StARS is set to 20. (5) CCREPE: we use the code4 with
the default settings: the number of iterations is set to 1000.

The run time is computed by using a synthetic ”random” network with 200 samples
and 100 OTUs on Intel(R) Core(TM) i5-2400 CPU, 16 GB MEM. We find that MPLasso
is much faster than any of the given methods since MPLasso utilize the R package glasso
routine which efficiently solve the Lasso problem. SparCC also runs in a much faster
fashion since other methods such as CCLasso consists of several optimization procedures
from the cross validation.

1https://github.com/huayingfang/CCLasso
2http://faculty.wcas.northwestern.edu/vhji403/REBACCA.html
3https://github.com/zdk123/SpiecEasi
4http://www.bioconductor.org/packages/devel/bioc/html/ccrepe.html
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2 Graph generation process

To evaluate the performance of our model to recover different network structures, we
consider five different graph structures (see S1 Fig) and p nodes as discussed in [1] with
different precision matrices Θ defined as follows:

• Random Graph: Each pair of off-diagonal elements are set to non-zero with
probability 3

p which results in about 3
2 (p− 1) edges in the graph.

• Hub Graph: Nodes are randomly partitioned into g groups and within each groups,
nodes are connected to the center node which result in p− g edges in the graph.

• Cluster Graph: Nodes are randomly partitioned into g groups and within each
groups, nodes are connected with probability P which result in p( p

g−1 )(P
2 ) edges

in the graph.

• Band(4) Graph: Each adjacent pair of off-diagonal elements (i.e., node i and j)
are connected if 1 ≤ |i− j| ≤ b (b is the bandwidth) which result in (2p− 1− b) b

2
in the graph. We use b = 4 to construct the band(4) graph

• Scale-free Graph: We generate the graph by using Barabasi-Albert algorithm [2].
The initial graph has two connected nodes and each new node is connected to only
one node in the existing graph with the probability proportional to the degree of
the each node in the existing graph. It results in p edges in the graph.
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3 The impact of different precision levels on prior
matrix and synthetic experiments

Given different precision levels, the ratios between maximum (M) and minimum (m)
values in prior matrix (P ) are adjusted. The minimum and maximum value used in
the prior matrix is based on the BIC model selection criteria (described in the main
manuscript). More specifically, the maximum value M is set to m/(1− p) where m is
the minimum value selected from BIC and p is the precision level.

We examine how different precision level can affect the performance in terms of AUPR
on different graph structures. As shown in S2 Fig, we notice that the performance of
MPLasso increases as the precision level increases; this confirms that accurate microbial
prior information can help the graph estimation algorithm (i.e., it becomes more accurate
on inferring the graph structures). MPLasso cannot estimate well on band(4) graph due
to the special structure. However, it can still achieve up to 0.6 AUPR when precision
level is 0.1. For real data experiments, we set up a precision level equal to 0.5 and use
BIC to choose m and then calculate M to form the prior matrix.
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4 Experiments with synthetic data generated from
negative binomial distribution

The metagenomics data is often highly zero-inflated and can have large counts. To show
that our log-normal distribution assumption for count data is valid, we look into the
density distribution of 16S rRNA experimental data and the simulated data of both
log-normal and negative binomial distributions. As shown in S5 Fig(a), we first examine
the density distribution of the stool samples from the HMMCP dataset; it is obvious
that the real data is highly zero-inflated and has a very low density at larger counts (a
similar distribution can be found at different body sites).

As shown in S5 Fig(b), the density for the log-normal distribution is also a zero-
inflated distribution, similar to the real data density distribution. We also consider
another zero-inflated distribution, namely, the negative binomial distribution with the
density distribution shown in S5 Fig(c); the results are similar but with a higher density
at the locations of smaller counts.

For completeness, we include a new set of experiments to show that our proposed
algorithm is able to deal with zero-inflated distributions. More precisely, we choose the
negative binomial distribution that is also suitable to model the microbial count data [3].

We consider the same experimental setting of parameters (i.e., different number of
taxa, sample sizes, and graph structures) in the main manuscript. As shown in S6-7 Figs
and S4-5 Tables, the performance of our proposed method outperforms all the other
methods except a few cases involving hub graphs; this is similar to the results for the
additive log-normal model. In summary, our results show that MPLasso works well with
many different distributions and graph structures.
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5 Experiments with HMP datasets with two more
body sites

We report two additional body sites in S8 Table and S8 Fig. The reproducibility results
shows that MPLasso has a better reproducibility over SPIEC (gl) and CCLasso which is
the same as in the main manuscript.

For the anterior nares (AntNar), the HMASM dataset (S8 Fig(a)) only contains
14 taxa since the trimmed sequences are too short for metaphlan2 to extract effective
amounts of taxa. On the other hand, HMMCP and HMQCP (S8 Fig(b) and (c)) detect
similar genera, for example, Prevotella, Bacteroides, and Porphyromonas which are
common in AntNar. The association pairs found in both HMMCP and HMQCP, for
example, 〈Prevotella, Bacteroides〉 has been found to have inverse correlation [4].

For the stool HMASM samples (S8 Fig(d)), MPLasso suggests an association between
the 〈Faecalibacterium prausnitzii, Escherichia coli〉 pair. Although not yet been validated
in laboratory settings, researchers have observed the co-abundance of these two species in
the human gut [5]. For the genus level data shown in S8 Fig(e) and (f), only two genera
(Bacteroides and Prevotella) have been found in common in HMMCP and HMQCP
datasets; this may be due to the variations of samples and the number of taxa detected
using different pipelines (HMMCP detects 135 taxa while HMQCP obtains 64).

We also consider reproducibility on different percentages of highly connected nodes in
S9 Table. Only when we consider as little as only 25% of high degree nodes, CCLasso has
a better performance (but even so for 2% only, on average). While MPLasso outperforms
SPIEC (gl) in all the cases reported in S9 Table.
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6 Methods for calculating Spearman correlation of
node degrees

The correlation between node degrees at different body sites is calculated by utilizing
the Spearman correlation method. More specifically, we first rank a node (i.e., microbe)
based on its node degree. Next, we compute the Spearman correlation based on the
rank list. For example, for Stool, we first obtain rank list r1 and r2 for HMMCP and
HMQCP pipelines, respectively. Next, we compute the Spearman correlation among r1
and r2. The purpose of calculating the correlation is to compare and show the differences
between the two pipelines and how consistent our proposed algorithms is when inferring
the node degrees.
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7 Prior knowledge introduction in synthetic experi-
ment

The procedure of introducing prior knowledge into the algorithm is as follows: For
synthetic data, the prior information is obtained by sampling the true network structure
(i.e., the adjacency matrix) and adding noise to simulate realistic conditions.

First, we choose a percentage (based on the prior percentage parameter) of random
edges from the true network structure to be used as prior information (i.e., the percentage
of “perfect” prior information being used). For example, if the total number of true
edges is 100, then a prior percentage = 50% will randomly choose 50 true edges as our
prior information.

Second, in order to account for imprecise information (e.g., wrongly annotated
associations in the scientific literature) that may appear in the real datasets, we consider
the precision of the prior information. If the precision level parameter is set at 50%,
then we randomly replace 50% of the correct prior information (25 true edges following
our example) with false edges to simulate imprecise information.
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8 Consistency analysis for graphical Lasso algorithm

Let X ∈ Rn×p be the compositional data after applying the clr transformation, where n
represents the total number of samples. Let C∗ be the true (i.e., not observed) covariance
matrix of the compositional data and Ĉ = Cov[X] be the empirical covariance matrix of

the compositional data. It has been shown in [6] that if ||Ĉ − C∗||max �
√

log p
n and the

penalizing parameter (λ) is selected as λ �
√

log p
n , then ||Ω̂− Ω∗||max � (

√
log p
n + λ),

where Ω̂ is the estimated precision matrix (i.e., inferred associations) and Ω∗ is the true
precision matrix (i.e., underlying true associations)5.

For example, if n = 200, p = 200, we get
√

log p
n = 0.16. If we choose λ > 0.16, we

get the l∞ error for the precision matrix which will be less than 0.32. This guarantees
that we can have a consistency estimator on the precision matrix. We can also observe
that the approximation error (||Ĉ − Γ||max <

1
p = 0.005) is relatively small compared

to the estimation error for the precision matrix (Ω). Hence, the approximate error of
compositional data has little effect on the inference results.

5||.||max denotes the element-wise l∞ norm.
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9 Definitions for recovery rate of associated pairs and
text-mined pairs

The S10 Table reports the statistics of the recovery rate of “associated” pairs; this is
different from the recovery rate of the “text-mined” interactions. More specifically, as
shown in S11 Fig.(a), the recovery rate (r) of associated pairs is defined as: r = p

A ,
where p represents the number of associated pairs found by MPLasso using half of the
samples in full dataset, while A represents the number of the associated pairs found by
MPLasso using the full dataset.

On the contrary, as shown in S11 Fig.(b), the recovery rate of the text-mined associa-
tions (s) is defined as: s = t

T , where t represents the number of text-mined associations
recovered by MPLasso, and T represents the number of text-mined associations found
using text-mining methods.
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