```
Supplementary Fig. 1
```


Nature Medicine: doi:10.1038/nm.4443

Supplementary Figure 1: Characterization of NPs and NFTs induced by AD-tau.

a, Representative immunohistochemistry staining of the induced NFTs and NPs at 3 mo.p.i. of AD-tau detected with anti-tau antibodies with different epitopes: AT180 (pThr231), 12E8 (pSer262/pSer356), PHF1(pSer396/pSer404), pS422 (pSer422), Alz50 (misfolded conformation of AD-tau). Quantification of AT180-positive NFTs (b) and NPs (c) in hippocampus; and NFTs (d) in entorhinal cortex for both ipsilateral (I) and contralateral (C) sides of the WT, APP-KI and 5xFAD mice injected with AD-tau and analyzed at 3 mo.p.i.. Color codes are in e. One-way ANOVA with Tukey's multiple comparison tests were performed, **P < 0.01, ***P < 0.001. e, inverse correlation between AT180+ NPs in the ipsilateral hippocampus and AT180+ NFTs in the ipsilateral entorhinal cortex (Spearman correlation $r_s = -0.806$, p<0.001). **f**, The induction of AD-like NFT and NP tau pathologies are not case-specific. 15-month old APP KI mice injected with AD-tau purified from a second AD brain also showed AD-like AT8+ NFTs and NPs at 3 mo.p.i.. Right panels are the higher magnification of the areas within the rectangles on the left. The black frame shows magnified views of the AD-like NFTs and the red frame shows magnified views of NPs. g, Triple-labeling with rabbit anti-mouse tau-selective antibody R2295, human tau-selective MAb HT7 and Aß antibody NAB228 in AD-APP KI (15mo). Tau PFFinjected PS19 mice overexpressing human tau with a P301S MAPT mutation (PFF-PS19) at 3mo.p.i. is used as a positive control for HT7 antibody. Triple labeling of NFTs and NPs with AT8, Aβ plaques with NAB228 and **h**, conformation-dependent anti-tau antibody TG3 or **i**, oligomeric anti-tau antibody TOC1 in APP-KI (15 mo) at 3 mo.p.i. j, Gallyas silver staining of the NFTs and NPs. Right column, the positive silver staining of both NPs and NFTs in human AD brain sections. Middle columns, the silver staining on AD-5xFAD (8mo) or AD-APP-KI (15mo) at 6 mo.p.i. with AT8-positive NPs or AD-like NFTs, respectively. Only NP tau showed appreciable silver staining in the AD-tau-injected 5xFAD mice, while no Gallyas positive ADlike NFT-tau can be detected up to 6 mo.p.i. Left column, similarly aged non-injected 5xFAD mice (15mo) showed minimal silver staining of neurites around Aβ plaques. Black signal indicates the real silver staining. Letter A denotes A^β plaque core and letter C denotes neuronal cell body.

Supplementary Figure 2: The relationship between NPs and NFTs in human disease.

Representative immunostaining with MAbs PHF-1 and NAB228 on pairs of adjacent brain sections from **a**, 4 cases of young Down's syndrome patients with A β plaque pathology and NPs, **b**, 9 cases of AD with A β plaques and both NPs and NFTs, **c**, 7 cases of primary age-related tauopathy patients with NFTs.

b

A β burden (NAB228)

Supplementary Figure 3: The $A\beta$ plaque burden positively correlates with the induction of NPs.

a, Double labeling with AT8 and NAB228 antibodies in 5xFAD (8mo) mice without or with AD-tau injection at 3 mo.p.i.. Areas within the square frames are shown in the panels on the right at higher magnifications. **b**, Representative immunostaining with NAB228 antibody showing the A β burden in APP-KI and 5xFAD mice at different ages injected with the same dose of AD-tau at 3 mo.p.i.. AD-APP-KI (6mo, n=3), AD-APP-KI (15mo, n=5), AD-5xFAD (2mo, n=8) and AD-5xFAD (8mo, n=5) were quantified and the quantifications of the A β burden are shown in Figure 1q.

Nature Medicine: doi:10.1038/nm.4443

Supplementary Figure 4: AD-tau, but not synthetic tau fibrils, induces NPs in old 5xFAD mice.

Representative AT8 immunostaining of ipsilateral dorsal (top) and ventral (bottom) hippocampal regions from **a**, 5xFAD (10mo) mice; **b**, 5xFAD (8mo) mice injected with control brain lysate at 3 mo.p.i. and **e**, 5xFAD (8mo) mice injected with 4.5 μ g tau PFFs assembled from recombinant tau proteins at 3 mo.p.i.. None showed convincing AT8+ tau pathologies at the indicated time points. **c**, AD brain lysates containing the same amount of AD-tau proteins were respectively incubated with anti-tau antibodies or IgG control, and the immunoblot shows that AD-tau was largely immuno-depleted (I.D.) from the AD brain lysates, while the main protein contaminants detected by Ponceau red were still present. **d**, Representative AT8 immunostaining of ipsilateral ventral hippocampus for 5xFAD (11mo) mice injected with AD brain lysates immuno-depleted with (top) or without (bottom) anti-tau antibodies at 1 mo.p.i.. **f**, Representative AT8 immunostaining of ipsilateral dorsal and ventral hippocampus in APP-KI (18mo) mice injected with 2 μ g AD-tau or 4.5 μ g tau PFFs assembled from recombinant tau proteins at 1 mo.p.i.. The images on right panels in **a**, **b**, **d**, **e**, **f** are higher magnifications of the areas within black squares on the left. Each group contains 3 mouse.

Supplementary Figure 5: Time course of dynamic changes of tau in AD-like NFTs and NPs in vivo.

a, Heatmaps representing the semi-quantitative analysis of AD-like NFTs and NPs based on AT8 immunostaining in AD-tau injected WT (15mo), APP-KI (15mo) and 5xFAD (8mo) mice at 1-, 3- and 6 mo.p.i.. Coronal planes at Bregma (mm) 0.98, -0.22, -1.22, -2.18, -2.92, -3.25, -4.48 and -5.52 are shown. Heat colors represent tau positive NPs (0: no pathology, gray; 3: maximum pathology, red), blue dots represent tau positive AD-like NFTs, purple lines represent tau positive NTs in the corpus callosum and fimbria. Black stars indicate the injection sites. Average scores from each cohort mice are presented. The number of NFTs (**b**) and NPs (**c**) in hippocampus (Hpx), and NFTs (**d**) and NPs (**e**) in entorhinal cortex (ENT) were quantified temporally in both ipsilateral (I) and contralateral (C) sides in each cohort shown in **a**. Each group contains 3-5 mice, each indicated as a dot in the graphs **b-e**. Data are presented with the mean \pm s.e.m., and one-way ANOVAs with Tukey's tests, **P ≤0.01, ***P ≤ 0.001.

Supplementary Figure 6: Subcellular localization of NP tau pathologies.

a, Triple-labeling of NPs with antibodies AT8, NAB228 and β -actin, showing tau positive NPs are surrounded by β -actin enriched membrane boundaries. Arrows indicate the β -actin boundaries. b, double-labeling NPs with tau antibody R2295 and APP antibody 22C11, a dystrophic neurite marker which shows that NP tau is localized in dystrophic neurites surrounding Aβ plaques. c, Triple-labeling NPs with AT8, NAB228 and dendritic marker MAP2, showing NPs were not localized in dendrites. d-e, triple-labeling NPs with AT8, NAB228 and axonal marker phospho-independent neurofilament light chain antibody NFL (d), or phosphodependent heavy and middle neurofilament chains MAb TA51 (e), showing NPs are localized in axons. f, Triple-labeling NPs with R2295, NAB228 and presynaptic marker synaptophysin antibody, which demonstrate that NPs are localized in presynaptic dystrophic neurites. Arrows and arrow heads in **b**, and **d** to **f**, indicate the aforementioned co-localizations. **g**, Triple-labeling NPs with AT8, excitatory synaptic vesicle marker VGLUT1 antibody and inhibitory synaptic vesicle marker VGAT antibody, showing that NPs are mostly localized in dystrophic axons enriched with excitatory synaptic vesicles, but to a lesser extent also in dystrophic axons with inhibitory synaptic vesicles. The brain slices were from AD-APP KI (15mo) or AD-5xFAD (8mo) mice at 3 mo.p.i.. **a, c-g**, scale bar, 10 µm; **b**, scale bar, 10 µm.

Nature Medicine: doi:10.1038/nm.4443

Supplementary Figure 7: High, but not low, doses of AD-tau induce significant NFTs in 5xFAD mice with abundant A β plaques.

5xFAD (4mo) with abundant Aβ plaques were injected with low or high dose AD-tau extracted from two different AD brains. a-d, AD-tau extracted from AD1 brain were injected into 5xFAD mouse brains at low or high (2 or 8 µg per mouse) doses. Representative AT8 immunostaining of ipsilateral entorhinal cortex (a) and ventral hippocampal hilus regions (b) from low doses (2 μ g per mouse) or high doses (8 µg per mouse) of a AD1-tau injected 5xFAD (4mo) mice at 3 mo.p.i.. Quantification of NFTs (c) and NPs (d) in both entorhinal cortex and hippocampus on the ipsilateral side of the mice shown in a, b. e-h, AD-tau extracted from AD2 brain were injected into 5xFAD mouse brains at low or high (0.82 or 8.2 µg per mouse) dose. Representative AT8 immunostaining of ipsilateral entorhinal cortex (e) and ventral hippocampal hilus regions (f) from low doses (0.82 µg per mouse) or high doses (8.2 µg per mouse) of AD2tau injected 5xFAD (4mo) mice at 3 mo.p.i.. Quantification of NFTs (g) and NPs (h) in both entorhinal cortex and hippocampus on the ipsilateral side of the mice shown in **e**, **f**. The black frames at the left indicate the higher magnification images on the right. White arrowheads indicate the NFTs, and the asterisks indicate NPs. Note that the NFTs are almost formed in the high dose AD-tau injected 5xFAD mice while the low dose AD-tau injected 5xFAD mice almost only show NPs. Three mice per group were quantified and two-tailed t-tests were performed, with *, $p \le 0.05$; **, $p \le 0.01$. AD-tau extracted from the AD1 case is somewhat less potent than the extracts from the AD2 case, which was derived from an old Down's Syndrome patient.

Supplementary Fig. 8

b

Supplementary Figure 8: AD-tau injected old 5xFAD mice with a high density of NPs developed abundant NFTs at later time points post-injection.

a, Representative images of tau pathologies revealed by MAb AT8 in the ipsilateral sides of AD-5xFAD (8mo) mice from 1 to 9 months after AD-tau injections. NFTs that were relatively absent before 3 mo.p.i. first appeared in entorhinal cortex at 6 mo.p.i. and spread to different brain regions at 9 mo.p.i.. **b**, AT8-labeled NFTs induced in AD-5xFAD (8mo) mice at 9 mo.p.i. spread to the ipsilateral primary motor cortex and contralateral visual cortex, where minimal NFTs were present in WT mice injected with the same amount of AD-tau after the same inoculation period. White arrowheads indicate the NFTs, dashed white circles indicate NTs, and the asterisks indicate NPs. Ent, entorhinal cortex; Hpx, hippocampus; RM, retromammillary nucleus; LC, locus coeruleus; RSG, retrosplenial granular cortex; SP, septal nucleus; ctx, cortex. 3 to 8 mice as indicated were analyzed for each time point, except only two 5xFAD (8mo) survived to 9 mo.p.i..

0

Ctrl

AD

25

0.

<u>1d 14d 1d 14d</u> Ctrl

AD

25

0

25

0

Ctrl

25

0

<u>1d 14</u>d <u>1d 14</u>d Ctrl AD

AD

Supplementary Figure 9: Additional behavior tests conducted in mice with NPs alone, or with both NPs and NFTs

AD-5xFAD (5mo) mice after 1 mo.p.i. exclusively developed NPs while AD-5xFAD (2mo) mice after 3 mo.pi. contained both NFTs and NPs. Age-matched uninjected littermate 5xFAD mice were used as controls. **a**, Open field testing shows no locomotor deficit in all the mice. **b**, Elevated zero maze results reveal AD-5xFAD (2mo) mice at 3 mo.p.i. spent less time in the open area than the control mice, whereas AD-5xFAD (5mo) at 1 mo.p.i. did not show any difference from age-matched control mice, suggesting that the AD-5xFAD (2mo) mice but not AD-5xFAD (5mo) mice showed anxiety-related behavior. c, Y-maze showing that mice with either NPs or both of NFTs and NPs had normal short-term memory as revealed by spontaneous alternation. Two-tailed t-tests were used in **a-c**, with *, $p \le 0.05$. **d**, Contextual fear conditioning testing shows that the basal freezing level before footshock stimulation was normal in both AD-5xFAD (5mo) mice at 1mo.p.i. and AD-5xFAD (2mo) mice at 3 mo.p.i. Statistical analysis was performed by a two-tailed t-test. After the footshock stimulation, AD-5xFAD (2mo) mice at 3 mo.p.i. showed similar learning trends from 1 to 14 days post-stimulation compared to control mice. However, AD-5xFAD (5mo) mice at 1 mo.p.i. showed decreased freezing levels from 1 to 14 days, while no such changes were observed in age-matched control 5xFAD mice. Statistical analysis was conducted by a two-way ANOVA with repeated measures. AD-5xFAD (5mo): time (p=0.005, F=12.11, DF=1), AD (p=0.441, F=0.634, DF=1), interaction (p=0.188, F=1.949, DF=1), followed by two-tailed paired t-test. Each group contains 7-13 mice and each animal is indicated by a dot in the graphs.

Supplementary Figure 10: Multi-step mechanism underlying $A\beta$ plaque enhancement of tau seeded pathogenesis.

Schematic diagrams summarizing a hypothesized mechanism of seeded tau pathogenesis in the absence or presence of A β plaques. **a**, In the presence of pathological tau seeds, but in the absence of A β plaques, endogenous mouse tau proteins may be slowly recruited into perikaryal deposits in vulnerable neurons to form NFTs. **b**, In the presence of a low/medium A β plaque burden, mislocalized soluble endogenous tau accumulates in limited dystrophic neurites surrounding few A^β plaques, and therefore provide an accessible source of substrate for tau aggregation. Once pathological tau seeds enter those limited dystrophic neurites they seed the misfolding and aggregation of the accumulated tau, forming NPs. In addition, the remaining "unutilized" pathological tau seeds could likely be transported into neuronal somas to form NFTs, albeit at a slower rate than NP formation. **c**, In the presence of abundant A β plaques, numerous dystrophic neurites with accumulated soluble tau are present. When pathological tau seed concentration is low, the internalized seeds are inferred to be consumed during seeding of NPs, leaving insufficient seeds to be transported to the soma to form NFTs. However, as the NP tau aggregates mature, small fragments of these aggregates could possibly break off and function as secondary pathological seeds through retrograde transport back into the parent neuronal somas, thereby seeding NT and NFT formation. Alternatively, they might also be released extracellularly and taken up by nearby dystrophic neurites around A^β plaques to form new NPs in a relative short period of time and initiate formation of NFTs later in new cycles of pathological tau amplification, thereby leading to the progressive spread of NFTs in regions with A β plaques, and eventually throughout the AD brain.

Supplementary Figure 11: Full length blots and gels for the cropped images shown in the paper.

Case No.	Neuropathological Diagnosis	Gender	Age at death	PMI (hr)
1	AD	F	68	9
2	AD	F	59	14
3	AD	М	66	4
4	AD	F	87	20
5	AD	F	73	4
6	AD	F	82	9
7	AD	F	70	6
8	AD	М	84	20
9	AD	F	67	11
10	AD	F	64	6
11	AD	М	94	16
12	AD	F	88	14
13	AD	М	86	14
14	AD	М	77	4.5
15	AD	F	89	18
16	AD	F	101	11.5
17	AD	F	75	19
18	AD	М	64	9
19	AD	F	64	20
20	AD	F	93	5
21	AD	М	91	9
22	AD	М	88	17
23	AD	F	61	24
24	AD	М	71	22
25	AD	М	54	18
26	AD	F	85	9
27	AD	F	86	6
28	AD	F	72	5
29	AD	М	85	16
30	AD	М	77	17
31	AD	F	65	8.5
32	AD	F	80	
33	AD	F	83	20
34	AD	М	71	4.5
35	AD	F	61	8
36	AD	F	85	8
37	AD	F	72	12
38	AD	М	93	5
39	AD	М	60	12
40	AD DS*	М	54	14
41	AD DS*	М	58	13

Supplementary Table 1. Demographics of human cases used in these studies

42	DS	F	53	15
43	DS	F	38	21
44	DS	М	33	24
45	DS	F	67	17
46	PART	М	90	6
47	PART	М	75	17
48	PART	F	82	5
49	PART	М	86	32
50	PART	М	92	6
51	PART	F	88	16
52	PART	М	67	18
53	Normal	М	59	17
54	Normal	F	75	18

*: Down Syndrome patients with postmortem neuropathological diagnosis of AD.

Antibody	C		Dilations	G
Name	specificity	Host Species	Dilutions	Source
R2295 mTau	mouse tau	polyclonal	1:1000 (WB, IF)	In-house
R2295		rabbit		
h&mTau	human and mouse tau	polyclonal	1:1000 (WB, IF)	In-house
		I J		
	p-tau (phosphorylated	mouse		
	at Ser202 and Thr	monoclonal,	1:1000 (WB); 1:10000	Thermo
AT8	205)	IgG1	(IHC); 1:2000 (IF)	Scientific
	p-tau (phosphorylated	mouse		
	at Ser396 and	monoclonal,		Gift from Dr.
PHF-1	Ser404)	IgG1	1:1000 (WB)	Peter Davies
		mouse		
4 77 1 0 0	p-tau (phosphorylated	monoclonal,	1 1000 (1110)	Thermo
AT180	at Thr 231)	IgGI	1:1000 (IHC)	Scientific
		mouse		
1000	p-tau (phosphorylated	monocional,	1.5000 (IIIC)	In hansa
12E8	at pser262/pser556)	IgGI	1:5000 (IHC)	Cift from Dr
	n tou (nhoonhomilated	mouso		Gift Hom Dr.
nSer422	p-tau (phosphorylateu at pSer422)	monoclonal	1.1000 (IHC)	Goedert
pse1422	at pSet+22)	mouse	1.1000 (IIIC)	Obcuent
		monoclonal		
T46	tau (aa 401-441)	Inonocional, IgG1	1.1000 (WB)	In-house
140	tuu (uu +01 ++1)	rabbit	1.1000 (11.2)	III IIouse
K9JA	tau (aa 243-441)	polyclonal	1:5000 (WB): 1:200 (IF)	Dako
		rabbit		Cosmo Bio
Anti-4R tau	4R tau	polyclonal	1:2000 (WB)	USA
	tau in the	mouse	, <i>, , , , , , , , , , , , , , , , , , </i>	
	pathological	monoclonal,		Gift from Dr.
MC1	conformation	IgG1	1:250 (WB); 1:5000 (IHC)	Peter Davies
	tau in the	mouse		
	pathological	monoclonal,		Gift from Dr.
Alz50	conformation	IgM	1:500 (IHC)	Peter Davies
	Epitope around			
	Thr231, in the	mouse		
	pathological	monoclonal,	1:100 with citrate buffer	Gift from Dr.
TG3	conformation	IgM	boil (IF)	Peter Davies
		mouse		
TOG		monoclonal,	1:3000 with citrate buffer	Gift from Dr.
1001	Oligomeric tau	IgM	boil (IF)	Lester Binder
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mouse		
1107	human tau (aa 159-	monoclonal,	1.500 (IE)	D.
HI/	103)	IgGI	1:500 (IF)	Pierce
Biotinylated	ton (a.a. 10/ 100)	mouse	51.25 ng/ml as reporting	Diamaa
DIZ	tau (aa 194-198)	monocional	anubody in tau ELISA	Fierce

Supplementary Table 2. Antibodies used in these studies

			together with HT7	
			62.5 ng/ml as reporting	
Biotinvlated		mouse	antibody in tau ELISA	
HT7	tau (aa 159-163)	monoclonal	together with BT2	Pierce
		rabbit		
17028	MAP2	polyclonal	1.2000 (IF)	In-house
1,020	Phospho-independent	polyeloliu		
	neurofilament light	rabbit		
NFL	chain	polyclonal	1.1000 (IF)	In-house
	Phospho-dependent	polycional	1.1000 (II)	III House
	neurofilament heavy	rat		
ΤΛ51	and middle chain	monoclonal	1.25 (IF)	In house
IAJI		mouse	1.23 (II ⁻)	III-IIOuse
		monoalonal		
Symontophysin	Sympontonhysin	Inonocional,	1.200 (IE)	Millinona
Synaptophysin		IgGI	1:200 (IF)	Samantia
	vesicular glutamate	Calman	1,1000 (IF)	Synaptic
VGLUTI	transporter 1	Guinea pig	1:1000 (IF)	System
VOAT	Vesicular GABA	rabbit	1 1000 (IE)	Synaptic
VGAT	Transporter	polyclonal	1:1000 (IF)	System
		mouse		
		monoclonal,		ProteinTech
β-actin	actin	IgM	1:200 (IF)	Group
		mouse		
		monoclonal,		
22C11	hAPP (aa 66-81)	IgG1	1:250 (IF)	Millipore
		rabbit		
Ubiquitin	Ubiquitin	polyclonal	1:500 (IF)	Dako
		mouse		
		monoclonal,		
P62	P62	IgG2a	1:500 (IF)	Abnova
		rat		
2.2B10	GFAP	monoclonal	1:1000 (IF)	In-house
		rabbit		
Iba1	Iba1	polyclonal	1:1000 (IF)	Wako
		mouse		
		monoclonal,		
NeuN	NeuN	IgG1	1:500 (IHC)	Millipore
		mouse	3.3 µg/ml as capture	.
9027	α-syn (aa 130-140)	monoclonal	antibody for α -syn ELISA	In-house
		rabbit	0.5425 µg/ml as reporting	
MJF-R1	α-syn (aa 118-123)	monoclonal	antibody for α -syn ELISA	Abcam
	(a		10 µg/m as capture	
		mouse	antibody for AB1-40 and	Takeda
Ban50	AB (aa 1-10)	monoclonal	1-42 ELISA	Pharmaceutical
	F (10)	mouse		
		monoclonal		
NAB228	AB (aa 1-11)	IgG2a	1.1000 (IHC). 1.1000 (IE0	In-house
111111111111111111111111111111111111111	¹ ¹ ¹ ¹ ¹	mouse	1.1000 (IIIC), 1.1000 (II 0	
		monoclonal		Takeda
BA27	AB1-40	IgG2a	1.10000 (IHC)	Pharmaceutical
1		15024	1.10000 (1110)	i nurmaccutical

			reporting antibody for Aβ1-40 ELISA (concentration not	
HRP-labeled		mouse	determined after HRP	Takeda
BA27	Αβ1-40	monoclonal	labeling)	Pharmaceutical
			reporting antibody for Aβ1-42 ELISA	
			(concentration not	
HRP-labeled		mouse	determined after HRP	Takeda
BC05	Αβ1-42	monoclonal	labeling)	Pharmaceutical

Abbreviations: WB - western blotting; IHC -immunohistochemistry; IF – immunofluorescence.

Fig. #	Compare (group size n=)	Statistical method	P value	t	F	Degre es of
				value	value	om
Fig.	AT8+ NFT number in ipsilateral	One-way ANOVA,	< 0.0001		88.47	25
10	hippocampus of different AD-	with Tukey's multiple				
	mice at 3 mo.p.i	comparison test				
	WT(15mo, n=5) vs APP		>0.05			
	KI(6mo, n=3)					
	WT(15mo, n=5) vs APP		>0.05			
	KI(15mo, n=5)		0.001			
	W1(15mo, n=5) vs 5xFAD(2mo, $n=9$)		<0.001			
	n=8) WT(15mo, n=5) v(5vEAD(8mo)		<0.001			
	n-5) (3110, 11-3) vs 5x1 AD(3110, 11-5)		<0.001			
	APP KI(6mo, $n=3$) vs APP		>0.05			
	KI(15mo, n=5)		/ 0100			
	APP KI(6mo, n=3) vs		< 0.001			
	5xFAD(2mo, n=8)					
	APP KI(6mo, n=3) vs		< 0.001			
-	5xFAD(8mo, n=5)					
	APP KI(15mo, n=5) vs		< 0.001			
	5xFAD(2mo, n=8)					
	APP KI(15mo, n=5) vs		< 0.001			
	5xFAD(8mo, n=5)					
	5xFAD(2mo, n=8) vs		< 0.001			
	5xFAD(8mo, n=5)		0.0001		22.5.0	2.5
F1g.	AT8+ NP number in ipsilateral	One-way ANOVA,	< 0.0001		336.9	25
Ip	nippocampus of different AD-	with Tukey's multiple				
		comparison test	0.07			
	W1(15mo, n=5) vs APP KI(6mo, n=2)		>0.05			
	WT(15mo, n-5) vs APP		>0.05			
	KI(15m0, n=5) vs $KI T$		20.05			
	WT(15mo, n=5) vs 5xFAD(2mo)		< 0.001			
	n=8)		<0.001			
	WT(15mo, n=5) vs 5xFAD(8mo,		< 0.001			
	n=5)					
	APP KI(6mo, n=3) vs APP		>0.05			
	KI(15mo, n=5)					
	APP KI(6mo, n=3) vs		< 0.001			
	5xFAD(2mo, n=8)					
	APP KI(6mo, n=3) vs		< 0.001			
	5xFAD(8mo, n=5)					

Supplementary Table 3: Detailed information for statistical analysis.

	APP KI(15mo, n=5) vs		< 0.001			
	5xFAD(2mo, n=8)					
	APP KI(15mo, n=5) vs		< 0.001			
	5xFAD(8mo, n=5)					
	5xFAD(2mo, n=8) vs		< 0.001			
	5xFAD(8mo, n=5)					
Fig. 1q	AT8+ NP number vs A β burden	Spearman Rank- Order Correlation Coefficient	< 0.001	12.83		24
Fig. 1r	AT8+ NFT number in ipsilateral Entorhinal cortex of different AD-mice at 3 mo.p.i	One-way ANOVA, with Tukey's multiple comparison test	< 0.0001		37.45	25
	WT(15mo, n=5) vs APP KI(6mo, n=3)		>0.05			
	WT(15mo, n=5) vs APP KI(15mo, n=5)		< 0.001			
	WT(15mo, n=5) vs 5xFAD(2mo, n=8)		< 0.001			
	WT(15mo, n=5) vs 5xFAD(8mo, n=5)		< 0.001			
	APP KI(6mo, n=3) vs APP KI(15mo, n=5)		< 0.001			
	APP KI(6mo, n=3) vs 5xFAD(2mo, n=8)		< 0.001			
	APP KI(6mo, n=3) vs 5xFAD(8mo, n=5)		< 0.001			
	APP KI(15mo, n=5) vs 5xFAD(2mo, n=8)		>0.05			
	APP KI(15mo, n=5) vs 5xFAD(8mo, n=5)		>0.05			
	5xFAD(2mo, n=8) vs 5xFAD(8mo, n=5)		>0.05			
Fig. 1s	AT8+ NP number in Hpx vs AT8+ NFT number in Ent	Spearman Rank- Order Correlation Coefficient	< 0.001	-9.68		24
Fig. 2d	R2295 O.D. in insoluble fraction from AD-WT (n=3) v.s. AD- 5xFAD (n=3) at 1mo.p.i.	2-sided, unpaired t- test	0.034		3.166	4
Fig. 2e	PHF-1 O.D. in insoluble fraction from AD-WT (n=3) v.s. AD- 5xFAD (n=3) at 1mo.p.i.	2-sided, unpaired t- test	0.0676		2.488	4
Fig. 2f	R2295 O.D. in insoluble fraction from AD-WT (n=5) v.s. AD- 5xFAD (n=4) at 3mo.p.i.	2-sided, unpaired t- test	0.0099		3.505	7
Fig. 2g	PHF-1 O.D. in insoluble fraction from AD-WT (n=5) v.s. AD- 5xFAD (n=4) at 3mo.p.i.	2-sided, unpaired t- test	0.0078		3.687	7

Fig. 3b	Compact plaque fraction in Ctrl- (n=3) v.s. AD-5xFAD (n=3)	2-sided, unpaired t- test, Welch-corrected	0.1669	2.13		2
Fig. 3c	Non-compact v.s. compact Aβ plaques with K9JA+ accumulated tau (n=3)	2-sided, paired t-test	0.0449	4.559		2
Fig. 3e	Non-compact v.s. compact Aβ plaques with AT8+ NP tau (n=3)	2-sided, paired t-test	0.0341	5.273		2
Fig. 3i	NAB228 area% in 5xFAD;mTau+/+ (n=3) v.s. AD- 5xFAD;mTau+/- (n=3)	2-sided, unpaired t- test, Welch-corrected	0.2503	1.602		2
Fig. 3k	Hippocampal NP number in AD- 5xFAD;mTau+/+ (n=3) v.s. AD- 5xFAD;mTau+/- (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0165	4.875		3
	Cortical NP number in AD- 5xFAD;mTau+/+ v.s. AD- 5xFAD;mTau+/-	2-sided, unpaired t- test, Welch-corrected	0.0158	4.951		3
Fig. 31	AT8+ area% in each NP in AD- 5xFAD;mTau+/+ (n=235) v.s. AD-5xFAD;mTau+/- (n=121)	2-sided, unpaired t- test	<0.0001	12.47		354
Fig. 4c	NT in AD-5xFAD at 3mo.p.i. F(n=3) v.s. 9mo.p.i. (n-8) in Hip. DG	2-sided, unpaired t- test, Welch-corrected	0.0021	4.760		7
Fig. 4d	AT8+ NFTs in the Ent regions of 3mo.p.i. AD-5xFAD(n=3), 9mo.p.i. AD-5xFAD(n=8), 6mo.p.i. AD-WT(n=4) and 9mo.p.i. AD-5xFAD(n=8)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001		21.96	22
	AT8+ NFTs in the Hpx regions of 3mo.p.i. AD-5xFAD(n=3), 9mo.p.i. AD-5xFAD(n=8), 6mo.p.i. AD-WT(n=4) and 9mo.p.i. AD-5xFAD(n=8)	One-way ANOVA, with Tukey's multiple comparison test	0.0016		7.57 0	22
Fig. 4e	MC1+ NFT in AD-WT(n=8) v.s. AD-5xFAD(n=8) in Ent	2-sided, unpaired t- test, Welch-corrected	0.0032	3.667		12
	MC1+ NFT in AD-WT(n=8) v.s. AD-5xFAD(n=8) in Hpx	2-sided, unpaired t- test, Welch-corrected	0.0546	2.112		13
Fig. 4f	ThioS+ NFT in AD-WT(n=8) v.s. AD-5xFAD(n=8) in Ent	2-sided, unpaired t- test, Welch-corrected	0.0008	4.343		13
	ThioS+ NFT in AD-WT(n=8) v.s. AD-5xFAD(n=8) in Hpx	2-sided, unpaired t- test, Welch-corrected	<0.0001	6.252		12

Fig. 5b	Early AD_Sup. Temp. (n=16) NPs v.s. NFTs	2-sided, paired t-test	0.1359	1.576		15
Fig. 5c	Early AD_Visual (n=16) NPs v.s. NFTs	2-sided, paired t-test	0.0306	2.516		10
Fig. 5d	Late AD_Sup. Temp. (n=16) NPs v.s. NFTs	2-sided, paired t-test	0.2064	1.321		15
Fig. 5e	Late AD_Visual (n=17) NPs v.s. NFTs	2-sided, paired t-test	<0.0001	6.286		16
Fig. 6b	Total activity Ctrl (n=13) v.s. AD-WT (n=10)	2-sided, unpaired t- test, Welch-corrected	0.6636	0.441 8		19
	Total activity Ctrl (n=8) v.s. AD- 5xFAD (n=10)	2-sided, unpaired t- test, Welch-corrected	0.4925	0.706 3		13
Fig. 6c	Open area Ctrl (n=13) v.s. AD- WT (n=10)	2-sided, unpaired t- test, Welch-corrected	0.0178	2.582		20
	Total distance Ctrl (n=13) v.s. AD-WT (n=10)	2-sided, unpaired t- test, Welch-corrected	0.0939	1.763		19
	Open area Ctrl (n=7) v.s. AD- 5xFAD (n=10)	2-sided, unpaired t- test, Welch-corrected	0.5845	0.563 4		11
	Total distance Ctrl (n=7) v.s. AD-5xFAD (n=10)	2-sided, unpaired t- test, Welch-corrected	0.2987	1.079		10
Fig. 6d	Y-maze spontaneous alternation Ctrl (n=12) v.s. AD-WT (n=10)	2-sided, unpaired t- test, Welch-corrected	0.4484	0.774 1		19
	Y-maze spontaneous alternation Ctrl (n=8) v.s. AD-5xFAD (n=10)	2-sided, unpaired t- test, Welch-corrected	0.5489	0.613 3		15
Fig. 6e	Before stimulation Ctrl (n=13) v.s. AD-WT (n=10)	2-sided, unpaired t- test, Welch-corrected	0.0226	2.586		13
	After stimulation Ctrl (n=13) v.s. AD-WT (n=10)	Two-way ANOVA with repeated measurements	Interacti on=0.21 31; Time=0. 7050; AD=0.8 133		Inter actio n=1. 649; Time =0.1 473; AD= 0.057 18	Intera ction= 1; Time= 1; AD=1
	Before stimulation Ctrl (n=8) v.s. AD-5xFAD (n=10)	2-sided, unpaired t- test, Welch-corrected	0.7666	0.305 1		10

	After stimulation Ctrl (n=8) v.s. AD-5xFAD (n=10)	Two-way ANOVA with repeated measurements	Interacti on=0.06 12; Time=0. 0466; AD=0.6 176		Inter actio n=4. 054; Time =4.6 49; AD= 0.259 2	Intera ction= 1; Time= 1; AD=1
	After stimulation Ctrl 5xFAD (n=8) 1d v.s. 14d	2-sided, paired t-test	0.8674	0.173 1		8
	After stimulation AD-5xFAD (n=10) 1d v.s. 14d	2-sided, paired t-test	0.0328	2.52		9
Fig. 6h	WT (n=6) v.s. AD-WT (n=6)	Two-way ANOVA with repeated measurements	Interacti on=0.96 35; Region< 0.0001; AD=0.0 045		Inter actio n=0. 0373; Regi on=2 9.93; AD= 11.17	Intera ction= 2; Regio n=2; AD=1
	WT (n=6) v.s. AD-WT (n=6) in DG	2-sided, unpaired t- test, Welch-corrected	0.2196	1.32		9
	WT (n=6) v.s. AD-WT (n=6) in Hilus	2-sided, unpaired t- test, Welch-corrected	0.0942	1.899		8
	WT (n=6) v.s. AD-WT (n=6) in CA3	2-sided, unpaired t- test, Welch-corrected	0.0327	2.579		8
	5xFAD (n=3) v.s. AD-5xFAD (n=3)	Two-way ANOVA with repeated measurements	Interacti on=0.95 55; Region= 0.0134; AD=0.3 621		Inter actio n=0. 0459; Regi on=9 .644; AD= 0.972 7	Intera ction= 2; Regio n=2; AD=1
S. Fig. 1d	AT180+ NFT number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i	One-way ANOVA, with Tukey's multiple comparison test	< 0.0001		28.48	25

	WT(15mo, n=5) vs APP KI(6mo, n=3)		>0.05		
	WT(15mo, n=5) vs APP KI(15mo, n=5)		>0.05		
	WT(15mo, n=5) vs 5xFAD(2mo, n=8)		< 0.001		
	WT(15mo, n=5) vs 5xFAD(8mo, n=5)		<0.001		
	APP KI(6mo, n=3) vs APP KI(15mo, n=5)		>0.05		
	APP KI(6mo, n=3) vs 5xFAD(2mo, n=8)		< 0.001		
	APP KI(6mo, n=3) vs 5xFAD(8mo, n=5)		< 0.001		
	APP KI(15mo, n=5) vs 5xFAD(2mo, n=8)		< 0.001		
	APP KI(15mo, n=5) vs 5xFAD(8mo, n=5)		< 0.001		
	5xFAD(2mo, n=8) vs 5xFAD(8mo, n=5)		>0.05		
~	1 TE 1 0 0 N TE 1 1		.0.0001		<u> </u>
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i	One-way ANOVA, with Tukey's multiple comparison test	<0.0001	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3)	One-way ANOVA, with Tukey's multiple comparison test	>0.001	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs APP KI(15mo, n=5)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs APP KI(15mo, n=5) WT(15mo, n=5) vs 5xFAD(2mo, n=8)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05 <0.001	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs APP KI(15mo, n=5) WT(15mo, n=5) vs 5xFAD(2mo, n=8) WT(15mo, n=5) vs 5xFAD(8mo, n=5)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05 <0.001 <0.001	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs 5xFAD(2mo, n=8) WT(15mo, n=5) vs 5xFAD(2mo, n=5) APP KI(6mo, n=3) vs APP KI(15mo, n=5)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05 <0.001 <0.001 >0.05	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs 5xFAD(2mo, n=8) WT(15mo, n=5) vs 5xFAD(2mo, n=5) APP KI(6mo, n=3) vs APP KI(15mo, n=5) APP KI(6mo, n=3) vs 5xFAD(2mo, n=8)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05 <0.001 <0.001 >0.05 <0.01	46.12	25
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs 5xFAD(2mo, n=8) WT(15mo, n=5) vs 5xFAD(2mo, n=5) APP KI(6mo, n=3) vs APP KI(15mo, n=5) APP KI(6mo, n=3) vs 5xFAD(2mo, n=8) APP KI(6mo, n=3) vs 5xFAD(8mo, n=5)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05 <0.001 <0.001 <0.001 <0.001	46.12	
S. Fig. 1e	AT180+ NP number in ipsilateral hippocampus of different AD-mice at 3 mo.p.i WT(15mo, n=5) vs APP KI(6mo, n=3) WT(15mo, n=5) vs APP KI(15mo, n=5) vs 5xFAD(2mo, n=8) WT(15mo, n=5) vs 5xFAD(2mo, n=5) APP KI(6mo, n=3) vs APP KI(15mo, n=5) APP KI(6mo, n=3) vs 5xFAD(2mo, n=8) APP KI(6mo, n=3) vs 5xFAD(8mo, n=5) APP KI(15mo, n=5) vs 5xFAD(2mo, n=8)	One-way ANOVA, with Tukey's multiple comparison test	<0.0001 >0.05 >0.05 <0.001 <0.001 <0.001 <0.001 >0.05	46.12	

	5xFAD(2mo, n=8) vs 5xFAD(8mo, n=5)		<0.001			
S. Fig. 1f	AT180+ NFT number in ipsilateral Entorhinal cortex of different AD-mice at 3 mo.p.i	One-way ANOVA, with Tukey's multiple comparison test	0.0013		6.649	25
	WT(15mo, n=5) vs APP KI(6mo, n=3)		>0.05			
	WT(15mo, n=5) vs APP KI(15mo, n=5)		>0.05			
	WT(15mo, n=5) vs 5xFAD(2mo, n=8)		< 0.05			
	WT(15mo, n=5) vs 5xFAD(8mo, n=5)		<0.01			
	APP KI(6mo, n=3) vs APP KI(15mo, n=5)		>0.05			
	APP KI(6mo, n=3) vs 5xFAD(2mo, n=8)		>0.05			
	APP KI(6mo, n=3) vs 5xFAD(8mo, n=5)		< 0.05			
	APP KI(15mo, n=5) vs 5xFAD(2mo, n=8)		>0.05			
	APP KI(15mo, n=5) vs 5xFAD(8mo, n=5)		>0.05			
	5xFAD(2mo, n=8) vs 5xFAD(8mo, n=5)		>0.05			
S. Fig. 1g	AT180+ NP number in Hpx vs AT180+ NFT number in Ent	Spearman Rank- Order Correlation Coefficient	< 0.001	-6.67		24
S. Fig. 5b	NFT number in ipsilateral hippocampus of different AD- mice.	One-way ANOVA, with Tukey's multiple comparison test	< 0.0001		205.4	32
S. Fig. 5c	NP number in ipsilateral hippocampus of different AD- mice.	One-way ANOVA, with Tukey's multiple comparison test	<0.0001		366.8	32
S. Fig. 5d	NFT number in ipsilateral Entorhinal cortex of different AD-mice.	One-way ANOVA, with Tukey's multiple comparison test	<0.0001		23.10	32
S. Fig. 5e	NP number in ipsilateral Entorhinal cortex of different AD-mice.	One-way ANOVA, with Tukey's multiple comparison test	<0.0001		13.24	32
S. Fig. 7c	NFTs in Ent of the mice injected with AD1-tau 2µg dose (n=3) v.s. 8µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0029	9.016		3

	NFTs in Hpx of the mice injected with AD1-tau 2µg dose (n=3) v.s. 8µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0561	4.043	2
S. Fig. 7d	NPs in Ent of the mice injected with AD1-tau 2µg dose (n=3) v.s. 8µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.7939	0.285 4	3
	NPs in Hpx of the mice injected with AD1-tau 2µg dose (n=3) v.s. 8µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.5332	0.746 6	2
S. Fig. 7g	NFTs in Ent of the mice injected with AD2-tau 0.82µg dose (n=3) v.s. 8.2µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0083	6.247	3
	NFTs in Hpx of the mice injected with AD2-tau 0.82µg dose (n=3) v.s. 8.2µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0253	6.161	2
S. Fig. 7h	NPs in Ent of the mice injected with AD2-tau 0.82µg dose (n=3) v.s. 8.2µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0920	3.065	2
	NPs in Hpx of the mice injected with AD2-tau 0.82µg dose (n=3) v.s. 8.2µg dose (n=3)	2-sided, unpaired t- test, Welch-corrected	0.0090	6.072	3
S. Fig. 9a	Total activity Ctrl (n=7) v.s. AD- 5xFAD(5mo) (n=7) at 1mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.8032	0.255 2	11
	Total activity Ctrl (n=13) v.s. AD-5xFAD(2mo) (n=13) at 3mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.0892	1.778	22
S. Fig. 9b	Y-maze spontaneous alternation Ctrl (n=7) v.s. AD-5xFAD(5mo) (n=7) at 1mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.1379	1.6	11
	Y-maze spontaneous alternation Ctrl (n=13) v.s. AD-5xFAD (2mo) (n=13) at 3mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.943	0.072 28	23
S. Fig. 9c	Open area Ctrl (n=7) v.s. AD- 5xFAD(5mo) (n=6) at 1mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.4031	0.877 3	9
	Total distance Ctrl (n=7) v.s. AD-5xFAD(5mo) (n=6) at 1mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.3825	0.918 2	9
	Open area Ctrl (n=11) v.s. AD- 5xFAD(2mo) (n=12) at 3mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.029	2.352	20
	Total distance Ctrl (n=11) v.s. AD-5xFAD(2mo) (n=12) at 3mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.6071	0.522 5	20

S. Fig. 9d	Before stimulation Ctrl (n=13) v.s. AD-5xFAD(2mo) (n=12) at 3mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.3593	0.936 4		22
	After stimulation Ctrl (n=13) v.s. AD-5xFAD(2mo) (n=12) at 3mo.p.i.	Two-way ANOVA with repeated measurement	Interacti on=0.48 20; Time=0. 2782; AD=0.7 176		Inter actio n=0. 5107; Time =1.2 34; AD= 0.134 1	Intera ction= 1; Time= 1; AD=1
	Before stimulation Ctrl (n=7) v.s. AD-5xFAD(5mo) (n=7) at 1mo.p.i.	2-sided, unpaired t- test, Welch-corrected	0.4905		0.713 4	11
	After stimulation Ctrl (n=7) v.s. AD-5xFAD(5mo) (n=7) at 1mo.p.i.	Two-way ANOVA with repeated measurement	Interacti on=0.18 80; Time=0. 0045; AD=0.4 414		Inter actio n=1. 919; Time =12. 11; AD= 0.633 8	Intera ction= 1; Time= 1; AD=1
	After stimulation Ctrl 5xFAD(2mo) (n=7) 1d v.s. 14d	2-sided, paired t-test	0.126	1.777		6
	After stimulation AD- 5xFAD(5mo) (n=7) 1d v.s. 14d	2-sided, paired t-test	0.0237	3.011		6