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Supplementary Figure 1. Caspase-4/11 is required for Alu-induced RPE degeneration. 

(a) Protein lysates from RPE of human donor eyes were immunoblotted with an isotype antibody 

(control for anti-caspase-4 immunoblotting antibody in Figure 1a). No immunoreactive bands were 

observed in isotype control immunoblot. (b) Human RPE cells mock treated or stimulated with 

Alu RNA. Protein lysates were immunoblotted with secondary antibody alone, an isotype antibody, 

or an anti-caspase-4 antibody; pro-caspase-4 and p30 cleavage product of caspase-4 activation 

(Casp4 p30) were observed in Alu RNA stimulated cells; no bands were observed in secondary 

alone or isotype control immunoblots. Specific bands of interest are indicated by arrowheads. (c) 

Relative abundance of CASP4 mRNA in human RPE cells mock-transfected or transfected with 

Alu RNA. Data presented are mean ± SEM; n = 3 independent experiments; *P = 0.0007, two-

tailed t test. (d) Immunoblot for pro-caspase-4 (pro-casp4) and p30 cleavage product of caspase-4 

(Casp4 p30) in human RPE cells transfected with DICER1 or control (Ctr) anti-sense 

oligonucleotides (AS) along with simultaneous transfection of Alu RNA antisense 

oligonucleotides (Alu AS) or scrambled oligonucleotide (Scr). (e) Immunoblot for pro-caspase-11 

(procasp-11) and p30 cleavage product of caspase-11 (Casp11 p30) in WT mouse RPE cells mock 

transfected or transfected with Alu RNA, or Alu expression plasmid (pAlu) or empty vector control 

(pNull). (f) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) 

on RPE flat mounts of the WT (n = 6 eyes) and Casp11–/– (n = 10 eyes) mice subretinally injected 

with empty vector control (pNull) or Alu expression plasmid (pAlu). (g) Fundus photographs and 

immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE flat mounts of 129S6 mice 

which carry a caspase-11 inactivating passenger mutation subretinally injected (n = 7 eyes) with 

vehicle or Alu RNA, or injected with (n = 5 eyes) Alu expression plasmid or empty vector control. 

(h) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE 
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flat mounts of WT (n = 7 eyes) and 129S6 (n = 10 eyes) mice, which carry a caspase-11 inactivating 

passenger mutation, subretinally injected with control siRNA or DICER1 targeted siRNA. For all 

immunoblots, cropped gel image of bands of interest of representative immunoblots of three 

independent experiments and densitometric analysis (mean (SEM)) are shown. In g and h, binary 

(Healthy %) and morphometric (PM, polymegethism (mean (SEM)) quantification of RPE 

degeneration are shown (two-tailed t test; *P < 0.05; **P < 0.01; ***P < 0.001). Loss of regular 

hexagonal cellular boundaries in ZO-1 stained flat mounts is indicative of degenerated RPE. The 

degenerated retinal area is outlined by blue arrowheads in the fundus images. 

 

Supplementary Figure 2. Caspase-11 is required for Alu RNA-induced caspase-1 activation 

and RPE degeneration. 

(a) Caspase-1 activity levels in Alu RNA transfected Casp11–/– mouse RPE cells reconstituted via 

transfection of caspase-11 expression plasmid (pcasp11; n = 5 randomly chosen microscopic 

fields) or control plasmid (pNull; n = 7 randomly chosen microscopic fields). Caspase-1 activity 

was assessed using CaspaLux®1-E1D2. *P = 0.0001, two-tailed t test; error bars denote SEM. (b) 

Immunoblot for pro-caspase-1 (procasp-11) and p10 cleavage product of caspase-1 (Casp1 p10) 

in mock-transfected or Alu RNA transfected Casp11–/– mouse RPE cells that had been transfected 

with empty vector plasmid (vector) or Caspase-11 expression plasmid (pCasp11). (c) Fundus 

photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE flat mounts 

of the WT (n = 6 eyes) or caspase-1 and caspase-11 deficient mice (Casp1–/– Casp11129mt/129mt; n = 

6 eyes) or Casp1–/– Casp11129mt/129mt mice expressing functional mouse caspase-11 from a bacterial 

artificial chromosome transgene (Casp1–/– Casp11129mt/129mt Casp11Tg; n = 5 eyes), subretinally 

injected with Alu expression plasmid (pAlu) or empty vector control (pNull). (d,e) Immunoblot 
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for pro-caspase-11 (procasp-11) and p30 cleavage product of caspase-11 (Casp11 p30) in mock-

transfected or Alu RNA transfected (d) WT and P2rx7–/– mouse RPE cells (e) WT and Pycard–/– 

mouse RPE cells. For all immunoblots, cropped gel image of bands of interest of representative 

immunoblots of three independent experiments and densitometric analysis (mean (SEM)) are 

shown. In c, binary (Healthy %) and morphometric (PM, polymegethism (mean (SEM)) 

quantification of RPE degeneration are shown (two-tailed t test; *P < 0.05; **P < 0.01; ***P < 

0.001). Loss of regular hexagonal cellular boundaries in ZO-1 stained flat mounts is indicative of 

degenerated RPE. The degenerated retinal area is outlined by blue arrowheads in the fundus 

images. 

 

Supplementary Figure 3. Cellular morphometry analysis. Quantification of mean cell size, cell 

density, and cell size variability obtained by analyzing zonula occludens-1 (ZO-1) 

immunofluorescence staining of RPE flat mounts from wild-type mice. The analyses were 

performed in semi-automated fashion by 3 masked raters. For all panels, Vehicle (n = 16 eyes); 

Alu RNA (n = 30 eyes); pNull (n = 14 eyes); pAlu (n = 20 eyes). ***P < 0.0001, two-tailed t test. 

Box plot shows median (red line), interquartile range (box), and the extremes (line segments). 

 

Supplementary Figure 4. Increased abundance of phospholipid oxidation products in Alu 

RNA-stimulated RPE cells.  

(a) Brief schematic highlighting select products of PAPC (1-palmitoyl-2-arachidonyl-sn-glycero-

3-phosphocholine) oxidation, collectively referred to as oxPAPC.  

(b) Representative mass scan of pure unoxidized PAPC and oxPAPC using an ABI Sciex 4000 

QTrap mass spectrometer.  
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(c) Representative mass scan of oxPAPC, formed from air-oxidized PAPC. 

(d) Quantification of individual species of oxPAPC by liquid chromatography-mass spectrometry. 

Human RPE cells stimulated with Alu RNA had higher levels of PGPC (1-palmitoyl-2-glutaroyl-

sn-glycero-3-phosphocholine) and LysoPC (1-palmitoyl-2-hydroxy-sn-glycero-3-

phosphocholine) levels, indicative of extended oxidation, concomitant with a trending decrease of 

precursor PAPC and intermediate POVPC. n = 6 cell culture replicates; * P < 0.05, two-tailed t 

test; error bars denote standard error. 

 

Supplementary Figure 5. Gasdermin D is required for Alu-induced RPE degeneration. 

(a) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE 

flat mounts of the WT (n = 7 eyes) and Gsdmd–/– (n = 9 eyes) mice subretinally injected with Alu 

expression plasmid (pAlu) or empty vector control plasmid (pNull). (b) Fundus photographs and 

immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE flat mounts of the WT (n = 6 

eyes) and Gsdmd–/– (n = 10 eyes) mice subretinally injected with control siRNA or siDICER1. (c) 

Secretion of IL-18 by mock-transfected or Alu RNA transfected Gsdmd–/– mouse RPE cells that 

had been reconstituted via transfection of expression plasmid for wild type GSDMD (pGSDMD-

WT) or a mutant GSDMD that is uncleavable by inflammasome activation (pGSDMD-D276A) or 

empty vector control. Data presented are mean ± SD; n = 3 cell culture replicates; *P = 0.02 for 

empty vector vs. pGSDMD-WT Alu RNA transfected; *P = 0.019 for empty vector vs. pGSDMD-

D276A Alu RNA transfected; two-tailed t test, error bars denote SEM. (d) Relative abundance of 

mRNA expression cytokines IL-8, IL-6, and MIP-1α in the RPE of human AMD eyes (n = 4) and 

healthy age-matched control eyes (n = 4); Data presented are mean ± SEM. In a and b, binary 

(Healthy %) and morphometric (PM, polymegethism (mean (SEM)) quantification of RPE 
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degeneration are shown (two-tailed t test; *P < 0.05; **, P < 0.01; ***, P < 0.001). Loss of regular 

hexagonal cellular boundaries in ZO-1 stained flat mounts is indicative of degenerated RPE. The 

degenerated retinal area is outlined by blue arrowheads in the fundus images. 

 

Supplementary Figure 6. Alu RNA induces apoptotic cell death in human RPE cells. 

Human RPE cells mock treated or stimulated with Alu RNA were incubated with FITC-conjugated 

annexin V (green) and propidium iodide (PI, red). Staining by annexin V and PI uptake was 

monitored by time-lapse imaging. Representative images at various time points showing annexin 

V and PI staining is presented for (a) Alu RNA stimulated and (b) mock treated human RPE cells. 

Representative images from three independent experiments are shown.  

 

Supplementary Figure 7. Alu RNA induces apoptotic RPE cell death in mice and in human 

cell culture. 

(a) Annexin V (periwinkle blue) and propidium iodide (PI; red) staining of RPE flat mounts from 

WT mice subretinbally injected with Alu RNA or vehicle. Row #1-2 (Alu RNA degenerated area): 

The area of Alu RNA-induced RPE degeneration; Row #3-4 (Alu RNA healthy): The RPE in 

regions of the eye distant from the site of Alu RNA exposure; Row #5 (Alu RNA unstained): The 

area of Alu RNA-induced RPE degeneration that was not stained; Row #6-7 (PBS): The area of 

mouse eye subretinal injected with vehicle control. ON, optic nerve. Representative images from 

n = 8 eyes per group are shown. (b) Immunoblots of cleaved caspase-3 and cleaved PARP1 in 

human RPE cells either mock-transfected or transfected with Alu RNA. For all immunoblots, 

cropped gel image of bands of interest of representative immunoblots of three independent 

experiments and densitometric analysis (mean (SEM)) are shown. 
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Supplementary Figure 8. Resistance of the RPE in Gsdmd–/– mice to Alu RNA-induced 

apoptotic cell death is overcome by IL-18. 

Annexin V (periwinkle blue) and propidium iodide (PI; red) staining of RPE flat mounts of Gsdmd–

/– mice subretinally injected with Alu RNA or Alu RNA plus recombinant mouse IL-18 (Alu 

RNA+recIL-18). ON, optic nerve. Representative images from n = 8 eyes are shown. 

 

Supplementary Figure 9. Interferon signaling in RPE toxicity. 

(a) Immunoblot of phosphorylated and total IRF3 and STAT2 in human RPE cells transfected with 

Alu RNA or mock transfected. (b) Immunoblot of phosphorylated and total STAT2 in WT and 

Ifnar1–/– mouse RPE cells transfected with Alu expression plasmid (pAlu) or empty vector control 

(pNull). (c) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) 

on RPE flat mounts of the WT (n = 7 eyes) and Stat2–/– (n = 7 eyes) mice subretinally injected with 

control siRNA or Dicer1 targeted siRNA (siDICER). (d) Fundus photographs and 

immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE flat mounts of the WT (n = 6 

eyes) and Stat2–/– (n = 7 eyes) mice subretinally injected with vehicle control or Alu RNA. (e) 

Immunoblot of pro-caspase-11 (pro-casp11) and p30 cleaved product of caspase-11 (p30) in WT 

and Stat2–/– mouse RPE cells transfected with Alu RNA or mock transfected. For all immunoblots, 

cropped gel image of bands of interest of representative immunoblots of three independent 

experiments and densitometric analysis (mean (SEM)) are shown. In c and d, binary (Healthy %) 

and morphometric (PM, polymegethism (mean (SEM)) quantification of RPE degeneration are 

shown (two-tailed t test; *P < 0.05; **P < 0.01; ***P < 0.001). Loss of regular hexagonal cellular 

boundaries in ZO-1 stained flat mounts is indicative of degenerated RPE. The degenerated retinal 

area is outlined by blue arrowheads in the fundus images. 
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Supplementary Figure 10. cGAS driven signaling licenses non-canonical inflammasome. 

(a) Relative abundance of cGAS mRNA in human RPE cells mock transfected or transfected with 

Alu RNA. Data presented are mean ± SEM; n = 3 cell culture replicates; *P = 0.006, two-tailed t 

test. (b) Immunoblot of cGAS in human RPE cells transfected with Alu expression plasmid (pAlu) 

or empty vector control (pNull) or Alu RNA or mock transfected (c) Immunoblot of pro-caspase-

1 (pro-casp1) and p20 cleavage product of caspase-1 (casp1-p20) in WT and Mb21d1–/– mouse 

mRPE cells mock-transfected or transfected with Alu RNA. (d) Secretion of IL-18 by mouse RPE 

cells mock-treated or with LPS alone or LPS+ canonical inflammasome activating sodium urate 

(MSU) crystals. Data presented are mean ± SD; n = 3 independent experiments. (e) Assessment of 

shRNA-mediated knockdown of cGAS mRNA by RT-qPCR in human RPE cells transfected with 

control or DICER1 targeted antisense oligonucleotides. Representative data of three experiments 

presented. Data presented are mean ± SEM; n = 2 technical replicates. (f) Assessment of antisense 

oligonucleotide-mediated DICER1 mRNA knockdown by RT-qPCR in human RPE cells 

transduced with lentiviral vectors expressing control and cGAS targeted shRNA sequences. 

Representative data of three experiments presented. Data presented are mean ± SEM; n = 2 

technical replicates. (g) Fundus photographs and immunofluorescence staining of zonula 

occludens-1 (ZO-1) on RPE flat mounts of the WT (n = 6 eyes) and Mb21d1–/– (n = 8 eyes) mice 

subretinally injected with empty vector plasmid control (pNull) or Alu expression plasmid (pAlu). 

(h) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE 

flat mounts of the WT (n = 6 eyes) and Mb21d1–/– (n = 9 eyes) mice subretinally injected with 

control siRNA or Dicer1 targeted siRNA (siDICER). (i) Relative Ifnb mRNA in mock or Alu RNA 

transfected Mb21d1–/– mouse RPE cells that had been reconstituted via transfection of cGAS 

expression plasmid (pcGAS) or empty vector plasmid. Data presented are mean ± SEM; n = 3 cell 
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culture replicates; *P = 0.001, two-tailed t test. For immunoblots, cropped gel image of bands of 

interest of representative immunoblots of three independent experiments and densitometric 

analysis (mean (SEM)) are shown. In g and h, binary (Healthy %) and morphometric (PM, 

polymegethism (mean (SEM)) quantification of RPE degeneration are shown (two-tailed t test; *P 

< 0.05; **P < 0.01; ***P < 0.001). Loss of regular hexagonal cellular boundaries in ZO-1 stained 

flat mounts is indicative of degenerated RPE. The degenerated retinal area is outlined by blue 

arrowheads in the fundus images. 

 

Supplementary Figure 11. cGAS expression validation, and STING involvement in Alu 

RNA-induced IRF3 activation. 

(a) Immunoblot of cGAS in RPE lysates from in vitro and in vivo reconstitution experiments using 

plasmid transfection described in Supplementary Fig. 10i and Fig. 4h, respectively. (b) 

Immunofluorescence staining of phosphorylated IRF3 (pIRF3) in wild-type and Tmem173–/– 

mouse RPE cells mock-transfected or transfected with Alu RNA. Representative images from three 

independent experiments are presented. (c) Immunoblot of phosphorylated IRF3 (pIRF3) in mock 

or Alu RNA transfected wild-type or Tmem173–/– mouse RPE cells. For immunoblots, cropped gel 

image of bands of interest of representative immunoblots of three independent experiments and 

densitometric analysis (mean (SEM)) are shown. 
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Supplementary Figure 12. Activation of cGAS driven signaling by Alu RNA is mediated by 

cytosolic mtDNA. 

(a) Relative abundance of cytosolic mtDNA in human RPE cells transfected with control or 

DICER1 antisense (AS) oligonucleotides. Data presented are mean ± SEM; n = 3 independent 

experiments; data are presented as mean ± SEM ; *P = 0.003, two-tailed t test. (b) Western blot 

shows the purity of the mitochondria-free cytosolic fractions used for measuring mtDNA 

abundance in cytosolic fractions; VDAC-1 is a mitochondrial marker. Representative immunoblot 

of three independent expreiments shown. (c) Relative enrichment of mtDNA in cGAS 

immunoprecipitate in ChIP-like pulldown assay. Mock or Poly I:C transfected indicated mouse 

embryonic fibroblast (MEF) were analyzed upon HA-cGAS immunoprecipitation with ant-HA 

antibody or isotype control. Data are presented as mean ± SEM; n = 2 cell culture replicates. (d) 

Relative enrichment of transfected plasmid DNA in cGAS immunoprecipitate in ChIP-like 

pulldown assay. Empty vector plasmid (puc19) transfected indicated mouse embryonic fibroblast 

(MEF) were analyzed upon HA-cGAS immunoprecipitation with ant-HA antibody or isotype 

control. Data are presented as mean ± SEM; n = 2 cell culture replicates. (e) Fundus photographs 

and immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE flat mounts of WT (n = 

4 eyes) and Mb21d1–/–
 (n = 6 eyes) mice subretinally injected with mitochondrial DNA (mtDNA). 

(f) Relative abundance of Ifnb mRNA in WT and Mb21d1–/– mouse RPE cells mock transfected or 

transfected with mitochondrial DNA (mtDNA). Data are presented as mean ± SEM; n = 3 cell 

culture replicates; *P = 0.002, two-tailed t test. (g) Assessment of mitochondrial membrane 

potential (ΔΨm) using the potential-sensitive fluorochrome JC-1, in mock or Alu RNA transfected 

WT or Ppif–/– mouse RPE cells in presence or absence of cyclosporine A (CsA). Data are presented 

as mean ± SEM; n = 4 or 5 cell culture replicates as indicated in the figure; *P = 0.006, two tailed 
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t test. (h) Mitochondrial permeabilization, assessed by the quenching of calcein-AM fluorescence 

by cobalt chloride, in mock or Alu RNA transfected WT or Ppif–/– mouse RPE cells in presence or 

absence of cyclosporine A (CsA). Data are presented as mean ± SEM; n = 3 cell culture replicates; 

*P = 0.001, two tailed t test. In e, binary (Healthy %) and morphometric (PM, polymegethism 

(mean (SEM)) quantification of RPE degeneration are shown (two-tailed t test; *P < 0.05; **P < 

0.01; ***P < 0.001). Loss of regular hexagonal cellular boundaries in ZO-1 stained flat mounts is 

indicative of degenerated RPE. The degenerated retinal area is outlined by blue arrowheads in the 

fundus images. 

 

 

Supplementary Figure 13. Macrophages and microglia are dispensable for Alu RNA-induced 

RPE degeneration. 

(a) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-1) on RPE 

flat mounts of WT (n = 6 eyes) mice depleted of macrophages by treatment with clodronate 

liposomes. (b) Fundus photographs and immunofluorescence staining of zonula occludens-1 (ZO-

1) on RPE flat mounts of the Cx3cr1CreER ROSA-DTA (n = 15 eyes) mice treated with tamoxifen, 

and subretinally injected with vehicle or Alu RNA. (c) Tamoxifen-induced depletion of microglia 

in Cx3cr1CreER ROSA-DTA mice was confirmed by staining for microglial marker F4/80 

superimposed with endothelial cell staining with isolectin B4 in retinal flat mounts of above mice 

(n = 3 mice per group). In a and b, binary (Healthy %) and morphometric (PM, polymegethism 

(mean (SEM)) quantification of RPE degeneration are shown (two-tailed t test; *P < 0.05; **P < 

0.01; ***P < 0.001). Loss of regular hexagonal cellular boundaries in ZO-1 stained flat mounts is 
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indicative of degenerated RPE. The degenerated retinal area is outlined by blue arrowheads in the 

fundus images. 

 

Supplementary Figure 14. Activation of caspase-1 by Alu RNA in bone marrow derived 

macrophages (BMDMs) is dependent on caspase-11, cGAS, and gasdermin D.  

Immunoblots of cleaved product of caspase-1 (Casp1 p10) in mock or Alu RNA transfected WT, 

Casp11–/–, Mb21d1–/–, or Gsdmd–/– BMDMs. Representative immunoblot of three independent 

experiments. 
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Supplementary Figure 15. Model of cGAS-mediated licensing of non-canonical NLRP3 

inflammasome activation by DICER deficit/Alu RNA. Elevated Alu RNA triggers release of 

mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA subsequently activates cGAS-

driven type I interferons (IFNs). The resulting IFN signaling via interferon-α/β receptor (IFNAR) 

and STATs triggers caspase-4/11 priming and activation that, in turn, dictates gasdermin D and 

NLRP3 inflammasome-mediated secretion of IL-18. Secreted IL-18 drives RPE degeneration via 

a mechanism involving Myd88, FAS/FasL, and caspase-82,22. Three different RPE cells are 

depicted in the schematic model to illustrate the mechanism of Alu RNA–induced inflammasome 

activation and the autocrine and paracrine IL-18 signaling leading to RPE cell death via Myd88, 

Fas/FasL, Caspase-8 and Caspase-3. 
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