

Supplementary Figure 1. Pathways of trioxilins and prostaglandins biosynthesis in human. TrXs: trioxilins; PGs: prostaglandins.

Supplementary Figure 2. HPLC analysis of *Myxococcus xanthus* cultivation with arachidonic acid. (a) HPLC analysis of only culture medium. (b) HPLC analysis of culture medium containing 1 mM arachidonic acid (ARA). (c) HPLC analysis of culture medium containing 1 mM ARA without wild-type *M. xanthus* after 24 h incubation. (d) HPLC analysis of fermentation broth containing 1 mM ARA with wild-type *M. xanthus* after 24 h incubation. The fermentations were performed 30 °C in Casitone broth at 200 rpm.

HU MX MX	12LOX 1744 1745	1 1 1	SGSYNRVQLW SGSYNRVQLW MSASVTRRGGADDRRWDGRARGMGTGMMFAGLRRWMGALGGKGRESGSNEVLDAEELSRW	25 26 60
HU MX MX	12LOX 1744 1745	26 27 61	LVGTRGEAELELQLRPARG-EEEEFDHDVAEDLGLLQFVRLRKHHWLVDDA LVGTRGESAPRVLDKHFHN-DFEAGAEDVYALSSEDLGDLVLLRFSNAGGVAAD YSGLALEERLAISRELAPRVRAVRPAREPSTLPAVAVGRLVFEQDGPQGPIPMHHIKVEL * * : : * * : :	75 79 120
HU MX MX	12LOX 1744 1745	76 80 121	WFCDRITVQGPGACAEVAFPCYRWVQGEDILSLPEGTARLPGDNALDMFQKH WLLDWAIVTAGEKQWHFPFYRWVLSGATVDVLEGTAKLARQASSERESTA WDRDFGTPDDFLGEGFTDSDGCFSIRYDPADAGVNDLPDLEVRFFEP * *	127 129 167
HU MX MX	12LOX 1744 1745	128 130 168	REKELKDRQQIYCWATWKEGLPLTIAADRKDDLP RRELLEARQRMYPWRAPEMTEGLPGALDLREGRPLP QHSFRPDGRVVEAWCRIGSEKGPDDHGGLHYDFGTLRLPYWEYDPTTPLARLLVTEEGTP : : : * * * * *	161 165 227
HU MX MX	12LOX 1744 1745	162 166 228	PNMRFHEEKRLDFEWTLKAGALEMALKRVYTLLSSWNCLEDFDQIFWGQKSALAEKVRQC KDELYRGLTEGSYEVVIAKT-LAAIKLNLPMLTRAWNGLVDIFDFFKHLEVPQLAQR PTAYAPGRALAMLKAVAPIELVKRRHLL *	221 221 255
HU MX MX	12LOX 1744 1745	222 222 256	WQDDELFSYQFLNGANPMLLRRSTSLPSRLVLPSGMEELQAQLEKELQNGSLFEAD WKDDLEFARQAVQGIAPLHITLVPSLPQGMPLTDDDVRGLLSPGTTLARALDAKRIFLID QGRLGQAPSLDRIQADYPEAMTVRMERESPGSTRTDAFFGERLLNGM * * * : : : : : : : : : : : : : : : : :	277 281 302
HU MX MX	12LOX 1744 1745	278 282 303	FIL-LDGIPANVIRGEKQYLAAPLVMLKMEPNGKLQPMVIQI FEI-LDDIRMYRKVGEDGVEERRWAPAARCLLYLDDQRQLRPLAIQL FSTLMDGDPEAFGDPEAFRLYFPWNAYEQDGVHCLPDVDVRLRL-VEGRLLPVRIIL * :*. : : : : : : : : : : : : : : : : :	318 327 358
HU MX MX	12LOX 1744 1745	319 328 359	QPPNPSSPTPTLFLPSDPPLAWLLAKSWVRNSIFDLHEIQYHLLNTHLVAEVIAV GRDAQKDPVFTPNDDAYDWLAAKIYLRCSEGVSHQMVSHALRTHFVAEPFVM GMREPGATAPGSPVTRRSYTPADGEAWEAAKRMARVSATLETELGNHLGQCHFNVEQYAI * ** * * * *	373 379 418
HU MX MX	12LOX 1744 1745	374 380 419	ATMRCLPGLHPIFKFLIPHIRYTMEINTFARTQLISDGGIFDEA/STGGGGHVQLLRR ATMRNLPDPHPVYKLLRRHFRYTLAINECARKGLLDAGGVFDIFIATGGPDKGHLQLGKK AAHRNLRR-SPLRWLLMPHLREVVLINHSANGFLVGPTGYITFASALTERSVETRLLHLM *: * * * *: :* *:* *:* *: *: *: *: *:	431 439 477
HU MX MX	12LOX 1744 1745	432 440 478	AAAQLTYCSLCPPDDLADRGLLGLPGALYAHDALRLWEIIARYVEGIVHLFYQRDD- GFQRWTLADNKPRADLERRGVLDPAVLPNYPYRDDALPLWDAFEEYVGGVLRHFYRTDA- GSYDWKGFAPAPPICESHRYARAAGLFWRLVGEHVDAFFAEHGA * * * * *	487 498 521
HU MX MX	12LOX 1744 1745	488 499 522	IVKGD-PELQAWCREITEVGLC DLEAD-TEMQQWWKDLTEHGLP ALEAQWSEVRRFSDDLVGHSAPAFVCRYLRATVPGRAAPWFVRSERMDLDAKVAATHAKA ::.: *:: : :	508 519 581
HU MX MX	12LOX 1744 1745	509 520 582	QAQDRGFFVSFQSQSQLCHFLTMCVFTCTACHAAINQGQLDWYAWVPNAPCTMRMP VDKLPCRELRRVDDLVDILTTVLFTVSVCHAAVNYLQYEHYAFVPNAPLSMRRE VSAVTRTDAPQPGEMEALKQLCRYVIYFATFFHAWANNLQWDDAGEVLYACLGLRWG :* :: :: :: * * * : . * * : : *	564 573 638
HU MX MX	12LOX 1744 1745	565 574 639	PPTTKEDVTMATVMGSLPDVRQACLQMAISWHLSRRQPDMVPLGHHKEKYFSGPKPK PPRQKGTLRAEDIPEMIPTKSQMLWQVAISRALSSFGDDEEYLLHEGGWREEYFHEPELV KAGALSTEADHDVAPPPEEATEMLMISWMLSKTSYGFLLANEEA : * : : * ** : : :	621 633 682
HU MX MX	12LOX 1744 1745	622 634 683	AVLNQFRTDLEKLEKEITARNEQLDWFYEYLKPSCIENSVII AIRQRFQERLRAQREAVEARNAGAEVPYTILRPDRIFCGITV DVHPRFVECLRAHAAEFSALGMDIRTVSSRINI	663 675 715

HU MX	EPHX2 1644	1 1	MTLRAAVFDLDGVLALPAVFGVLGRTEEALALPRGLLNDAFQKGGPEGATTRLMKGEITL	60 0
HU MX	EPHX2 1644	61 1	SQWIPLMEENCRKCSETAKVCLPKNFSIKEIFDKAISARKINRPMLQAALMLRKKGFTTA	120 0
HU MX	EPHX2 1644	121 1	ILTNTWLDDRAERDGLAQLMCELKMHFDFLIESCQVGMVKPEPQIYKFLLDTLKASPSEV	180 0
HU MX	EPHX2 1644	181 1	VFLDDIGANLKPARDLGMVTILVQDTDTALKELEKVTGIQLLNTPAPLPTSCNPSDMSHG MADITHR :*::*	240 7
HU MX	EPHX2 1644	241 8	YVTVKPRVRLHFVELGSGPAVCLCHGFPESWYSWRYQIPALAQAGYRVLAMDMKGYGESS T-VKTNGINLHLAEAGSGPLVLLLHGWPESWYSWRHOLPALAAAGYHAVAPDVRGYGOSD	300 66
HU MX	EPHX2 1644	301 67	APPEIEEYCMEVLCKEMVTFLDKLGLSQAVFIGH DVGGMLVWYMALFYPERVRAVASLNT KPEAIEAYSMKQLVGDAVGLLDALGERTAIVIGH DVGSAIAWNCAALHPDRFRAVVGMSV * ** *.*: * : * : * : * *: * *: *: *******	360 126
HU MX	EPHX2 1644	361 127	PFIPANPNMSPLESIKANPVFIYPLYFQEPGVAEAELEQNLSRTFKSLFRASDESVLS PHLGRAPM-PPMQLFQRMFGEKWEYILYFQEPGVAEAEFEADVPRTVRAILTGTPGFDVT *.: * *:: . : * ***********************	418 185
HU MX	EPHX2 1644	419 186	MHKVCEAGGLFVNSPEEPSLSRMVTEEEIQFYVQQFKKSGFRGPLNWYRNMERNWKW NPAVLAKKKGEGFLARLDVPETLPGWLTEADVAYFAKELAGSGFRGGLNHYRNMDRDWHE :. *: :* :** :: ::.::: ***** ** ****:::::	475 245
HU MX	EPHX2 1644	476 246	ACKSLGRKILIPALMVTAEKDFVLVPQMSQHMEDWIPHLKRG-HIEDCOHVTQMDKPTEV LPELATAVISQPALYIVGEKDPVRAFSPVDPMKALVPNLADIHVIPGAOHVVQQEHAAEV : * *** :*** * . : *: :*:* ****** :: :**	534 305
HU MX	EPHX2 1644	535 306	NQILIKWLDSDARNPPVVSKM NAALLAFLKKLPA * *: :*	555 318

HU MX	LTA4H 5137	1 1	MPEIVDTCSLASPASVCRTKHLHLRCSVDFTRRTLTGTAALTVQSQEDNLRSLVLDTKDL MARL-DPHSYN-DSTQPETETLDWRARVDFKTQRLHAEVTHTLKEASAGPLDLDTRDL * .: * * :: .*: *. *. ***. : * . :: :* . * ***:**	60 56
HU MX	LTA4H 5137	61 57	TIEKVV-INGQEVKYALGERQSYKGSPMEISLPIALSKNQEIVIEISFETSPKSSALQWL EIRDVIDAAGRPLPYILSPSEPILGSRLRIELPVGLRQFTVRYRTAPHASALQWL **: *::**.: **::*:*:*:*:	119 111
HU MX	LTA4H 5137	120 112	TPEQTSGKEHPYLFSQCQAIHCRAILPCQDTPSVKLTYTAEVSVPKELVALMSAIRDGET TPSQTAGGKHPFLYSQCQAIHARSVVPLQDTPRIRIRYTASLRIPKALKAVMAASFLRRE **.**:* :**:*:*************************	179 171
HU MX	LTA4H 5137	180 172	PDPEDPSRKIYKFIQKVPIPCYLIALVVGALESRQIGPRTLVWSEKEQVEKSAYEFSETE EHGVEAEEHYEMPQPVPPYLLAFAVGSLAPKELGPRSRVWAEPELLEDAAEEFSGVD *: *:*:*:*: :::**: *::**: *::**: *::**:*	239 228
HU MX	LTA4H 5137	240 229	SMLKIAEDLGGPYVWGQYDLLVLPPSFPYGGMENPCLTFVTPTLLAGDKSLSNVIA DMLRAAESLFGPYDWERFDLLTMPPSFPYGGMENPRLTFLTPTLITGDKSLVNVVA .**: **.* *** * ::***.:****************	299 288
HU MX	LTA4H 5137	300 289	HSWTGNLVTNKTWDHFWLNE GHTVYLERHICGRLFGEKFRHFNALGGWGELQNSVKTFGE HSWTGNLVTNASAEHFWLNE GFTVFAERRILEVLEGPEVSALHGALGRRALDSALQHFRA	359 348
HU MX	LTA4H 5137	360 349	THPFTKLVVDLTDIDPDVAYSSVI <mark>Y</mark> EKGFALLFYLEQLLGGPEIFLGFLKAYVEKFSYKS HPQLTSLRTHLAGVDPDEAFSQII <mark>Y</mark> EKGYLLLRAMEDAAGRP-AFDEFLRRYLATYRFRA :*.**:::*** *:::*****: ** :*: * * * *	419 407
HU MX	LTA4H 5137	420 408	ITTDDWKDFLYSYFKDKVDVLNQVDWNAWLYSPGLPPIKPNYDMTLTNACIALSQRWITA LTTEEFVAFAEKELPGVLTKVDAEAYLHRPGVPPGAPSPRSLRLEAMDALRGKVPTP :**::: * *: .**.:** :*:** *. :* ** : *	479 464
HU MX	LTA4H 5137	480 465	KEDDLNSFNATDLKDLSSHQLNEFLAQTLQRAPLPLGHIKRMQEVYNFNAINNSEIRFRW EQAKDWTPAEWQLYLESLPWDIPRDVIQQLDARFSLTESRNSEVLVAW : ** : : : :* . :* . *:::: :.:***: . *	539 512
HU MX	LTA4H 5137	540 513	LRLCIQSKWEDAIPLALKMATEQGRMKFTRPLFKDLAAFDKSHDQAVRTYQEHKASMHPV LVVALRADWEPAVARTETFLGEVGRMKYLKPLYGVLSASHAHRSLARALFKKHGERYHPI * :.::.** *: :.: * ****: :**: *:* . :. * :::* **:	599 572
HU MX	LTA4H 5137	600 573	TAMLVGKDLKVD ARQGVELILSRA : * *.	611 584

HU MX	PTGS2 5217	1 1	MLARALLLCAVLALSHTANPCCSHPCONRGVCMSVGFDQYKCDCTRTGFYGENCSTPEFL MDEMEGTVQPVAGVSTGVPRPAAA : :. *.:* . ** . **	60 24
HU MX	PTGS2 5217	61 25	TRIKLFLKPTPNTVHYILTHFKGFWNVVNNIPFLRNAIMSYV RRIKPVAKSTLRPFRRTVASRALSGVFSGLNRVIAWHRLPKFLGLLNLIPIRD-ELRAKN *** : :* .** : : : * .::* *: : :	102 83
HU MX	PTGS2 5217	103 84	LTSRSHLIDSPPTYNADYGYKSWEAFSNLSYYTRALPPVPDDCPT LYDTTHLPSTQAPEPPTWDPELATRRASDGTYNDLSNPRMGAAGTRFGRNV-PLENAWPE *. * .***::::::::::::::::::::::::::::::	147 142
HU MX	PTGS2 5217	148 143	PLGVKGKKQLPDSNEIVEKLLLRRKFIPDPQGSNMMFAFFAQHFIHDFFKTDH-KRGPAF PEPALLEPSPRVISNRLLARQSFVPATS-LNLLAAAWIQFMHDWFDHGSPKRGGEF * **::*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*	206 198
HU MX	PTGS2 5217	207 199	TNGLGHGVDLNHIYGETLARQ KVPLDKERGDSWSEDPMRIRRTPEDPTRIPGAKDGPPTYINQHSQWWDASQIYGSNEEET	227 258
HU MX	PTGS2 5217	228 259	RKLRLFKDGKMKYQIIDGEMYPPTVKDTQAEMIYPPQVPEHLRFAVGQEVFGLVPG RALRCTDDEDGGQRRGKLILTGEGLEAQLPVDPNTHLQKSGVTHNWWIG * ** * * * * * * * * * * * * * *	283 307
HU MX	PTGS2 5217	284 308	LMMYATIWLREHNRVCDVLKQEHPEWGDEQLFQTSRLILIGETIKIVIEDYVQHLS LSLLHTTFAKEHNAIVDRLRLEFPDWNGDRLFHTARLINTALMAKIHTIEWTPAILAHPT * : * : :*** : * *: *.*:*:**:*:*** . ** ::. :	339 367
HU MX	PTGS2 5217	340 368	KQFQYQNRIAAEFNTIYHHPL TETALNTNWWGLVGQRVTRLFGRMSRSELISGIPGSEVNHHGVPFALTEEFVAYYRHBL * : * **: . ::. :: ** ::*: * *	376 427
HU MX	PTGS2 5217	377 428	LPDTFQIHDQKYNYQQFIYNNSILLEHGIT IPDTMRLHRMRDGVQVREVAMVDLAGPNTLKALEDGLTMVDLCYSFGISHPGALVLHNYP :***:::* : . * . * *	406 487
НU МХ	PTGS2 5217	407 488	QFVESFTRQIAGRVAGGRNVPPAVQKVSQASIDQSRQMKYQSFNEYRKRFMLKPYESF AFLRDLHRQDPDGAESRVDLASIDVMRDRERGVPRYNAFRKLMHLQPARSF *:: ** .* .* .* .** :.*: :* :* :* :* .**	464 538
HU MX	PTGS2 5217	465 539	EELTGEKEMSAELEALYGDIDAVELYPALLVEKPRPDAIFGETMVEVGAPFSLKGLMGNV KDITRNEQWARELREVYGHVDRVDLMVGMLAEDPPRGFGFSDTAFRVFILMASRRLA :::* ::: : **. :**.:* ::* .:*.* . ** .:* .:	524 595
HU MX	PTGS2 5217	525 596	ICSPAYWKPSTFGGEVGFQIINTASIQSLICNNVKGCPFTSFSVPDPELIKTVTINA SDRFFTNDQNVNLYTQPGMAWLNENTMASVLLRHYPGLAPALRQT * ::: : *: :* :: *:: * * * * * *	581 640
HU MX	PTGS2 5217	582 641	SSSRSGLDDINPTVLLKERSTEL RNAFAPWEPVSMVATEPPAGSLLH *: :*. :: .*	604 664

HU TBXAS1 MX 0683 MX 2304	1 1 1	MEALGFLKLEVNGPMVTVALSVALLALLKWYSTSAFSRLEKLGLRHPKPSPFIGNLTFFR MVRSTCASGSSPLQDPFMSQVRL-PPGPQGHFIAGNLVEFS PAGASTAAPL-PPLSPGAPLIGHLRALR * : *:* :	60 40 31
HU TBXAS1 MX 0683 MX 2304	61 41 32	QGFWESQMELRKLYGPLCGYYLGRRMFIVISEPDMIKQVLVENFSNFTNRMASGLE-F EDPLGFLTRCAREYGDVVRLGKRNFLLNHPDLIERVLVNGDGNFVKLAGVGQGKRHK KDPLHFLQAQAREYGDVVRLPMGPADLVLVAHPDGVRHVLQDHARNYSKQSRGFRVLQ :. : ** : .:: ** : *: :	117 97 89
HU TBXAS1 MX 0683 MX 2304	118 98 90	KSVADSVLFLRDKRWEEVRGALMSAFSPEKLNEMVPLISQACDLLLAHLKRYAESGDAFD GGFPEAMMNSEGEDWLRKRRLVQPAFHRKHVAACGDTVVALTETMLQTWRPGDARD ELLGHGLLTSDGDHWLRQRRLAQPAFHRQRVAGFTRTMVDAAADLAATMEARADTGAAFN : * . * . * : : : * *:	177 153 149
HU TBXAS1 MX 0683 MX 2304	178 154 150	IQRCYCNYTTDVVASVAFGTPVDSWQAPEDPFVKHCKRFFEFCIPRPILVLLLSFPSIMV VHADVSALALDIVSRFLFHTPIDDEARHVADAVDAVMRHTDSPLRPPIWV VAEDFTRLTLRIASSTLFGADVSSATHDIATVMSRLQVFVYKRLTQPVPLSLRL : : :: * :: * ::. : : : : : : : : : : :	237 203 203
HU TBXAS1 MX 0683 MX 2304	238 204 204	PLARILPNKNRDELNGFFNKLIRNVIALRDQQAAEERRRDFLQMVLDARHSASPMGVQDF PTPTNLRLRRALGRLNTLLATLVRRYREQPESRTDLLALLLSAPVPLS PLPAHRQFERDVGSLNRVVHGIIAKRRRESGEHHDLLQMMMEAHDDDTGERMS * :*:*::::::::::::::::::::::::::::::	297 251 256
HU TBXAS1 MX 0683 MX 2304	298 252 257	DIVRDVFSSTGCKPNPSRQHQPSPMARPLTVDEIVGQAFIFLIAGYEIITNTLSFATYLL ENQLRDELATMIMSGHETTADALVWAWYLL DSQLRDEVITLLLAGHETTASALAWTIMLL .:: .: ::::::::::::::::::::::::::::::	357 281 286
HU TBXAS1 MX 0683 MX 2304	358 282 287	ATNPDCQEKLLREVDVFKEKHMAPEFCSLEEGLPYLDMVIAETLRMYPPAFRFTREAAQD AQHPEAEARLVAELETVLGGRLP-G-AEDLPRLRYTEAVVKEAMRLYSPAWITSREALRD SQHPGVRRDMESELARELGGRNP-T-HEDLPRLELTHRVVDESLRLYPPAWALSRIATKE : :* : : : : : : : : : : : : : : : : :	417 339 344
HU TBXAS1 MX 0683 MX 2304	418 340 345	CEVLGQRIPAGAVLEMAVGALHHDPEHWPSPETFNPERFTAEARQQHRPFTYLPFGAGPR CELGGFHVPAGTMLAVSQWVTHRDARYFDAPESFRPDRWLSEDAQRMHRYVYFPFGGGPR DLVGGFRIPKGAHLLIAPWVTHRHPSIWDNPEGFDPDRFLPEREQARPRFAWFPFGGGPR : * ::* *: * :: . : : ** * ::: * * ::: ***	477 399 404
HU TBXAS1 MX 0683 MX 2304	478 400 405	CLGVRLGLLEVKLTLLHVLHKFRFQACPETQVPLQLESKSALGPKNGVYIKIVSR CIGSALAMMETVLITACVARRFRLELAPGCVVRPRPALALQPL-GVWLIPRHRSHTT CIGNQFALMELVLVLATLLQRVRLNLTPGQVIHPTPAITLRPRPGVWVTASRP *** ::::* * ::::* * : ::***	533 456 458
HU TBXAS1 MX 0683 MX 2304	534 457 459	QEGEVRHAAGA	533 467 458

f

HU I MX	PTGS2 5217	1 1	MPNYKLTYFNMRGRAEIIRYIFAYLDIQYEDHRIEQADWPEIKST MNAQSSLPRLSYFTGRGVAEKIRLLLAESGTEYEDIDLGAYDVQAKVKTPAFEAIKAAGM .*.**. ** ** ** ::**** : *	45 60
HU I MX	PTGS2 5217	46 61	LPFGKIPIL-EVDGLTLHQSLAIARYLTKNTDLAGNTEMEQCHVDAIVDTLDDFMSCFPW LAFDKVPLWEEPDGFRVVQSLAILRHVARTRGLYGKDARETTACDMIIDGVEEVTARARS * *.*:*: * **: : ***** *:::* *: * * *:* :: :	104 120
HU I MX	PTGS2 5217	105 121	A-EKKQDVKEQMFNELLTYNAPHLMQDLDTYLGGREWLIGNSVTWADFYWEICSTT LTSLTPDQLSEQLPIILGEELPQWLAHFERLLKSNGSGDGFFVGPSVTVADTS * .: : :* : * :: *:: .* :::* *** **	159 173
HU I MX	PTGS2 5217	160 174	LLVFKPDLLDNHPRLVTLRKKVQAIPAVANWIKRRPQTKL VFGFLELLVDNGLQDLLESTYPGLFGFFERMKQRPNLARHLASSKRHPAVQLLNG :: * *:** :* : : : : * :*. *:*.	199 228

Myxococcus xanthus. (a) Candidates of lipoxygenases (LOXs). The GenBank accession numbers of human 12-LOX, MX 1744, and MX 1745 are P18054, Q1DBH9, Q1DBH8, respectively. (b) Candidate of epoxide hydrolase (EH). The GenBank accession numbers of human bifunctional EH2 and MX 1644 are P34913 and O1DBS7, respectively. (c) Candidate of EH. The GenBank accession numbers of human leukotriene A₄ hydrolase and MX 5137 are P09960 and Q1D232, respectively. (d) Candidate of cyclooxygenase (COX). The GenBank accession numbers of human COX and MX 5217 are P35354 and Q1D1V4, respectively. (e) Candidate of TXA synthase. The GenBank accession numbers of human thromboxane A synthase, MX 0683, and MX 2304 are P24557, Q1DEH2, and Q1D9Z9, respectively. (f) Candidate of PGD synthase. The GenBank accession numbers of PDG synthases as follows; Human PGD synthase MX 3623 are O60760 and Q1D6B3, respectively. The boxes are shown conserved major residues in enzymes. Red color means metal binding residues, yellow color means positional residues, orange color means stereo residues, green color means substrate binding residues, and blue color means active site residues.

Supplementary Figure 3. Amino acid sequences alignment of the enzymes in

Supplementary Figure 4. SDS-PAGE analysis of enzymes in *Myxococcus xanthus*.

(a) Expression of the candidate biosynthetic enzymes 2 LOXs (*MXAN_1745* and *MXAN_1744*), 1 COX (*MXAN_5217*), and 1 EH (*MXAN_1644*) in *M. xanthus*. M; marker, lane 1; *MXAN_1745* pellet, 2; *MXAN_1745* crude, 3; *MXAN_1745* purified emzyme, 4; *MXAN_1744* pellet, 5; *MXAN_1744* crude, 6; *MXAN_1744* purified enzyme, 7; *MXAN_5217* pellet, 8; *MXAN_5217* crude, 9; *MXAN_5217* purified enzyme, 10; *MXAN_1644* pellet, 11; *MXAN_1644* crude, 12; *MXAN_1644* purified enzyme. (b) Expression of the candidate biosynthetic enzymes 1 EH (*MXAN_5137*), 2 thromboxane synthase (*MXAN_0683, MXAN_2304*), and 1 PGD synthase (*MXAN_3623*) in *M. xanthus*. M; marker, lane 1; *MXAN_5137* pellet, 2; *MXAN_5137* crude, 3; *MXAN_5137* purified enzyme, 7; *MXAN_2304* pellet, 8; *MXAN_2304* crude, 9; *MXAN_2304* purified enzyme, 10; *MXAN_3623* pellet, 11; *MXAN_3623* crude, 12; *MXAN_2304* purified enzyme, 10; *MXAN_3623* pellet, 11; *MXAN_3623* crude, 9; *MXAN_2304* purified enzyme, 10; *MXAN_3623* pellet, 11; *MXAN_3623* crude, 9; *MXAN_2304* purified enzyme, 10; *MXAN_3623* pellet, 11; *MXAN_3623* crude, 9; *MXAN_2304* purified enzyme, 10; *MXAN_3623* pellet, 11; *MXAN_3623* crude, 9; *MXAN_2304* purified enzyme, 10; *MXAN_3623* pellet, 11; *MXAN_3623* crude, 12; *MXAN_3623* purified enzyme.

b

b

a

Supplementary Figure 5. Activity and identification of a metabolite produced from arachidonic acid by cyclooxygenase from *Myxococcus xanthus*. The determination using HPLC and MS/MS analyse. (a) Activity of COX from *M. xanthus*. COX ($MXAN_5217$) activity was measured using a COX activity assay kit. (b) HPLC analysis for a metabolite produced from ARA by COX from *M. xanthus* with the standards PGE₂ and PGH₂. (c) MS/MS analysis for PGH₂ produced from ARA by COX from *M. xanthus*. The metabolite was identified as PGH₂. The red asterisks and the number with read underline indicates molecular masses of key fragments and total molecular mass of the compound, respectively.

Supplementary Figure 6. HPLC analysis of metabolites from recombinant *Escherichia coli*. The metabolites produced from (ARA) by the cultivation of recombinant *E. coli* expressing 12-LOX or 11-LOX and epoxide hydrolase (EH) from *M. xanthus*. (a) Metabolites produced by cells expressing 12-LOX and EH. (b) Metabolites produced by cells expressing 11-LOX and EH. The reactions were performed at 30°C in 50 mM EPPS (pH 8.5) containing 1 mM ARA and 7.2 g L^{-1} recombinant cells for 120 min.

a

Supplementary Figure 7. Determination of non-enzymatic products by *Escherichia coli* without plasmid. (a) HPLC analysis after incubation of only ARA for 120 min. The reaction was performed at 30°C in 50 mM EPPS (pH 8.5) containing 1 mM ARA for 120 min. (b) HPLC analysis after incubation of *E. coli* without plasmid containing ARA for 120 min. The reaction was performed at 30°C in 50 mM EPPS (pH 8.5) containing 1 mM ARA and 7.2 g L^{-1} cells for 120 min.

Supplementary Figure 8. LC-MS/MS analysis of hydroxy fatty acids. The hydroxy fatty acids (HFAs) were produced from polyunsaturated fatty acids (PUFAs) by 12-LOX or 11-LOX from *M. xanthus.* (a) 11-Hydroxyeicosatetraenoic acid (11-HETE). (b) 12-HETE. (c) 11-Hydroxyeicosapentaenoic acid (11-HEPE). (d) 12-HEPE. (e) 14-Hydroxydocosahexaenoic acid (14-HDoHE). The red asterisks and the number with read underline indicates molecular masses of key fragments and total molecular mass of the compound, respectively.

Supplementary Figure 9. LC-MS/MS analysis of hepoxilins. Hepoxilins (HXs) were produced from PUFAs by 12-LOX or 11-LOX from *M. xanthus*. (a) HXB₃. (b) HXB₄. (c) HXB₅. (d) HXD₃. (e) HXE₃. The red asterisks and the number with read underline indicates molecular masses of key fragments and total molecular mass of the compound, respectively.

b

c

Supplementary Figure 10. LC-MS/MS analysis of trioxilins. Trioxilins (TrXs) were produced from PUFAs by 12-LOX or 11-LOX and (EH) from *M. xanthus*. (a) TrXB₃. (b) TrXB₄. (c) TrXB₅. (d) TrXD₃. (e) TrXE₃. The red asterisks and the number with read underline indicates molecular masses of key fragments and total molecular mass of the compound, respectively.

Supplementary Figure 11. Purification of hepoxilin B_3 and trioxilin B_3 using Prep-LC. (a) Reaction products from ARA by cells expressing 12-LOX and EH from *M*. *xanthus*. (b) Purified hepoxilin B3 (HXB₃). (c) Purified trioxilin B3 (TrXB₃).

Supplementary Figure 12. Stereospecificity of metabolites of recombinant

Escherichia coli. The reactions were performed with ARA. (a) The product of 12-LOX from *M. xanthus* was identified as 12*S*-HETE by comparing with the standards 12*S*-HETE and 12*R*-HETE. (b) The product of 11-LOX from *M. xanthus* was identified as 11*S*-HETE by comparing with the standards 11*S*-HETE and 11*R*-HETE.

(*S*,5*Z*,8*Z*)-10-hydroxy-10-((2*R*,3*S*)-3-((*Z*)-oct-2-en-1-yl)oxiran-2-yl)deca-5,8-dienoic acid

Supplementary Figure 13. Structure of hepoxilin B₃.

Supplementary Figure 14. 1D NMR data of hepoxilin B₃. (a) 1H NMR peak of hepoxilin B3 (HXB₃). **(b)** 13C NMR peak of HXB₃.

Supplementary Figure 15. ROESY NMR of hepoxilin B₃. (a) ROE correlation of H-10, H-11, and H-12 of HXB₃ at ROESY. **(b)** ROE correlation of H-14 and H-15 of HXB₃ at ROESY.

Supplementary Figure 16. H-5, H-6, H-8, H-9, H-14, and H-15 of hepoxilin $B_{3.}$ The peaks were confirmed with the selective TOCSY (mixing time = 40 ms). (a) H-15,14 irradiation on H-17. (b) H-9,8 irradiation on H-10. (c) H-5,6 irradiation on H-3.

Supplementary Figure 17. 2D NMR of hepoxilin B₃. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

Supplementary Figure 18. Structure of hepoxilin B₄.

Supplementary Figure 19. 1D NMR data of he poxilin B₄**. (a)** 1H NMR peak of HXB₄. (b) 13C NMR peak of HXB₄.

Supplementary Figure 20. ROESY NMR of he poxilin B₄. ROE correlation of H-10, H-11, and H-12 of HXB₄ at ROESY.

Supplementary Figure 21. H-5, H-6, H-8, H-9, H-14, H-15, H-17, and H-18 of hepoxilin B_4 . The peaks were confirmed with the selective TOCSY (mixing time = 80 ms). (a) H-18,17 irradiation on H-20. (b) H-14,15 irradiation on H-12. (c) H-9,8 irradiation on H-10. (d) H-5,6 irradiation on H-3.

Supplementary Figure 22. 2D NMR of hepoxilin B₄. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

(S,4Z,7Z,10Z)-12-hydroxy-12-((2R,3S)-3-((2Z,5Z)-octa-2,5-dien-1-yl)oxiran-2-yl)dodeca-4,7,10-trienoic acid

Supplementary Figure 23. Structure of hepoxilin B₅.

Supplementary Figure 24. 1D NMR data of hepoxilin B₅. (a) 1H NMR peak of HXB₅. (b) 13C NMR peak of HXB₅.

Supplementary Figure 25. ROESY NMR of hepoxilin B₅. ROE correlation of H-10, H-11, and H-12 of HxB₅ at ROESY.

Supplementary Figure 26. H-4, H-5, H-7, H-8, H-10, H-11, H-17, H-19, and H-20 of hepoxilin B_5 . The peaks were confirmed with the selective TOCSY (mixing time = 80 ms). (a) H-20,19 irradiation on H-22. (b) H-16,17 irradiation on H-14. (c) H-11,10 irradiation on H-12. (d) H-7,8 irradiation on H-6 and H-9. (e) H-4,5 irradiation on H-2.

Supplementary Figure 27. 2D NMR of hepoxilin B₅. (a) COSY. (b) ROESY. (c) HSQC. (d) HMBC.

(5Z,8Z)-10-((2S,3R)-3-((S,Z)-1-hydroxyoct-2-en-1-yl)oxiran-2-yl)deca-5,8-dienoic acid

Supplementary Figure 28. Structure of hepoxilin D₃.

Supplementary Figure 29. 1D NMR data of hepoxilin D₃. (a) 1H NMR peak of HXD₃. (b) 13C NMR peak of HXD₃.

ppm

Supplementary Figure 30. ROESY NMR of he poxilin D_3 . (a) ROE correlation of H-11, H-12, and H-13 of HXD₃ at ROESY. (b) ROE correlation between H-14 and H-15 and between H-8 and H-9 of HXD₃ at ROESY.

Supplementary Figure 31. H-5, H-6, H-8, H-9, H-14, and H-15 of hepoxilin D_3 . The peaks were confirmed with the selective TOCSY (mixing time = 80 ms). (a) H-14,15 irradiation on H-13. (b) H-9,8 irradiation on H-11.(c) H-5,6 irradiation on H-3.

Supplementary Figure 32. 2D NMR of hepoxilin D₃. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

Supplementary Figure 33. Structure of trioxilin B₃.

Supplementary Figure 34. 1D NMR data of trioxilin B₃. (a) 1H NMR peak of TrXB₃. (b) 13C NMR peak of TrXB₃.

Supplementary Figure 35. ROESY NMR of trioxilin B₃. (a) ROE correlation of H-10, H-11, and H-12 of HxD3 at ROESY. **(b)** ROE correlation of between H-14 and H-15 and between H-8 and H-9 of TrXB3 at ROESY.

Supplementary Figure 36. H-5, H-6, H-8, H-9, H-14, and H-15 of trioxilin $B_{3.}$ The peaks were confirmed with the selective TOCSY (mixing time = 40 ms). (a) H-14,15 irradiation on H-13. (b) H-9,8 irradiation on H-10. (c) H-5,6 irradiation on H-2.

Supplementary Figure 37. 2D NMR of trioxilin B₃. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

(5Z,8Z,10S,11S,12R,14Z,17Z)-10,11,12-trihydroxyicosa-5,8,14,17-tetraenoic acid

Supplementary Figure 38. Structure of trioxilin B₄.

Supplementary Figure 39. 1D NMR data of trioxilin B_4 . (a) 1H NMR peak of TrXB₄. (b) 13C NMR peak of TrXB₄.

Supplementary Figure 40. ROESY NMR of trioxilin B₄. (a) ROE correlation of H-10, H-11, and H-12 of TrXB4 at ROESY. (b) ROE correlation of between H-14 and H-15 and between H-8 and H-9 of TrXB4 at ROESY.

Supplementary Figure 41. H-5, H-6, H-8, H-9, H-14, H-15, H-17, and H-18 of trioxilin B_4 . The peaks were confirmed with the selective TOCSY (mixing time = 80 ms). (a) H-5,6 irradiation on H-3. (b) H-9,8 irradiation on H-10. (c) H-14,15 irradiation on H-12. (d) H-18,17 irradiation on H-20.

Supplementary Figure 42. 2D NMR of trioxilin B₄. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

(4Z,7Z,10Z,12S,13S,14R,16Z,19Z)-12,13,14-trihydroxydocosa-4,7,10,16,19-pentaenoic acid

Supplementary Figure 43. Structure of trioxilin B₅.

Supplementary Figure 44. 1D NMR data of trioxilin B₅**. (a)** 1H NMR peak of TrXB₅**. (b)** 13C NMR peak of TrXB₅.

Supplementary Figure 45. ROESY NMR of trioxilin B₅. (a) ROE correlation of H-12, H-13, and H-14 of TrXB5 at ROESY. **(b)** ROE correlation of between H-16 and H-17 and between H-10 and H-11 of TrXB5 at ROESY.

Supplementary Figure 46. H-4, H-5, H-7, H-8, H-10, H-11, H-17, H-19, and H-20 of trioxilin B_5 . The peaks were confirmed with the selective TOCSY (mixing time = 80 ms). (a) H-20,19 irradiation on H-22. (b) H-16,17 irradiation on H-14. (c) H-11,10 irradiation on H-12. (d) H-8,7 irradiation on H-9. (e) H-4,5 irradiation on H-2.

Supplementary Figure 47. 2D NMR of trioxilin B₅. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

(5Z,8Z,11R,12S,13S,14Z)-11,12,13-trihydroxyicosa-5,8,14-trienoic acid

Supplementary Figure 48. Structure of trioxilin D₃.

Supplementary Figure 49. 1D NMR data of trioxilin D₃. (a) 1H NMR peak of TrXD₃. (b) 13C NMR peak of TrXD₃.

Supplementary Figure 50. ROESY NMR of trioxilin D₃. (a) ROE correlation of H-11, H-12, and H-13 of TrXD3 at ROESY. **(b)** ROE correlation of between H-8 and H-9 of TrXD3 at ROESY.

Supplementary Figure 51. H-5, H-6, H-8, H-9, H-14, and H-15 of trioxilin D_{3} . The peaks were confirmed with the selective TOCSY (mixing time = 40 ms). (a) H-14,15 irradiation on H-13. (b) H-9,8 irradiation on H-11. (c) H-5,6 irradiation on H-3.

Supplementary Figure 52. 2D NMR of trioxilin D₃. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

(5Z,8Z,11R,12R,13E)-11,12,15-trihydroxyicosa-5,8,13-trienoic acid

Supplementary Figure 53. Structure of trioxilin E₃.

Supplementary Figure 54. 1D NMR data of trioxilin E_3 . (a) 1H NMR peak of $TrXE_3$. (b) 13C NMR peak of $TrXE_3$.

Supplementary Figure 55. ROESY NMR of trioxilin E_3 . (a) ROE correlation of H-11, H-12, and H-13 of TrXE₃ at ROESY. (b) ROE correlation of between H-8 and H-9 of TrXE₃ at ROESY.

Supplementary Figure 56. H-5, H-6, H-8, H-9, H-14, and H-15 of trioxilin $E_{3.}$ The peaks were confirmed with the selective TOCSY (mixing time = 80 ms). (a) H-13,14 irradiation on H-12. (b) H-9,8 irradiation on H-10. (c) H-5,6 irradiation on H-3.

Supplementary Figure 57. 2D NMR of trioxilin E₃. (a) COSY. (b) TOCSY. (c) ROESY. (d) HSQC. (e) HMBC.

Supplementary Figure 58. Biotransformation of hydroperoxy fatty acids to hepoxilins by recombinant *Escherichia coli*. The reactions were performed in 50 mM 4-(2-hydroxyethyl)piperazinyl-1-propanesulphonic acid (EPPS) (pH 8.5) buffer containing 1 mM substrate and 3.6 g L⁻¹ cells at 30°C for 60 min. (a) Biotransformation of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) to HXB₃ by recombinant *E. coli* expressing 12-LOX. (b) Biotransformation of 12-hydroperoxyeicosapentaenoic acid (12-HpEPE) to HXB₄ by recombinant *E. coli* expressing 12-LOX. (c) Biotransformation of 14-hydroperoxydocosahexaenoic acid (14-HpDoHE) to HXB₅ by recombinant *E. coli* expressing 12-LOX. (d) Biotransformation of 11-HpETE to HXD₃ by recombinant *E. coli* expressing 11-LOX. Data represent the means of 3 separate experiments, and error bars represent the standard deviations. The symbols indicate HPFA (■), HFA (▲), HX (♦) and TrX (▼).

Supplementary Figure 59. Biotransformation of arachidonic acid to hepoxilin B₃ by recombinant *Escherichia coli.* (a) Effect of ARA concentration on HXB₃ production. The reactions by recombinant *E. coli* expressing 12-LOX were performed in 50 mM EPPS (pH 8.5) buffer containing 7.2 g L⁻¹ cells by varying the concentration of ARA from 2 mM to 10 mM at 30°C for 30 min. (b) Time-course reactions for the conversion of ARA to HXB₃. The reactions by recombinant *E. coli* expressing 12-LOX were performed in 50 mM EPPS (pH 8.5) buffer containing 6 mM ARA and 14.4 g L⁻¹ cells at 30°C for 120 min. Data represent the means of 3 separate experiments, and error bars represent the standard deviations. The symbols indicate ARA (•), 12-HPETE (**■**), 12-HETE (**▲**), HXB₃ (•).

Supplementary Figure 60. Transcriptional activity of peroxisome proliferatoractivated receptor gamma for hydroxy fatty acids. HEK-293 cells were cultured in a 24-well plate $(1.0 \times 10^5$ cells per well). After 24 h of incubation, cells were transfected with plasmids expressing peroxisome proliferator-activated receptor gamma (PPAR γ), PPAR response element (PPRE) × 3-thymidine kinase-luciferase reporter constructs, and the *Renilla* luciferase control vector pRL. After another 24 h, the cells were treated with HFAs and/or 3 µM troglitazone for 24 h. The cells were harvested, and the transcriptional activity of PPAR γ was determined by a luciferase assay. (a) 12-HETE. (b) 11-HETE. Data represent the means of 3 separate experiments, and error bars represent the standard deviations. *p*-values are based on *t*-test. **p* < 0.05, ***p* < 0.01.

Supplementary Figure 61. Phylogenetic analysis of the nucleotide sequence of bacterial lipoxygenases. The phylogenetic analysis was performed using the neighbour-joining method. The optimal sum of the branch length is 9.822258 in the tree. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The evolutionary distances are calculated using the maximum composite likelihood method and are expressed as the number of base substitutions per site. The analysis involved 25 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were 1,039 positions in the final dataset. Evolutionary analyses were conducted in MEGA6. Accession numbers of LOXs and full names of strains are included in Supplementary Table 15.

Supplementary Figure 62. Biosynthetic pathways for trioxilins in this study and published reports. The symbols indicate the reported pathways (blue box and black line) and new pathways identified in this study (red box and red line).

Supplementary Figure 63. Molecular docking of 6 compounds with ligand-binding domain of human peroxisome proliferator-activated receptor gamma . (A) Docking pose of 6 compounds with LBD of human peroxisome proliferator-activated receptor gamma (PPAR γ), (b) HXB₃, (c) HXB₄, (d) HXD₃, (e) TrXB₃, (f) TrXD₃, and (g) 11-HETE. Docking studies to the structure of human PPAR γ (hPPAR γ) [PDB 2PRG] were performed in a CDOCKER module of Discovery Studio 4.1. The structure in orange net is show a hydrophobic pocket, and the amino acids with green of hPPAR γ show the residues of hydrogen bonding interaction with molecules. HXB₃, HXB₄, HXD₃, TrXB₃, TrXD₃, and 11-HETE are displayed in color with green, pink, blue, red, yellow, and purple, respectively.

Supplementary Figure 64. 2D pictures of ligand interaction with human peroxisome proliferator-activated receptor gamma. The crystal structure of human PPARγ was used 2PGR (PDB). (a) Rosiglitazone. (b) HXB₃. (c) HXB₄. (d) HXD₃. (e) TrXB₃. (f) TrXD₃. (g) 11-HETE. Residues around ligand molecules represent green ball. Hydrogen bonds represented green dashed line. Blue circles show solvent accessible surface.

Supplementary Figure 65. HPLC analysis for the broth of HEK 293 cells with lipid mediator and/or troglitazone. HEK 293 cells was cultured for 24 h and the broth was analysed. (a) Treated HX without HEK 293 cells. (b) Only HEK 293 cells. (c) Treated HX with HEK 293 cells. (d) Treated troglitazone (TRO) with HEK 293 cells. (e) Treated HX and TRO with HEK 293 cells. The lipid mediators tested were not metabolized by HEK 293 cells.

Supplementary Figure 66. Different wavelengths analysis of metabolites using HPLC. The metabolites were produced from ARA by recombinant *E. coli* expressing 12-LOX and EH from *M. xanthus*. (a) 202 nm, (b) 234 nm, and (c) 254 nm.

b

Supplementary Figure 67. Determination for the concentration of hepoxilin B₃ by
HPLC. (a) HPLC analysis of HXB₃ standard at each concentration ranging from 0.1 to
5 mM. (b) Calibration curve of HXB₃ standard between area and concentration.

Supplementary Table 1. Abbreviations used in the study.

ARA	Arachidonic acid
EPA	Eicosapentaenoic acid
DHA	Docosabexaenoic acid
НХ	Henoxilin
TrX	Trioxilin
PG	Prostaglandin
IT	Leukotriene
LI	Lipoxin
HFA	Hydroxy fatty acid
HPFA	Hydro-peroxy fatty acid
EHFA	Epoxy-hydroxy fatty acid
HETE	Hydroxyeicosatetraenoic acid
НрЕТЕ	Hydroperoxyeicosatetraenoic acid
HEPE	Hydroxypentaenoic acid
HpEPE	Hydroperoxypentaenoic acid
HDoHE	Hydroxydocosahexaenoic acid
HpDoHE	Hydroperoxydocosahexaenoic acid
LOX	Lipoxygenase
COX	Cyclooxygenase
EH	Epoxide hydrolase
LB	Luria-Bertani
EPPS	4-(2-Hydroxyethyl)piperazinyl-1-propanesulfonic acid
HEK	human embryonic kidney
PPAR	Peroxisome proliferator activated receptor
PPRE	PPAR response element
TMZ	Thiazolidinedione
TRO	Troglitazone
LBD	Ligand binding domain
NMR	Nuclear magnetic resonance
HPLC	High performance liquid chromatography
	T' '1 1 4 1 4 4
LC-MS	Liquid chromatography-mass spectrometry

Type I	Type II	Product	Chemical name	Reference
А	HX	HXA ₃	8-Hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid	1
		HXA ₄	8-Hydroxy-11,12-epoxyeicosa-5,10,14,17-tetraenoic acid	2
		HXA ₅	10-Hydroxy-13,14-epoxydocosa-4,7,11,16,19-pentaenoic acid	3
		14,15-HXA ₃	11-Hydroxy-14,15-epoxyeicosa-5,8,12-trienoic acid	4
	TrX	TrXA ₃	8,11,12-Trihydroxyeicosa-5,9,14-trienoic acid	1
		TrXA ₄	8,11,12-Trihydroxyeicosa-5,10,14,17-tetraenoic acid	2
		TrXA ₅	10,13,14-Trihydroxydocosa-4,7,11,16,19-pentaenoic acid	3
В	HX	HXB ₃	10-Hydroxy-11,12-epoxyeicosa-5,8,14-trienoic acid	This study
		HXB ₄	10-Hydroxy-11,12-epoxyeicosa-5,8,14,17-tetraenoic acid	This study
		HXB ₅	12-Hydroxy-13,14-epoxydocosa-4,7,10,16,19-pentaenoic acid	This study
		14,15-HXB ₃	13-Hydroxy-14,15-epoxyeicosa-5,8,11-trienoic acid	4
	TrX	TrXB ₃	10,11,12-Trihydroxyeicosa-5,8,14-trienoic acid	This study
		$TrXB_4$	10,11,12-Trihydroxyeicosa-5,8,14,17-tetraenoic acid	This study
		TrXB ₅	12,13,14-Trihydroxydocosa-4,7,10,16,19-pentaenoic acid	This study
С	TrX	TrXC ₃	8,9,12-Trihydroxyeicosa-5,10,14-trienoic acid	5
D	HX	HXD ₃	13-Hydroxy-11,12-epoxyeicosa-5,8,14-trienoic acid	T his study
	TrX	TrXD ₃	11,12,13-Trihydroxyeicosa-5,8,14-trienoic acid	T his study
Е	HX	HXE ₃	15-Hydroxy-11,12-epoxyeicosa-5,8,13-trienoic acid	This study
	TrX	TrXE ₃	11,12,15-Trihydroxyeicosa-5,8,13-trienoic acid	This study

Supplementary Table 2. Classification and chemical names of hepoxilins and trioxilins.

Metabolite No	m/z	Retention time (min)	MS/MS fragment masses ¹	Molecular formula	Suggested compounds ² (Formal name)
1	303.2	10.55	80.2, 177.1, 205.3, 259.2, 285.1, 303.2	$C_{20}H_{31}O_2$	ARA
2	301.2	8.47	149.2, 203.2, 229.1, 257.2, 301.2	$C_{20}H_{29}O_2$	EPA
3	319.2	9.09	167.3, 195.3, 275.2, 301.1, 319.2	$C_{20}H_{32}O_3$	11-HETE
4	319.2	9.56	163.1, 179.2, 275.3, 301.1, 319.2	$C_{20}H_{32}O_3$	12-HETE
5	319.3	8.36	175.2, 219.1, 275.2, 301.2, 319.3	$C_{20}H_{32}O_3$	15-HETE
6	335.4	7.57	153.2, 183.2, 195.2, 263.3, 317.2, 335.4	$C_{20}H_{32}O_4$	HXB ₃
7	367.5	7.44	187.1, 235.2, 289.3, 315.4, 331.4, 333.3, 367.5	$C_{20}H_{32}O_{6}$	PGG ₂
8	351.2	6.91	189.2, 233.1, 271.2, 299.3, 315.3, 333.3, 351.2	$C_{20}H_{32}O_5$	PGH ₂
9	335.2	8.12	97.1, 127.3, 167.2, 209.2, 317.2, 335.2	$C_{20}H_{32}O_4$	No match ³ (HX analogue)
10	353.2	6.17	139.3, 153.1, 201.2, 242.1, 335.1, 353.1	$C_{20}H_{33}O_5$	No match (TrX analogue)
11	351.2	6.31	113.2, 175.1, 189.1, 235.2, 271.2, 315.2, 351.2	$C_{20}H_{32}O_5$	No match (PGE ₂ , PGD ₂ , TXA ₂)
12	333.2	5.89	113.2, 175.8, 189.2, 271.3, 315.1, 333.2	$C_{20}H_{29}O_4$	No match (PGA ₂ , PGB ₂ , PGJ ₂ , 12-HpEPE)

Supplementary Table 3. Molecular formulae of arachidonic acid and its metabolites by Myxococcus xanthus.

⁻¹Metabolites were analysed by HPLC and LC-MS/MS at 202 nm.

²Products were compared with the references in LIPID MAPS database (<u>http://lipidmaps.org</u>).

³No match means that the compound is not correctly identified.

Target enzyme ¹	Template gene	Entry	Protein name	Genename	Identity $(\%)^2$	Length (bp)	Expression	Activity
LOX	P18054 (ALOX12)	Q1DBH9	Lipoxygenase family protein	MXAN_1744	30.0	2028	0	0
		Q1DBH8	Uncharacterized protein	MXAN_1745	15.2	2148	0	0
EH	P34913 (EPHX2)	Q1DBS7	Putative epoxide hydrolase	MXAN_1644	20.9	957	0	0
	P09960 (LTA4H)	Q1D232	Peptidase M1	MXAN_5137	36.4	1755	0	×
COX	P35354 (PTGS2)	Q1D1V4	Peroxidase family protein	MXAN_5217	18.5	1995	0	0
TXA synthase	P24557 (TBXAS1)	Q1DEH2	Cytochrome P450 family protein	MXAN_0683	21.2	1404	0	×
		Q1D9Z9	Cytochrome P450 family protein	MXAN_2304	20.1	1377	0	×
PGD synthase	O60760 (HPGDS)	Q1D6B3	Putative glutathione S- transferase	MXAN_3623	24.3	687	0	×

Supplementary Table 4. Candidate biosynthetic genes of lipid mediators in *Myxococcus xanthus* genome.

¹Genes were selected based on sequence alignments with human corresponding enzymes.

²Identity means the sequence similarity with human corresponding enzymes.

Enzyme	Substrate	Product	Specific activity $(\mu mol \min^{-1} mg^{-1})^1$
12-LOX	ARA	12-HpETE	605 ± 1.7
(MXAN 1745)		HXB ₃	59.6 ± 0.2
	EPA	12-HpEPE	134 ± 3.9
		HXB_4	35.6 ± 0.1
	DHA	14-HpDoHE	112 ± 2.7
		HXB ₅	34.3 ± 0.1
	12-HpETE	HXB ₃	74.1 ± 0.1
	12-HpEPE	HXB_4	42.6 ± 0.2
	14-HpDoHE	HXB ₅	66.8 ± 0.3
11-LOX	ARA	11-HpETE	489 ± 1.8
(MXAN 1744)		HXD ₃	29.3 ± 0.1
	EPA	11-HpEPE	136 ± 3.9
	DHA	14-HpDoHE	91.6 ± 3.4
	11-HpETE	HXD ₃	46.8 ± 0.6
EH	HXB ₃	TrXB ₃	$1,403 \pm 5.4$
(MXAN 1644)	HXB_4	TrXB ₄	985 ± 12.9
	HXB ₅	TrXB ₅	793 ± 8.4
	HXD ₃	TrXD ₃	$1,158 \pm 3.8$

Supplementary Table 5. Specific activities of enzymes in *Myxococcus xanthus*.

¹Data represent the means of three separate experiments, and \pm represent the standard deviations.

#	1H (δ)	multiplet	J (Hz)	Protons	13C (δ)
1					174.3
2	2.20	t	6.44	2Н	33.0
3	1.54	tt	7.11	2Н	24.4
			6.44		
4	2.03	td	7.11	2Н	26.1
			6.52		
5	5.34	m		1H	129.4
6	5.36	m		1H	128.1
7	2.77	m		2Н	25.8
8	5.37	m		1H	129.5
9	5.36	m		1H	129.5
10	4.07	dd	7.65, 6.03	1H	67.1
11	2.71	dd	6.03, 2.17	1H	60.7
12	2.82	td	5.43, 2.17	1H	54.7
13	2.29	m		1H	29.0
	2.17			1H	
14	5.33	m		1H	123.8
15	5.47	dt	10.89, 5.43	1H	132.3
16	1.96	dt	7.10, 7.05	2H	26.7
17	1.30	m		2H	28.9
18	1.25	m		2H	30.8
19	1.25	m		2H	21.9
20	0.86	t	6.88	3Н	13.9

Supplementary Table 6. 1D NMR data of hepoxilin B₃.

#	$1 \mathrm{H}(\delta)$	multiplet	J (Hz)	Protons	13C (ð)
1					174.3
2	2.20	t	7.41	2H	33.1
3	1.54	tt	7.41, 7.02	2H	24.4
4	2.04	dt	6.55, 7.02	2H	26.1
5	5.36	m		1H	129.4
6	5.33	m		1H	128.1
7	2.77	m		2H	25.8
8	5.36	m		1H	129.5
9	5.36	m		1H	129.5
10	4.08	dd	7.63, 6.00	1H	67.1
11	2.72	dd	6.00, 2.20	1H	60.7
12	2.84	td	8.15, 2.20	1H	54.5
13	2.32	m		1H	29.0
	2.21	m		1H	
14	5.33	m		1H	124.0
15	5.44	m		1H	130.4
16	2.74	dd	6.68, 6.62	1H	25.2
17	5.27	m		1H	126.8
18	5.36	m		1H	131.6
19	2.03	dt	6.95, 7.53	2H	20.0
20	0.91	t	7.53	3Н	14.1

Supplementary Table 7. 1D NMR data of hepoxilin B_{4.}

#	1H (δ)	multiplet	J (Hz)	Protons	13C (δ)
1					174.2
2	2.20	t	6.93	2H	34.2
3	2.24	dt	6.93	2Н	22.7
4	5.38	m		1H	128.9
5	5.39	m		1H	128.3
6	2.78	m		2H	25.2
7	5.32	m		1H	128.1
8	5.30	m		1H	129.7
9	2.78	m		2H	25.2
10	5.39	m		1H	129.6
11	5.36	m		1H	129.4
12	4.09	dd	5.95	1H	67.1
			8.34		
13	2.72	dd	2.02	1H	60.7
			5.95		
14	2.84	m		1H	54.8
15	2.32	m		1H	29.0
	2.21	m		1H	
16	5.33	m		1H	124.0
17	5.43	m		1H	130.4
18	2.74	t	7.16	2Н	25.2
19	5.27	m		1H	126.9
20	5.36	m		1H	131.6
21	2.02	dt	7.03	2H	20.0
			7.52		
22	0.92	t	7.52	3Н	14.1

Supplementary Table 8. 1D NMR data of hepoxilin B₅.

#	$1 \mathrm{H}(\delta)$	multiplet	J (Hz)	Protons	13C (δ)
1					174.3
2	2.20	t	6.38	2H	33.0
3	1.54	tt	6.38	2H	24.4
			7.08		
4	2.04	dt	7.08	2H	26.0
			5.74		
5	5.33	m		1H	129.2
6	5.33	m		1H	128.1
7	2.74	dd	5.72, 4.17	2H	25.2
8	5.42	m		1H	130.3
9	5.33	m		1H	124.0
10	2.33	m		1H	29.2
	2.20	m		1H	
11	2.81	dt	2.15, 5.42	1H	54.6
12	2.70	dd	2.15, 6.11	1H	60.8
13	4.00	ddd	8.63, 6.11	1H	67.2
14	5.43	m		1H	131.5
15	5.33	m		1H	129.6
16	1.99	dt	4.36, 6.84	2H	26.02
17	1.32-1.2	m		2H	31.09
18	1.32-1.2	m		2H	30.83
19	1.32-1.2	m		2H	21.93
20	0.85	t	7.04	3H	13.82

Supplementary Table 9. 1D NMR data of hepoxilin D₃.

#	1Η (δ)	multiplet	J (Hz)	Protons	13C (ð)
1					174.5
2	2.19	t	7.35	2H	33.7
3	1.54	tt	7.20, 7.35	2Н	24.5
4	2.04	dt	7.20,	2Н	26.52
5	5.35	m		1H	128.4
6	5.34	m		1H	128.4
7	2.83	m		1H	25.7
	2.73			1H	
8	5.30	m		1H	127.8
9	5.51	m		1H	132.2
10	4.50	dd	8.75, 2.92	1H	65.7
11	3.03	dd	7.27, 2.92	1H	76.9
12	3.44	dd	7.27, 8.35	1H	70.5
13	2.35	m		1H	31.0
	2.04			1H	
14	5.48	m		1H	127.4
15	5.38	m		1H	130.2
16	1.98	m		2H	26.6
17	1.30	m		2H	29.0
18	1.25	m		2H	30.9
19	1.27	m		2H	22.0
20	0.86	t	6.82	3Н	13.9

Supplementary Table 10. 1D NMR data of trioxilin B₃.

#	1H (δ)	multiplet	J (Hz)	Protons	13C (ð)
1					176.3
2	1.96	m		2H	35.8
3	1.49	m		2H	25.8
4	2.00	m		2H	26.62
5	5.32	m		1H	129.7
6	5.32	m		1H	127.5
7	2.98	dt	15.4, 7.32	1H	25.9
	2.87	dt	15.4, 7.32	1H	
8	5.31	m		1H	127.07
9	5.51	dd	9.49, 9.25	1H	131.9
10	4.63		8.74, 1.57	1H	64.4
11	2.89		8.16, 1.57	1H	77.5
12	3.47	ddd	8.38, 8.16,	1H	70.0
			2.77		
13	2.40	ddd	14.72,	1H	31.0
	2.02	m	6.94, 2.77	1H	
14	5.52	m		1H	128.2
15	5.31	m		1H	127.9
16	2.75	dd	5.6,	2H	25.4
			7.2		
17	5.29	m		1H	127.5
18	5.34	m		1H	131.2
19	2.03	dt	6.89,	2H	20.0
			7.52		
20	0.92	t	7.52	3Н	14.2

Supplementary Table 11. 1D NMR data of trioxilin B₄.

#	1H (δ)	multiplet	J (Hz)	Protons	13C (δ)
1					174.3
2	2.21	t	6.45	2H	34.33
3	2.25	dt	6.45	2H	22.7
4	5.35	m		1H	128.7
5	5.33	m		1H	128.3
6	2.8	dd		2H	25.1
7	5.33	m		1H	128.0
8	5.33	m		1H	127.8
9	2.88	m		1H	25.7
	2.78			1H	
10	5.32	m		1H	
11	5.53	m		1H	132.1
12	4.53	dd	8.89, 2.25	1H	65.6
13	3.04	dd	7.49, 2.25	1H	76.9
14	3.47	ddd	2.74, 7.49,	1H	70.4
			8.19		
15	2.38	m		1H	31.0
	2.06			1H	
16	5.50	m		1H	127.6
17	5.33	m		1H	128.3
18	2.75	dd		2H	25.3
19	2.29	m		1H	127.4
20	5.34	m		1H	131.3
21	2.03	dt	6.82, 7.53	2H	20.0
22	0.92	t	7.53	3Н	14.1

Supplementary Table 12. 1D NMR data of trioxilin B₅.

#	1H (δ)	multiplet	J (Hz)	Protons	13C (δ)
1					174.7
2	2.17	t	7.22	2Н	33.5
3	1.53	tt	6.36, 7.22	2H	24.7
4	2.03	m		2Н	26.1
5	5.33	m		1H	129.0
6	5.33	m		1H	128.6
7	2.74	m		2H	25.4
8	5.33	m		1H	128.3
9	5.49	m		1H	127.6
10	2.38	m		1H	30.9
	2.06	m		1H	
11	3.32	td	7.27, 2.97	1H	71.5
12	3.26	dd	4.62, 7.27	1H	76.7
13	4.35	dd	7.52, 4.62	1H	67.7
14	5.40	dd		1H	130.5
15	5.40	m		1H	131.1
16	2.07	m		1H	27.3
	2.01	m		1H	
17	1.31	m		2H	28.8
18	1.25	m		2H	31.0
19	1.27	m		2H	22.0
20	0.86	t	6.86	3Н	13.9

Supplementary Table 13. 1D NMR data of trioxilin D₃.

#	1H (δ)	multiplet	J (Hz)	Protons	13C (δ)
1					175
2	2.10	t	7.03	2H	34.4
3	1.50	tt	6.04, 7.03	2H	25.1
4	2.02	m		2H	26.4
5	5.31	m		1H	129.3
6	5.31	m		1H	128.4
7	2.74	m		1H	25.5
	2.71	m		1H	
8	5.31	m		1H	128.4
9	5.44	m		1H	127.6
10	2.19	m		1H	30.3
	2.05	m		1H	
11	3.29	m	4.53	1H	74.2
12	3.81	dd	4.53, 5.36	1H	74.2
13	5.61	dd	15.78, 5.36	1H	129.8
14	5.55	dd	15.78, 6.23	1H	134.5
15	3.89	m		1H	70.6
16	1.37	m		1H	37.4
	1.33	m		1H	
17	1.30	m		1H	24.8
	1.23	m		1H	
18	1.22	m		2H	31.4
19	1.25	m		2H	22.2
20	0.85	t	7.09	3Н	14.0

Supplementary Table 14. 1D NMR data of trioxilin E₃.

No	Organism ¹	Taxonomic	GenBank ²	Gene	protein	length	Reference
	Phylum proteobacteria						
1	Sphingopyxis sp. MC1	Alphaproteobacteria	ENY83021.1.	EBMC1_02935	Arachidonate 15-lipoxygenase	664	
2	Burkholderia thailandensis E264	Betaproteobacteria	ABC36974.1.	BTH_12353	Arachidonate 15-lipoxygenase	695	6
3	Shewanella woody MS32	Gammaproteobacteria	ACA87192.1.	Swoo_2919	Arachidonate 15-lipoxygenase	725	
4	Pseudomonas aeruginosa PAOI	Gammaproteobacteria	AAG04558.1.	loxA	Arachidonate 15-lipoxygenase	685	7
5	Pseudomonas aeruginosa 42A2	Gammaproteobacteria	AAL85880.2.	lox	Linoleate 9/13-lipoxygenase	685	8
6	<i>Grimontia indica</i>	Gammaproteobacteria	EOD80348.1.	D515_00636	Arachidonate 15-lipoxygenase	723	
7	Thiocapsa marina 5811	Gammaproteobacteria	EGV20546.1.	ThimaDRAFT_0324	Arachidonate 15-lipoxygenase	962	
8	Myxococcus xanthus DK 1622 (1)	Deltaproteobacteria	ABF88826.1.	MXAN 1744	Lipoxygenase family protein	675	This study
9	Myxococcus xanthus DK 1622 (2)	Deltaproteobacteria	ABF86480.1.	MXAN 1745	Arachidonate 12 lipoxygenase	715	This study
10	Myxococcus stipitatus Mx s8	Deltaproteobacteria	AGC43896.1.	MYSTI_02580	Uncharacterized protein	690	
11	Corallococcus coralloides M2	Deltaproteobacteria	AFE04785.1.	COCOR_02732	Uncharacterized protein	687	
12	Plesiocystis pacifica SIR-l	Deltaproteobacteria	EDM80093.1.	PPSIR1_20739	Uncharacterized protein	651	
13	Myxococcus fulvus 124B02	Deltaproteobacteria	AKF85636.1.	MFUL124B02_14095	Uncharacterized protein	689	
14	Hyalangium minutum	Deltaproteobacteria	KFE67541.1.	DB31_8024	Uncharacterized protein	688	
15	Enhygromyxa salina	Deltaproteobacteria	KIG12340.1.	DB30_01572	Arachidonate 15-lipoxygenase	713	
16	Sorangium cellulosum So0157-2	Deltaproteobacteria	AGP37954.1.	SCE1572_27890	Uncharacterized protein	673	
17	Archangium gephyra	Deltaproteobacteria	AKI99209.1.	AA314_00836	Arachidonate 15-lipoxygenase	680	
18	Cystobacter violaceus Cb vi76	Deltaproteobacteria	KFA92210.1.	Q664_16870	Uncharacterized protein	656	
	Phylum cyanobacteria						
19	Chamaesiphon minutus PCC 6605	Cyanobacteria	AFY92607.1.	Cha6605_1432	Lipoxygenase	668	
20	Cyanothece sp. PCC 8801	Cyanobacteria	ACK66448.1.	PCC8801_2437	Linolenate 13-lipoxy genase	668	9
21	Nostoc sp. PCC 7120	Cyanobacteria	BAB77350.1.	all8020	Linolenate9R-lipoxygenase	773	10
22	Coleofasciculus chthonoplastes PCC 7420	Cyanobacteria	EDX74350.1.	MC7420_3874	Putative uncharacterized protein	656	
23	Acaryochloris marina MBIC 11017	Cyanobacteria	ABW27601.1.	AM1_2594	Linolenate 13-lipoxy genase	571	11
24	Scytonema tolypothrichoides VB-61278	Cyanobacteria	KIJ84262.1.	SD80_04430	Uncharacterized protein	464	
	Phylum Bacteroidetes						
25	Indibacter alkaliphilus LW l	Bacteroidetes	EOZ99250.1.	A33Q_0628	Uncharacterized protein	729	

Supple ment	ary Table 15.	Bacteria containir	ıg lipoxygenase	and their GenB	ank accession number	s.
				2		_

¹The bacteria grouped as *Proteobacteria*, *Cyanobacteria*, and *Bacteroidetes*. ²The GenBank accession numbers of nucleotide sequences of LOXs.

Name	Restriction enzyme	Sequence
<i>MX 1744-</i> F	Nde I	GCC GCA TAT GAC TGT CGAGTACAAAC
<i>MX 1744-</i> R	Hind III	TAC AAG CTT TCAGAC GGT GAT GCC G
<i>MX 1745-</i> F	EcoR I	GGA TTC ATG AGC GCG AGT GTG A
<i>MX 17</i> 45-R	Not I	GCG GCC GCT TAG ATATTG ATG C
<i>MX 1644-</i> F	Nde I	GCG CAT ATG GCT GAC ATC ACG CAT CGA AC
<i>MX 1644-</i> R	Hind III	GCT AAG CTT TCAGGC CGG CAG CTT CTT CA
<i>MX 5137-</i> F	Nde I	AAC CAT ATG GCT CGC CTC GAC CCG CA
<i>MX 5137-</i> R	Hind III	ACA AAG CTT TCAGGC GCG CGA AAG GAT GA
<i>MX 5217-</i> F	Nde I	GCT GAC ATA TGG ATG AGA TGG AGG GGA CCG TC
<i>MX 5217-</i> R	Xho I	GAC TGC TCG AGT CAG TGA AGG AGG CTT CCC G
<i>MX 2304</i> -F	Nde I	GGC CAT ATG TCC ATC CAT CCA GCG GGT
<i>MX 2304-</i> R	Hind I	ACG AAG CTT TCA GGG CCG CGA GGC G
<i>MX 0683</i> -F	Nde 1	GCT CAT AT G GTT CGC TCC ACC TGC GCC
<i>MX 0683-</i> R	Hind 3	GCA AAG CTT TCATGC TCC CGC CGC ATG
<i>MX 3623-</i> F	Nde 1	GCG CAT ATG AAC GCT CAATCATCATTG CCG
<i>MX 3623-</i> R	Hind 3	GCG AAG CTT TCA GCC GTT GAG GAG CTG GA
MX 1745 Duet-F	EcoR I	GAT CGA ATT CAT GAG CGC GAG TGT GAC CCG GA
MX 1745 Duet-R	Hind III	GCC GCA AGC TTT TAG ATA TTG ATG CGG GAA CTG A
MX 1744 Duet-F	EcoR I	GAA TTC ATG ACT GTC GAG TAC AAAC
MX 1744 Duet-R	Hind III	TAC AAG CTT TCA GAC GGT GAT GCC G
MX 1644 Duet-F	Nde I	GCG CAT ATG GCT GAC ATC ACG CAT CGA ACC GT
MX 1644 Duet-R	Xho I	GCG CTC GAG TCA GGC CGG CAG CTT CTT CA

Supplementary Table 16. Primers used for PCR analysis.

Supplementary Notes

Identification of hydroxy fatty acids, hepoxilins, and trioxilins. The chemical structures of fragment peaks were analysed by ChemDraw 7.0. The reaction products, hydroxy fatty acids (HFAs), obtained from polyunsaturated fatty acids (PUFAs) using whole recombinant cells expressing 12-LOX or 11-LOX from M. xanthus were analysed by LC-MS/MS (Supplementary Fig. 8). The total molecular mass of the product (MW=320.2) obtained from arachidonic acid (ARA) by whole recombinant cells expressing 11-LOX or 12-LOX was represented by a peak at m/z 319.2 [M-H⁻] (Supplementary Fig. 8a, b). The peaks at m/z 167.2 and 197.1 of the 11-LOX derived product were resulted from the cleavage of the hydroxyl group at the C11 position the chemical formulas of the fragments were C₉H₁₄COOH and because C₁₀H₁₅OHCOOH, respectively, from the hydroxyl fatty acid (HFA). Thus, these fragment peaks indicated that the compound was an 11-hydroxyeicosatetraenoic acid (11-HETE). The peaks at m/z 179.2 and 208.2 of the 12-LOX derived product from ARA were resulted from the cleavage of the hydroxyl group at the C12 position because the fragments indicated $C_{10}H_{14}COOH$ and $C_{11}H_{16}OHCOO'$, respectively, from the HFA. These results indicated that the HFA was a 12-HETE. The total molecular mass of the product (MW=318.2) obtained from EPA by whole recombinant cells expressing 11-LOX or 12-LOX was represented by a peak at m/z 317.2 (Supplementary Fig. 8c, d). The LC-MS/MS fragments of the 11-LOX derived product fragments showed the peaks at m/z 121.1, 151.2, and 167.8. The chemical formulas of the two peaks at m/z 151.2 and 167.8, which were resulted from the cleavage between C10 and C11 of the HFA, were $C_{10}H_{14}OH$ and $C_{9}H_{14}COOH$, respectively. A peak at m/z 121.1 was resulted from the cleavage between C11 and C12 because of the loss of C₉H₁₃ from the HFA. These fragment peaks indicated that the HFA was an 11-hydroxyeicosapentaenoic acid (11-HEPE). The LC-MS/MS fragments of the product obtained from EPA by whole recombinant cells expressing 12-LOX showed the peaks at m/z 139.2 and 179.5. The chemical formulas of the two peaks, which were resulted from the cleavage between C11 and C12 of the HFA, were $C_9H_{14}OH$ and $C_{10}H_{14}COOH$, respectively. These fragment peaks identified that the HFA was a 12-HEPE. The product obtained from DHA by whole recombinant cells expressing 11- and 12-LOX showed a peak at m/z343.2 as a total molecular mass (MW=344.2) of the HFA (Supplementary Fig. 8e). The

LC-MS/MS fragments of the 11- and 12-LOX-derived product showed the peaks at m/z 139.2 and 205.6, which were resulted from the cleavage between C13 and C14 of the HFA. The chemical formulas of the two peaks were C₉H₁₄OH and C₁₂H₁₆COOH, respectively. Therefore, the compound was a 14-hydroxydocosahexaenoic acid (14-HDoHE).

Whole recombinant cells expressing 12-LOX or 11-LOX from M. xanthus converted PUFAs to the reaction products hepoxilins (HXs), and they were analysed by LC-MS/MS. HXs were produced from PUFAs via hydroperoxyfatty acids (HPFAs) by the twice reactions of 11- or 12-LOX. Whole recombinant cells expressing 11-LOX or 12-LOX converted ARA to the products with total molecular masses of 336.2, which were represented by the peaks at m/z 335.2 [M–H[–]] (Supplementary Fig. 9a, d, e); and whole recombinant cells expressing 12-LOX converted EPA and DHA to the products with total molecular masses of 334.2 and 360.2, which were represented by a peak at m/z 333.3 and 359.4 [M-H⁻], respectively (Supplementary Fig. 9b, c). The LC-MS/MS fragments of the 12-LOX derived product fragments from ARA showed the peaks at m/z 153.2, 183.2, and 195.2 (Supplementary Fig. 9a). The chemical formulas of the two peaks at m/z 153.2 and 183.2, which were resulted from the cleavage between C10 and C11 of the HX, were $C_{10}H_{17}O$ and $C_{9}H_{13}OHCOOH$, respectively. A peak at m/z195.2 was resulted from the cleavage between C11 and C12 of the epoxide ring in the HX because the chemical formula was C₁₀H₁₄OHCOO. These fragment peaks indicated that the compound was an HXB₃. The LC-MS/MS fragments of the product obtained from EPA by whole recombinant cells expressing 12-LOX showed the peaks at m/z151.2, 183.2, and 223.8 (Supplementary Fig. 9b). Two peaks at *m*/*z* 151.2 and 183.2 were resulted from the cleavage between C10 and C11 of the HX and their chemical formulae were $C_{10}H_{15}O$ and $C_{9}H_{13}OHCOOH$, respectively. A peak at m/z 223.8 was resulted from the cleavage between C12 and C13 from the HX because the chemical formula was $C_{11}H_{15}OOHCOO$. Thus, the fragments indicated that the HX was a HXB₄. The LC-MS/MS fragments of the 12-LOX derived product from DHA showed the peaks at m/z 179.1, 221.1, and 251.2 (Supplementary Fig. 9c). These peaks were resulted from the cleavage between C11 and C12; C13 and C14 in the epoxide; and C14 and C15 of the HX, respectively, and their chemical formulae were $C_{10}H_{14}COOH$, $C_{12}H_{16}OHCOOH$, and $C_{13}H_{17}OOHCOOH$, respectively. Thus, the HX was suggested as

an HXB₅. The LC-MS/MS fragments of the 11-LOX derived product from ARA showed the peaks at m/z 97.2, 127.3, 167.2, and 209.2 (**Supplementary Fig. 9d**). The peaks at m/z 97.1 and 167.2 were resulted from the cleavage between C10 and C11; and C13 and C14 of the HX, respectively, because the chemical formulae were C₇H₁₃ and C₉H₁₄COOH, respectively. The peaks at m/z 127.3 and 209.2 were resulted from the cleavage between C12 and C13 of the HX, and the chemical formulae were C₈H₁₄OH and C₁₁H₁₆OCOOH, respectively. Based on these fragments, this HX was suggested as a HXD₃. The LC-MS/MS fragments of the other 11-LOX derived product from ARA showed the peaks at m/z 139.9, 167.2, 235.1, and 265.1 (**Supplementary Fig. 9e**), which were resulted from the cleavage between C11 and C12 in the epoxide; C10 and C11; C14 and C15; and C15 and C16 of the HX, respectively. The chemical formulae of these fragments were C₉H₁₅OH, C₉H₁₄COOH, C₁₃H₁₈OCOOH, and C₁₄H₁₉OOHCOOH, respectively. These results suggested that the compound was an HXE₃.

The reaction products trioxilins (TrXs) obtained from PUFAs using whole recombinant cells expressing 11- or 12-LOX and epoxide hydrolase (EH) from M. xanthus were analysed by LC-MS/MS. The total molecular masses of the products (MW=354.2) obtained from ARA by whole recombinant cells expressing 11- or 12-LOX and EH were represented by the peaks at m/z 353.2 [M-H⁻] (Supplementary Fig. **10a**, **d**, **e**), and the total molecular masses of the products (MW=352.2 and MW=378.2) obtained from EPA and DHA, respectively, by whole recombinant cells were represented by the peaks at m/z 351.2 and 377.2 [M–H⁻], respectively (Supplementary Fig. 8b, c). The LC-MS/MS fragments of the 12-LOX and EH derived product fragments from ARA showed the peaks at m/z 153.2, 201.2, and 242.1 (Supplementary Fig. 10a). The two peaks at m/z 153.2 and 201.2 were resulted from the cleavage between C9 and C10 of the TrX, and the chemical formulae were C8H12COOH and $C_{11}H_{18}(OH)_3$, respectively. The chemical formulae of the peak at m/z 242.2 was $C_{11}H_{15}(OH)_3COO'$, which were resulted from the cleavage between C12 and C13 of the TrX. These chemical formulae indicated that the compound is a TrXB₃. The LC-MS/MS fragments of the product obtained from EPA by whole recombinant cells expressing 12-LOX and EH showed the peaks at m/z 198.2 and 242.1 (Supplementary Fig. 10b). The chemical formulas of the two peaks, which were resulted from the cleavage between C9 and C10; and C12 and C13 of the TrX, were $C_{11}H_{16}(OH)_2O^{-1}$ and $C_{11}H_{15}(OH)_3COO^{-1}$,

respectively. These fragment peaks identified that the TrX was a TrXB4. The LC-MS/MS fragments of the 12-LOX and EH derived product from DHA showed the peaks at m/z 138.2, 178.1, 198.2, and 238.1 (Supplementary Fig. 10c). The peaks at m/z138.2 and 238.1 were resulted from the cleavage between C13 and C14 of the TrX because the chemical formulae were $C_9H_{14}O'$ and $C_{12}H_{16}(OH)_2COO'$, respectively. The peaks at m/z 178.1 and 198.2 were resulted from the cleavage between C11 and C12 of the TrX, and the chemical formulae were $C_{10}H_{14}COO^{-1}$ and $C_{11}H_{16}(OH)_2O^{-1}$, respectively. These results suggested that this compound was a TrXB₅. The LC-MS/MS fragments of the 11-LOX and EH derived product fragments from ARA showed the peaks at m/z167.4, 187.2, 256.2, and 282.1 (Supplementary Fig. 10d). The peaks at m/z 167.4 and 187.2 were resulted from the cleavage between C10 and C11 of the TrX because the chemical formulae were $C_{10}H_{14}COOH$ and $C_{10}H_{16}(OH)_3$, respectively. The peaks at m/z256.2 and 282.1 were resulted from the cleavage between C13 and C14; and C15 and C16 of the TrX, respectively, and the chemical formulae were $C_{12}H_{17}(OH)_3COO'$, and $C_{14}H_{19}(OH)_3COO$, respectively. These fragment peaks suggested that the TrX was a TrXD₃. The LC-MS/MS fragments of the other 11-LOX and EH derived product from ARA showed the peaks at m/z 157.1, 167.1, 253.2, and 282.1 (Supplementary Fig. **10e**). The peaks at m/z 157.1 and 167.1 were resulted from the cleavage of the hydroxyl group at the C11 position of the TrX because the chemical formulae were $C_9H_{15}(OH)_2$ and C₉H₁₄COOH, respectively. The peaks at m/z 253.2 and 282.1 were resulted from the cleavage of the hydroxyl group at the C14 position because the chemical formulae were $C_{13}H_{18}(OH)_2COOH$ and $C_{14}H_{19}(OH)_3COO'$, respectively. Based on these fragments, this TrX was suggested as a TrXE₃.

The NMR analysis of metabolites was used to confirm the structures by recording 1D and 2D NMR spectra. The overlapped peaks of compounds including double bonds were assigned by selective TOCSY and 2D (HSQC and HMBC) NMR results. A double bond is sp2, which is structurally fixed. In the case of *E*-geometry of double bond, the protons are 180 degrees apart from each other, so neither NOE peak nor ROE peak does not appear. On the other hand, in the case of *Z*-geometry of double bond, the protons are so close that the ROE peak appears^{12, 13}. Based on the identified stereo information of intermediate materials (11*S*-HpETE and 12*S*-HpETE), the stereochemistry were determined by ROESY NMR results.

(S,5Z,8Z)-10-hydroxy-10-((2R,3S)-3-((Z)-oct-2-en-1-HXB₃ was identified as yl)oxiran-2-yl)deca-5,8-dienoic acid (Supplementary Fig. 13). The results of 1D NMR of HXB₃ were shown in Supplementary Fig. 14 and Supplementary Table 6. The H-10, H-11, and H-12 had the ROE correlation with each other, indicating the syn geometry (Supplementary Fig. 15a). H-12 was also identified as S-form because 12S-HpETE was identified as S-form. H-5, H-6, H-8, H-9, H-14, and H-15 were confirmed with selective TOCSY irradiation on the peak H-3, H-10, and H-17 (Supplementary Fig. 16). The coupling constants of J9, J5, and J15 were ranging below 11 Hz, and H-14 and H-15 showed the ROE correlation, indicating that the double bonds have Zgeometry (Supplementary Fig. 15b). C-7 and C-10 are composed of sp3 bonds, which allow both C-7 and C-10 rotate freely. As H-7 and H-10 are very close to each other in the 3D minimized energy calculated molecular structure of HXB₃, they result in ROE peaks in ROESY NMR. The 2D NMRs of HXB₃ to support additional structural analysis were shown in the Supplementary Fig. 17. HXB₄ was shown similar pattern with HXB₃ thus it was identified as (S, 5Z, 8Z)-10-hydroxy-10-((2R, 3S)-3-((2Z, 5Z)-octa-2,5-dien-1-yl)oxiran-2-yl)deca-5,8-dienoic acid (Supplementary Fig. 18). The 1D NMR was detected by 1H, 13C NMR (Supplementary Fig. 19 and Supplementary **Table 7**). The H-10, H-11, and H-12 had the ROE correlation with each other, indicating the syn geometry (Supplementary Fig. 20). H-12 was also identified as S-form because 12-HpEPE was identified as S-form by CP-HPLC. H-5, H-6, H-8, H-9, H-14, H-15, H-17, and H-18 were confirmed with selective TOCSY irradiation on the peak H-3, H-10, H-12, and H-20 (Supplementary Fig. 21). The coupling constants of J5, J9, J14, and J18 were ranging below 11 Hz, indicating that the double bonds have Z geometry. The 2D NMRs of HXB₄ to support additional structural analysis were shown in the Supplementary Fig. 22. HXB₅ was derived from DHA and was converted via 14S-HpDoHE by ARA 12(S)-LOX (MXAN 1745). As HXB₅ was identified as (S,4Z,7Z,10Z)-12-hydroxy-12-((2R,3S)-3-((2Z,5Z)-octa-2,5-dien-1-yl)oxiran-2-

yl)dodeca-4,7,10-trienoic acid (**Supplementary Fig. 23–24** and **Supplementary Table 8**). The H-12, H-13, and H-14 had the ROE correlation with each other, which indicates the syn geometry (**Supplementary Fig. 25**). H-14 was also identified as *S*-form because 14*S*-HpDoHE was identified as *S*-form. H-4, H-5, H-7, H-8, H-10, H-11, H-16, H-17, H-19, and H-20 were confirmed with selective TOCSY irradiation on the peak H-2, H-

6, H-12, H-14, and H-22 (Supplementary Fig. 26). The coupling constants of J4, J7, J11, J16, and J20 were ranging below 11 Hz, indicating that the double bonds have Zgeometry. The support 2D NMR data of HXB₅ were shown in Supplementary figure. 27. ARA 11-LOX (MXAN 1744) originated from M. xanthus had the ability of S-form as stereoselectivity, meaning that all of the metabolites produced by ARA 11-LOX (MXAN 1744) have S-form stereospecificity. The main product HXD₃, which was converted from ARA by ARA 11(S)-LOX, was identified as (5Z.8Z)-10-((2S.3R)-3-((S,Z)-1-hydroxyoct-2-en-1-yl)oxiran-2-yl)deca-5,8-dienoic acid (Supplementary Fig. 28). The results of 1D NMR of HXD₃ were shown in Supplementary Fig. 29 and Supplementary Table 9. The H-11, H-12, and H-13 had the ROE correlation with each other, which indicates the syn geometry (Supplementary Fig. 30a). H-11 was also identified as S-form because ARA 11(S)-LOX was identified as S-form. H-5, H-6, H-8, H-9, H-14, and H-15 were confirmed with selective TOCSY irradiation on the peak H-3, H-11, and H-13 (Supplementary Fig. 31). The coupling constants of J5, J9 and J14 were ranging below 11 Hz, indicating that the double bonds have Z geometry. The ROE correlations were showed between H-14 and 15 and between H-8 and 9 (Supplementary Fig. 30b). The 2D NMR data of HXD₃ to support additional structural analysis were shown in the Supplementary Fig. 32.

Next, we identified the 5 types of TrXs. $TrxB_3$ was confirmed as (5Z,8Z,10S,11S,12R,14Z)-10,11,12-trihydroxyicosa-5,8,14-trienoic acid (Supplementary Fig. 33–34 and Supplementary Table 10). The H-10, H-11, and H-12 on TrXB₃ had the ROE correlation, indicating the syn geometry (Supplementary Fig. **35a**). TrXB₃ was converted from HXB₃ by EH (*MXAN 1644*). H-10 of TrXB₃ was also identified as S-form because H-10 of HXB₃ was identified as S-form. H-5, H-6, H-8, H-9, H-14, and H-15 were confirmed with selective TOCSY irradiation on the peak H-2, H-10, and H-13 (Supplementary Fig. 36). The coupling constants of J5, J9 and J14 were ranging below 11 Hz, indicating that the double bonds have Z geometry. The ROE correlations were showed between H-14 and 15 and between H-8 and 9 (Supplementary Fig. 35b). The support 2D NMR data of TrXB₃ were shown in Supplementary Fig. 37. TrXB₄ was verified as (5Z,8Z,10S,11S,12R,14Z,17Z)-10,11,12trihydroxyicosa-5,8,14,17-tetraenoic acid using NMR analysis (Supplementary Fig. 38-39 and Supplementary Table 11). The H-10, H-11, and H-12 had the ROE correlation with each other, indicating the syn geometry (Supplementary Fig. 40a). H-10 of TrXB₄ was also identified as S-form because H-10 of HXB₄ was identified as Sform. H-5, H-6, H-8, H-9, H-14, H-15, H-17, and H-18 were confirmed with selective TOCSY irradiation on the peak H-3, H-10, H-12, and H-20 (Supplementary Fig. 41). The coupling constants of J5, J9, J14 and J18 were ranging below 11 Hz, indication that the double bonds have Z geometry. The ROE correlations were showed between H-14 and 15 and between H-8 and 9 (Supplementary Fig. 40b). The 2D NMR data of $TrXB_4$ to support additional structural analysis were shown in the Supplementary Fig. 42. TrXB₅ was identified as (4Z,7Z,10Z,12S,13S,14R,16Z,19Z)-12,13,14-trihydroxydocosa-4,7,10,16,19-pentaenoic acid (Supplementary Fig. 43-44 and Supplementary Table 12). H-12 of HXB₅ was identified as S-form, thus H-12 of TrXB₅ was also identified as S-form. The H-12, H-13, and H-14 had the ROE correlation with each other, which indicates the syn geometry (Supplementary Fig. 45a). H-4, H-5, H-7, H-8, H-10, H-11, H-16, H-17, H-19, and H-20 were confirmed with selective TOCSY irradiation on the peak H-2, H-9, H-12, H-14, and H-22 (Supplementary Fig. 46). The coupling constants of J4, J8, J11, J16, and J20 were ranging below 11 Hz, indicating that the double bonds have Z geometry. The ROE correlations were showed between H-10 and 11 and between H-16 and 17 (Supplementary Fig. 45b). The support 2D NMR data of $TrXB_5$ were shown in Supplementary Fig. 47. $TrXD_3$ was confirmed as (5Z,8Z,11R,12S,13S,14Z)-11,12,13-trihydroxyicosa-5,8,14-trienoic acid by NMR analysis (Supplementary Fig. 48-49 and Supplementary Table 13). The H-11, H-12, and H-13 had the ROE correlation, which indicate the syn geometry (Supplementary Fig. 50a). H-13 of TrXD₃ was also identified as S-form because H-13 of HXD₃ was identified as S-form. H-5, H-6, H-8, H-9, H-14, and H-15 were confirmed with selective TOCSY irradiation on the peak H-3, H-11, and H-13 (Supplementary Fig. 51). The coupling constants of J5, J9, and J14 were ranging below 11 Hz and H-8 and H-9 showed the ROE correlation, indicating that the double bonds have Z geometry (Supplementary Fig. 50b). The 2D NMR data of TrXD₃ to support additional structural analysis were shown in the Supplementary Fig. 52. TrXE₃ was identified as (5Z,8Z,11R,12R,13E)-11,12,15-trihydroxyicosa-5,8,13-trienoic acid (Supplementary Fig. 53-54 and Supplementary Table 14). The H-11 and H-12 had the ROE correlation, which indicate the syn geometry (Supplementary Fig. 55a). H-11 of TrXE₃

was also estimated as *R*-form As H-11 of HXE₃ was estimated as *R*-form (ex, HxD₃ and TrXD₃). The configuration of H-15 could not be defined because H-15 was too far from H-12 or H-11. H-5, H-6, H-8, H-9, H-13, and H-14 were confirmed with selective TOCSY irradiation on the peak H-3, H-10, and H-12 (**Supplementary Fig. 56**). The coupling constants of J5, J9 were ranging below 11 Hz, indicating that the double bonds have *Z* geometry whereas the coupling constants of J13, J14 were ranging upto 15 Hz, indicating that the double bonds have *E* geometry. H-8 and H-9 had the ROE correlations but H-13 and H-14 did not have any ROE correlations (**Supplementary Fig. 55b**). The 2D NMR data of TrXE₃ to support additional structural analysis were shown in the **Supplementary Fig. 57**.

Supplementary Methods

ESI-MS and NMR analysis. LC-MS/MS analysis of lipid mediators was performed using a Thermo-Finnigan LCQ Deca XP plus ion trap mass spectrometer (Thermo Scientific, Pittsburgh, PA, USA) at the NCIRF facility (Seoul National University, Seoul, South Korea). The instrument consisted of an LC pump, an auto sampler, and a photodiode array detector. Ionization of the samples was carried out using electrospray ionization. The operation was conducted at 275°C capillary temperature, 5 kV ion source voltage, 30 psi nebuliser gas, 46 V capillary voltage in positive mode, 15 V fragmentor voltage in negative ionization mode, 0.01 min average scan time, 0.02 min average time to change polarity, and 35% abundant precursor ions at collision energy.

The NMR studies were used to confirm the structures by recording 1D (1H, 13C, selective-TOCSY, 1H homo decoupling) and 2D (COSY, ROESY, TOCSY, HSQC, HMBC) NMR spectra on a Bruker Avance HD (850 MHz) and Avance III (600 MHz), equipped with TCI cryoprobe (NCIRF, Seoul National University). DMSO-d₆ and TMS were used as a solvent and an internal standard, respectively. All chemical shifts were quoted in δ (ppm).

HXB₃) ¹H NMR (600MHz, DMSO): δ 5.47 (dt, J = 10.89, 5.43 Hz, 1H), 5.41~5.27 (m, 5H), 5.04 (s, 1H), 4.07 (dd, J = 7.65, 6.03 Hz, 1H), 2.82 (td, J= 5.43, 2.17 Hz, 1H), 2.81~2.71 (m, 2H), 2.71 (dd, J = 6.03, 2.17 Hz, 1H), 2.31~2.13 (m, 2H), 2.20 (t, J = 6.44 Hz, 2H), 2.03 (td, J = 7.11, 6.52 Hz, 2H), 1.96 (dt, J = 7.10, 7.05 Hz, 2H), 1.54 (tt, J = 7.11, 6.44 Hz, 2H), 1.34~1.20 (m, 6H), 0.86 (t, J = 6.88 Hz, 3H); ¹³C NMR (150)

MHz, DMSO): δ 174.3, 132.3, 129.5, 129.4, 129.3, 128.1, 123.8, 67.1, 60.7, 54.7, 33.0, 30.8, 29.0, 28.9, 26.7, 26.1, 25.8, 24.4, 21.9, 13.9; ESI-MS (m/z): [M–H[–]] calcd. for C₂₀H₃₁O₄, 335.2; found, 335.2; analysis (calcd., found for C₂₀H₃₁O₄): C₁₀H₁₇O (153.1, 153.2), C₉H₁₃OHCOOH (183.1, 183.2), C₁₀H₁₄OHCOO· (195.1, 195.2).

HXB₄) ¹H NMR (600MHz, DMSO): δ 5.46~5.24 (m, 8H), 4.08 (dd, J = 7.63, 6.00 Hz, 1H), 2.84 (td, J = 8.15, 2.20 Hz, 1H), 2.83~2.72 (m, 2H), 2.74 (dd, J = 6.68, 6.62 Hz, 1H), 2.72 (dd, J = 6.00, 2.20 Hz, 1H), 2.32 (m, 1H), 2.21 (m, 1H), 2.20 (t, J = 7.41 Hz, 2H), 2.04 (dt, J = 6.55, 7.02 Hz, 2H), 2.03 (dt, J = 6.95, 7.53 Hz, 2H), 1.54 (tt, J = 7.41, 7.02 Hz, 2H), 0.91 (t, J = 7.53 Hz, 3H) ; ¹³C NMR (150 MHz, DMSO): δ 174.3, 131.6, 130.4, 129.5, 129.4, 128.1, 126.8, 124.0, 67.1, 60.7, 54.5, 33.1, 29.0, 26.1, 25.8, 25.2, 24.4, 20.0, 14.1. ESI-MS (m/z): [M–H[–]] calcd. for C₂₀H₂₉O₄, 333.2; found, 333.3; analysis (calcd., found for C₂₀H₂₉O₄): C₁₀H₁₅O (151.1, 151.2), C₉H₁₃OHCOOH (183.1, 183.2), C₁₁H₁₅OOHCOO· (223.2, 223.8).

HXB₅) ¹H NMR (850MHz, DMSO): δ 5.51~5.23 (m, 10H), 4.09 (dd, J = 5.95, 8.34 Hz, 1H), 2.84 (m, 1H), 2.78 (m, 4H), 2.74 (t, J = 7.16 Hz, 2H), 2.72 (dd, J 2.02, 5.95 Hz, 1H), 2.32 (m, 1H), 2.24 (dt, J = 6.93 Hz, 2H), 2.21 (m, 1H), 2.20 (t, J = 6.93 Hz, 2H), 2.02 (dt, J = 7.03, 7.52 Hz, 2H), 0.92 (t, J = 7.52 Hz, 3H) ; ¹³C NMR (212 MHz, DMSO): δ 174.2, 131.6, 130.4, 129.7, 129.6, 129.4, 128.9, 128.3, 128.1, 126.9, 124.0, 67.1, 60.7, 54.8, 34.2, 39.0, 25.2, 22.7, 20.0, 14.1. ESI-MS (m/z): [M-H⁻] calcd. for C₂₂H₃₁O₄, 359.1; found, 359.4; analysis (calcd., found for C₂₂H₃₁O₄): C₁₀H₁₄COOH (179.2, 179.1), C₁₂H₁₆OHCOOH (221.2, 221.1), C₁₃H₁₇OOHCOOH (251.1, 251.2).

HXD₃) ¹H NMR (600MHz, DMSO): δ 5.45~5.39 (m 2H), 5.36~5.29 (m, 4H), 4.00 (dd, J = 8.63, 6.11, 1H), 2.81 (dt, J = 2.15, 5.42 Hz, 1H), 2.74 (dd, J = 5.72, 4.17 Hz, 2H), 2.70 (dd, J = 2.15, 6.11 Hz, 1H), 2.33 (m, 1H), 2.21 (m, 1H), 2.20 (t, J = 6.38 Hz, 2H), 2.04 (dt, J = 7.08, 5.74 Hz, 2H), 1.99 (dt, J = 4.36, 6.84 Hz, 2H), 1.54 (tt, J = 6.38, 7.08 Hz, 2H), 1.31~1.19 (m, 6H), 0.85 (t, J = 7.04 Hz, 3H) ; ¹³C NMR (150 MHz, DMSO): δ 174.4, 131.5, 130.3, 129.6, 139.2, 128.1, 124.0, 33.0, 31.1, 29.2, 26.6, 26.0, 24.4, 21.9, 13.8. ESI-MS (m/z): $[M-H^-]$ calcd. for C₂₀H₃₁O₄, 335.2; found, 335.2; analysis (calcd., found for C₂₀H₃₁O₄): C₇H₁₃ (97.1, 97.2), C₈H₁₄OH 127.1, 127.3), C₉H₁₄OHCOOH (167.1, 167.3), C₁₁H₁₆OCOOH (209.1, 209.2).

HXE₃) ESI-MS (m/z): $[M-H^-]$ calcd. for C₂₀H₃₁O₄, 335.2; found, 335.2; analysis (calcd., found for C₂₀H₃₁O₄): C₉H₁₅OH (139.1, 139.9), C₉H₁₄COOH (167.1, 167.2),

C₁₃H₁₈OCOOH (235.3, 235.1), C₁₄H₁₉OOHCOOH (265.1, 265.1).

TrXB₃) ¹H NMR (600MHz, DMSO): δ 5.53~5.43 (m, 2H), 5.41~5.27 (m, 4H), 4.50 (dd, J = 8.75, 2.92 Hz, 1H), 3.44 (dd, J = 7.27, 8.35 Hz, 1H), 3.03 (dd, J = 7.27, 2.92 Hz, 1H), 2.83 (m, 1H), 2.73 (m, 1H), 2.35 (m, 1H), 2.19 (t, J = 7.35 Hz, 2H), 2.07~1.94 (m, 5H), 1.54 (tt, J = 7.20, 7.35 Hz, 2H), 1.34~1.18 (m, 6H), 0.86 (t, J = 6.82 Hz, 3H) ; ¹³C NMR (150 MHz, DMSO): δ 174.5, 132.2, 130.3, 128.4, 127.8, 33.7, 31.1, 30.9, 29.0, 26.6, 26.5, 24.5, 22.0, 13.9. ESI-MS (m/z): [M–H⁻] calcd. for C₂₀H₃₃O₅, 353.2; found, 353.2; analysis (calcd., found for C₂₀H₃₃O₅): C₈H₁₂COOH (153.2, 153.2), C₁₁H₁₈(OH)₃ (201.1, 201.2), C₁₁H₁₅(OH)₃COO· (242.2, 242.1).

TrXB₄) ¹H NMR (850MHz, DMSO): δ 5.52 (m, 1H), 5.51 (dd, J = 9.49, 9.25 Hz, 1H), 5.40~5.24 (m, 6H), 4.63 (dd, J = 8.74, 1.57 Hz, 1H), 3.47 (ddd, J = 8.38, 8.16, 2.77 Hz, 1H), 2.98 (m, 1H), 2.89 (dd, J = 8.16, 1.57 Hz, 1H), 2.87 (m, 1H), 2.75 (m, 2H), 2.40 (m 1H), 2.17~1.88 (m, 7H), 1.49 (m, 1H), 0.92 (t, J = 7.52 Hz, 3H); ¹³C NMR (212 MHz, DMSO): δ 176.3, 131.9, 131.2, 129.7, 128.2, 127.9, 127.5, 127.1, 77.5, 70.0, 64.4, 35.8, 31.0, 26.6, 25.9, 25.8, 25.4, 20.0, 14.2. ESI-MS (m/z): [M–H[–]] calcd. for C₂₀H₃₁O₅, 351.2; found, 351.2; analysis (calcd., found for C₂₀H₃₁O₅): C₁₁H₁₆(OH)₂O· (198.2, 198.2), C₁₁H₁₅(OH)₃COO· (242.2, 242.1).

TrXB₅) ¹H NMR (600MHz, DMSO): δ 5.55~5.47 (m, 2H), 5.39~5.25 (m, 8H), 4.53 (dd, J = 8.89, 2.25 Hz, 1H), 3.47 (ddd, J = 2.74, 7.49, 8.19 Hz, 1H), 3.04 (dd, J = 7.49, 2.25 Hz, 1H), 2.88 (m, 1H), 2.83~2.72 (m, 5H), 2.38 (m, 1H), 2.25 (dt, J = 6.45 Hz, 2H), 2.21 (t, J = 6.45 Hz, 2H), 2.06 (m, 1H), 2.03 (dt, J = 6.82, 7.53 Hz, 2H), 0.92 (t, J = 7.53 Hz, 3H) ; ¹³C NMR (150 MHz, DMSO): δ 174.3, 132.1, 131.3, 128.7, 128.3, 128.0, 127.8, 127.7, 127.6, 127.4, 76.9, 70.3, 65.6, 34.3, 31.0, 25.7, 25.3, 25.1, 22.7, 20.0, 14.1. ESI-MS (m/z): [M-H⁻] calcd. for C₂₂H₃₃O₅, 377.1; found, 377.2; analysis (calcd., found for C₂₂H₃₃O₅): C₉H₁₄O· (138.1, 138.2), C₁₀H₁₄COO· (178.1, 178.1), C₁₁H₁₆(OH)₂O· (198.1, 198.2), C₁₂H₁₆(OH)₂COO· (238.2, 238.1).

TrXD₃) ¹H NMR (850MHz, DMSO): δ 5.49 (m, 1H), 5.37~5.28 (m, 5H), 4.35 (dd, J = 7.52, 4.62 Hz, 1H), 3.32 (td, J = 7.27, 2.97 Hz, 1H), 3.26 (dd, J = 4.62, 7.27 Hz, 1H), 7.47 (m, 2H), 2.38 (m, 1H), 2.17 (t, J = 7.22 Hz, 2H), 2.10~1.96 (m, 5H), 1.53 (tt, J = 6.36, 7.22 Hz, 2H), 1.36~1.18 (m, 6H), 0.86 (t, J = 6.86 Hz, 3H); ¹³C NMR (212 MHz, DMSO): δ 174.7, 131.1, 130.5, 129.1, 128.6, 128.3, 127.6, 76.7, 71.5, 67.7, 33.5, 31.0, 30.9, 28.8, 27.3, 26.1, 25.4, 24.7, 22.0, 13.9. ESI-MS (m/z): [M–H[–]] calcd. for

 $C_{20}H_{33}O_5$, 353.2; found, 353.2; analysis (calcd., found for $C_{20}H_{33}O_5$): $C_{10}H_{14}COOH$ (167.2, 167.4), $C_{10}H_{16}(OH)_3$ (187.1, 187.2), $C_{12}H_{17}(OH)_3COO$ · (256.2, 256.2), $C_{14}H_{19}(OH)_3COO$ · (282.2, 282.1).

TrXE₃) ¹H NMR (850MHz, DMSO): δ 5.61 (dd, J = 15.78, 5.36 Hz, 1H), 5.55 (dd, 15.78, 6.23 Hz, 1H), 5.44 (m, 1H), 5.35~5.29 (m, 3H), 3.89 (m, 1H), 3.81 (dd, J = 4.53, 5.36 Hz, 1H), 3.29 (m, 1H), 2.74 (m, 1H), 2.71 (m, 1H), 2.19 (m, 1H), 2.10 (t, J = 7.03 Hz, 2H), 2.02 (m, 2H), 1.50 (tt, J = 6.04, 7.03 Hz, 2H), 1.41~1.18 (m, 8H), 0.85 (t, J = 7.09 Hz, 3H); ¹³C NMR (212 MHz, DMSO): δ 175.0, 134.5, 129.8, 129.3, 128.4, 127.6, 74.2, 70.6, 37.4, 34.4, 31.4, 30.3, 26.4, 25.5, 25.1, 24.8, 22.2, 14.0. ESI-MS (m/z): [M–H⁻] calcd. for C₂₀H₃₃O₅, 353.2; found, 353.2; analysis (calcd., found for C₂₀H₃₃O₅): C₉H₁₅(OH)₂ (157.2, 157.1), C₉H₁₄COOH (167.2, 167.1), C₁₃H₁₈(OH)₂COOH (253.2, 253.2), C₁₄H₁₉(OH)₃COO· (282.2, 282.1).

Supplementary References

- Derewlany LO, Pace-Asciak CR, Radde IC. Hepoxilin A₃, hydroxyepoxide metabolite of arachidonic acid, stimulates transport of 45Ca across the guinea pig visceral yolk sac. *Can J Physiol Pharmacol* 62, 1466-1469 (1984).
- Pace-Asciak CR. Formation of hepoxilin A₄, B₄ and the corresponding trioxilins from 12(S)-hydroperoxy-5,8,10,14,17-ic osapentaenoic acid. *Prostaglandins Leukot Med* 22, 1-9 (1986).
- Reynaud D, Pace-Asciak CR. Docosahexaenoic acid causes accumulation of free arachidonic acid in rat pineal gland and hippocampus to form hepoxilins from both substrates. *Biochim Biophys Acta* 1346, 305-316 (1997).
- Reynaud D, Ali M, Demin P, Pace-Asciak CR. Formation of 14,15-hepoxilins of the A₃ and B₃ series through a 15-lipoxygenase and hydroperoxide isomerase present in garlic roots. *J Biol Chem* 274, 28213-28218 (1999).
- Pfister SL, Spitzbarth N, Nithipatikom K, Falck JR, Campbell WB. Metabolism of 12-hydroperoxyeicosatetraenoic acid to vasodilatory trioxilin C₃ by rabbit aorta. *BBA Gen Subjects* 1622, 6-13 (2003).
- 6. An JU, Kim BJ, Hong SH, Oh DK. Characterization of an ω -6 linoleate

lipoxygenase from *Burkholderia thailandensis* and its application in the production of 13-hydroxyoctadecadienoic acid. *Appl Microbiol Biotechnol* **99**, 5487-5497 (2015).

- Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ. The opportunistic pathogen *Pseudomonas aeruginosa* carries a secretable arachidonate 15lipoxygenase. *Proc Natl Acad Sci USA* 101, 2135-2139 (2004).
- 8. Vidal-Mas J, Busquets M, Manresa A. Cloning and expression of a lipoxygenase from *Pseudomonas aeruginosa* 42A2. *Anton Leeuw Int J G* **87**, 245-251 (2005).
- Andreou A, Gobel C, Hamberg M, Feussner I. A bisallylic mini-lipoxygenase from cyanobacterium *Cyanothece* sp. that has an iron as cofactor. *J Biol Chem* 285, 14178-14186 (2010).
- Lang I, Gobel C, Porzel A, Heilmann I, Feussner I. A lipoxygenase with linoleate diol synthase activity from *Nostoc* sp. PCC 7120. *Biochem J* 410, 347-357 (2008).
- Gao BL, Boeglin WE, Brash AR. ω-3 fatty acids are oxygenated at the n-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium *Acaryochloris marina*. *BBA Mol Cell Biol Lipids* 1801, 58-63 (2010).
- Jie MS, Lau MM. Novel lipidic enaminones from a C18 keto-allenic ester. Lipids 35, 1135-1145 (2000).
- John EB, Jon ON, John FO, R. H. Diastereoselective synthesis of phycocyanobilin-cysteine adducts. J Am Chem Soc 113, 8024-8035 (1991).