
Text S2: Derivation of theoretical egestion time statistics from models
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Here, we derive egestion time statistics in simple models that allow us to infer ecological processes a↵ecting
microbial population dynamics in the host. While it is di�cult to directly measure population dynamics in situ (i.e.
track population size of the microorganisms directly in the host gut over time), we show that ecological processes
can be inferred by observing some statistical properties of the egestion time.

We first define some of the relevant terms:

• Compartment refers to a microbial population in a region along the gut with more or less the same charac-
terization. For example, separating bacteria into populations in foregut, midgut, and hindgut corresponds to
a system with 3 compartments.

• Egestion time refers to the time that a particle (i.e. a microorganism or a microsphere) is egested from the
last compartment. Here, we treat it as a random variable.

• Apparent death refers to a microorganism disappearing from a compartment, instead of getting egested. Be-
cause egestion time is recorded only when a microorganism successfully exits the host, a “dead” microorganism
does not have an egestion time. Apparent death could be caused by actual death (e.g. due to aging, immunity),
or could be due to retention of a microorganism by the host (e.g. long-term adhesion to the host gut).

Text S2A and B are for mathematically-inclined readers. Text S2A derives the formulae for the mean and the
variance of the egestion time, and intuition behind our results is further confirmed in Text S2B. In Text S2C.1, we
use data from Egestion Time Experiment (see Main Text) to test our models. The biological implications of all the
theoretical work is presented in Text S2C.2 and C.3. In summary, any ecological processes contributing to apparent
death leads to shorter mean and variance of the egestion time. Egestion time statistics and proportion of ingested
microorganisms that is egested together allow us to infer within-host population dynamics from fecal time series
data.

A Compartment models

A.1 One compartment model

We start with the simplest model, assuming a single, well-mixed, homogenous gut. Assume that there are some
initial number of microorganism N in the gut, the net population growth rate per microorganism is r0 = b0 � d0,
and the emigration rate per microorganism is m0 (Fig. S3A). X0(t) represents the number of microorganism in the
gut at time t, so X0(t = 0) = N . Further assume that r0 < m0, so r0 � m0 < 0. Otherwise, X0(t) increases to
+1, contrary to our observation (see Fig. 1 and 3B). Note that if b0 = 0 but d0 > 0 (i.e. no birth, but some
microorganisms die or are retained), then r0 < 0 and our assumption holds. Under these assumptions, gut microbial
population size changes as:

dX0

dt
= (r0 �m0)X0 (S2.1)

The solution to this system is X0(t) = Ne(r0�m0)t. With the emigration rate m0 and the microbial population
size X0(t), the number of microorganisms egested at time t is m0X0(t) and the total number of microorganisms
egested over time is

R1
0 m0X0(t)dt. Then, the proportion of microorganisms egested at time t relative to the total

microorganisms egested is p(t) = m0X0(t)R 1
0 m0X0(t)dt

. Let t̂0 be an egestion time of a microorganism, so E[t̂0] and V ar[t̂0]

are the mean and variance of the egestion time, respectively. For convenience, define q0 = r0 �m0 < 0. Then,

E[t̂0] =

Z 1

0
tp(t)dt =

Z 1

0
t

m0X0R1
0 m0X0dt

dt =

R1
0 tX0dtR1
0 X0dt

=

R1
0 teq0tdt
R1
0 eq0tdt

=
1/(r0 �m0)2

�1/(r0 �m0)

=
1

m0 � r0

(S2.2)
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V ar[t̂0] = E[t̂20]� E[t̂0]
2 =

Z 1

0
t2p(t)dt�

✓
1

m0 � r0

◆2

=

R1
0 t2eq0tdt
R1
0 eq0tdt

� 1

q20
=

�2/q30
�1/q0

� 1

q20

=
2

q20
� 1

q20
=

1

(m0 � r0)2

(S2.3)

In particular, E[t̂0] =
1

m0
and V ar[t̂0] =

1
m

2
0
when r0 = 0.

A.2 Two compartments model

A more realistic model would have at least two compartments. For example, food is first stored in fly crop, and slowly
enters the gut over time. Given the di↵erent anatomical and physiological environments in these two compartments,
microorganisms may encounter di↵erent immune responses and niche availability. In our experiment, flies were
starved for 4 hrs to clear out the gut. We then fed the flies for an hour, so the ingested bacteria is more dense in fly
anterior than the posterior.

Assume there are some initial number of bacteriaN in the source compartment (e.g. crop, food in the environment,
etc.) and the microorganisms flow into the egesting compartment (e.g. gut) over time (Fig. S3B). The net population
growth rate per microorganism in compartment i is r

i

= b
i

� d
i

, where i = 0 or 1 corresponds to the source and
egesting compartment, respectively. Similarly, the emigration rate per microorganism is m

i

and X
i

(t) is the number
of microorganism at time t. Assume that r

i

< m
i

, so q
i

= r
i

� m
i

< 0 for all i. Under these assumptions, gut
microbial population sizes change as:

dX0

dt
= q0X0

dX1

dt
= m0X0 + q1X1

(S2.4)

The solution to this system is X0(t) = Neq0t and X1(t) =
m0N

q0�q1
(eq0t � eq1t) assuming q0 6= q1 (the final result will

be the same even if q0 = q1). Let t̂1 be the egestion time from the egesting compartment, so E[t̂1] and V ar[t̂1] are
the mean and variance of the egestion time, respectively. Then,

E[t̂1] =

Z 1

0
tp(t)dt =

R1
0 tX1dtR1
0 X1dt

=

R1
0 t(eq0t � eq1t)dt
R1
0 eq0t � eq1tdt

=
q21 � q20
q20q

2
1

q1q0
q0 � q1

=
�q1 � q0

q1q0

= � 1

q0
� 1

q1

(S2.5)

V ar[t̂1] = E[t̂21]� E[t̂1]
2 =

Z 1

0
t2p(t)dt� (

1

q0
+

1

q1
)2 =

R1
0 t2(eq0t � eq1t)dt
R1
0 eq0t � eq1tdt

� (
1

q0
+

1

q1
)2

=
2

q20q
2
1

q30 � q31
q0 � q1

� (
1

q0
+

1

q1
)2 =

2(q20 + q0q1 + q21)

q20q
2
1

� (q0 + q1)2

q20q
2
1

=
1

q20
+

1

q21

(S2.6)

Note that E[t̂1] > 0 and specifically, E[t̂1] =
1

m0
+ 1

m1
and V ar[t̂1] =

1
m

2
0
+ 1

m

2
1
when r0 = r1 = 0.

A.3 n+ 1 compartments model

Let us generalize the models in Text S2A.1 and A.2, by having many compartments between the source and the
egesting compartments (Fig. 4A). For example, microorganisms may go through di↵erent environments in the crop,
foregut, midgut, and hindgut. The net population growth rate per microorganism in compartment i is r

i

= b
i

�d
i

and
the emigration rate per microorganism is m

i

, where i = 0, 1, 2, . . . , n. Define q
i

= r
i

�m
i

. Under these assumptions,
gut microbial population sizes change as:
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dX0

dt
= q0X0

dX1

dt
= m0X0 + q1X1

dX2

dt
= m1X1 + q2X2

...

dX
n

dt
= m

n�1Xn�1 + q
n

X
n

(S2.7)

Theorem 1. Let E[t̂
i

] and V ar[t̂
i

] be the mean and variance of a random variable t̂
i

, an egestion time from com-

partment X
i

. Assume that X0(0) = N but X
k

(0) = 0 for all k = 1, 2, . . . n, and r
i

< m
i

so that q
i

= r
i

�m
i

< 0 for

all i = 0, 1, 2, . . . n. Then,

E[t̂
i

] =

(
� 1

q0
if i = 0

E[t̂
i�1]� 1

qi
if i > 0

V ar[t̂
i

] =

(
1
q

2
0

if i = 0

V ar[t̂
i�1] +

1
q

2
i

if i > 0

(S2.8)

Therefore, E[t̂
n

] =
P

n

i=0
1

mi�ri
and V ar[t̂

n

] =
P

n

i=0
1

(mi�ri)2
for any n = 0, 1, 2, . . .

Proof. 1. From Eqs. S2.2 and S2.5, E[t̂0] =
1

m0�r0
= � 1

q0
and E[t̂1] = � 1

q0
� 1

q1
= E[t̂0] � 1

q1
. From Eqs. S2.3

and S2.6, V ar[t̂0] =
1
q

2
0
and V ar[t̂1] =

1
q

2
0
+ 1

q

2
1
= V ar[t̂0] +

1
q

2
1
. So, the theorem holds for i = 0, 1.

2. By hypothesis, X
k

(0) = 0 for all k = 1, 2, . . . n. So for an arbitrary n > 0, the solution for dXn
dt

is X
n

(t) =R
t

0 m
n�1Xn�1(s)eqn(t�s)ds. Then,

E[t̂
n

] =

R1
0 tX

n

(t)dt
R1
0 X

n

(t)dt
=

R1
t=0

R
t

s=0 tXn�1(s)eqn(t�s)ds dt
R1
t=0

R
t

s=0 Xn�1(s)eqn(t�s)ds dt
(S2.9)

Switch the order of integration and pull out some terms:

E[t̂
n

] =

R1
s=0 Xn�1(s)e�qns

R1
t=s

teqntdt ds
R1
s=0 Xn�1(s)e�qns

R1
t=s

eqntdt ds
(S2.10)

Calculate the inner integrals in the numerator and the denominator first:

E[t̂
n

] =

R1
s=0 Xn�1(s)e�qns(1/q2

n

� s/q
n

)eqns ds
R1
s=0 Xn�1(s)e�qns(�eqns/q

n

) ds
=

R1
s=0 Xn�1(s)(1/q2

n

� s/q
n

) ds

(�1/q
n

)
R1
s=0 Xn�1(s) ds

=

1
q

2
n

R1
0 X

n�1(s)ds� 1
qn

R1
0 sX

n�1(s)ds

� 1
qn

R1
0 X

n�1(s)ds
=

R1
0 sX

n�1(s)dsR1
0 X

n�1(s)ds
� 1

q
n

= E[t̂
n�1]�

1

q
n

(S2.11)

because

R1
0 sX

n�1(s)dsR1
0 X

n�1(s)ds
= E[t̂

n�1]. Next,

V ar[t̂
n

] = E[t̂2
n

]� E[t̂
n

]2 =

R1
0 t2X

n

dt
R1
0 X

n

dt
� E[t̂

n

]2 =

R1
t=0

R
t

s=0 t
2X

n�1(s)eqn(t�s)ds dt
R1
t=0

R
t

s=0 Xn�1(s)eqn(t�s)ds dt
� E[t̂

n

]2 (S2.12)

Switch the order of integration, and pull out some terms. Also note that we calculated the denominator while
deriving E[t̂

n

] in Eqs. S2.9 - S2.11:

V ar[t̂
n

] =

R1
s=0 Xn�1(s)e�qns

R1
t=s

t2eqntdt ds

(�1/q
n

)
R1
s=0 Xn�1(s) ds

� E[t̂
n

]2 (S2.13)
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Calculate the inner integrals in the numerator first:

V ar[t̂
n

] =

R1
s=0 Xn�1(s)e�qns(�eqns(s2/q

n

� 2s/q2
n

+ 2/q3
n

)) ds

(�1/q
n

)
R1
s=0 Xn�1(s) ds

� E[t̂
n

]2

=
� 1

qn

R1
0 s2X

n�1(s)ds+
2
q

2
n

R1
0 sX

n�1(s)ds� 2
q

3
n

R1
0 X

n�1(s)ds
�1
qn

R1
s=0 Xn�1(s) ds

� E[t̂
n

]2

=

R1
0 s2X

n�1(s)dsR1
0 X

n�1(s)ds
� 2

q
n

R1
0 sX

n�1(s)dsR1
0 X

n�1(s)ds
+

2

q2
n

� E[t̂
n

]2

(S2.14)

Note that

R1
0 s2X

n�1(s)dsR1
0 X

n�1(s)ds
= E[t̂2

n�1] and
R 1
0 sXn�1(s)dsR 1
0 Xn�1(s)ds

= E[t̂
n�1]:

V ar[t̂
n

] = E[t̂2
n�1]�

2

q
n

E[t̂
n�1] +

2

q2
n

� E[t̂
n

]2 (S2.15)

Finally, using E[t̂
n

] = E[t̂
n�1]� 1

qn
dervied in Eq. S2.11:

V ar[t̂
n

] = E[t̂2
n�1]�

2

q
n

E[t̂
n�1] +

2

q2
n

�
✓
E[t̂

n�1]�
1

q
n

◆2

= E[t̂2
n�1]� E[t̂

n�1]
2 � 2

q
n

E[t̂
n�1] +

2

q
n

E[t̂
n�1] +

2

q2
n

� 1

q2
n

= V ar[t̂
n�1] +

1

q2
n

(S2.16)

by noticing that E[t̂2
n�1]� E[t̂

n�1]2 = V ar[t̂
n�1]

3. By induction, E[t̂0] = � 1
q0

and E[t̂
i

] = E[t̂
i�1] � 1

qn
for all i = 1, 2, . . . Similarly, V ar[t̂0] =

1
q

2
0
and V ar[t̂

i

] =

V ar[t̂
i�1] +

1
q

2
n
for all i = 1, 2, . . . It follows that E[t̂

n

] =
P

n

i=0 �
1
qi

=
P

n

i=0
1

mi�ri
and V ar[t̂

n

] =
P

n

i=0
1
q

2
i
=

P
n

i=0
1

(mi�ri)2
for all n = 0, 1, 2, 3, . . .

In particular, E[t̂
n

] =
P

n

i=0
1
mi

and V ar[t̂
n

] =
P

n

i=0
1

m

2
i
if r

i

= 0 for all i = 0, 1, 2, . . . .

A.4 Numerical exploration of bi-directional migration

The biological intuition behind our results above is simple and straightforward: as death/retention rate in the host
increases (i.e. r = b � d decreases), microorganisms that are observed to egest are biased towards earlier egestion
time. Longer egestion time means that a microorganism must endure higher probability of death/retention, and
therefore lowers the probability of it being detected in an experiment. Furthermore, as this detection bias gets
stronger, we expect less variance. The same logic applies to higher emigration rate (i.e. higher m).

However, does the same intuition work when we relax our model assumptions? For example, we assumed that
the microorganism can only flow unidirectionally through the compartments. While this is often a valid assumption,
it may not always be the case (e.g. regurgitation of food from the crop). We now relax this assumption and consider
an extreme case: a microorganism has an equal probability of migrating to the posterior compartment as well as the
anterior compartment (Fig. S3C). Specifically, we simulated the following model:

dX0

dt
= (r �m)X0 +mX1

dX1

dt
= (r � 2m)X1 +mX0 +mX2

dX2

dt
= (r � 2m)X2 +mX1

(S2.17)

Even under this assumption, we observed that decreasing r always leads to decreasing mean egestion time.
Bidirectional emigration therefore does not change the qualitative e↵ect of r on the mean egestion time. We also
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observed a pattern in variance consistent with our previous analyses. (Fig. S4). Similarly, we observed that increasing
m always leads to decreasing mean egestion time. Bidirectional emigration therefore does not change the qualitative
e↵ect of m on the mean egestion time. Again, we observed a pattern in variance consistent with our previous analyses.
(Fig. S4).

Importantly, we observed that the distributions of the egestion time in our simulations are stochastically

ordered; that is, the cumulative distribution curve of a larger r (smaller m) always lie on or under the curve
of a smaller r (larger m). Stochastic ordering is consistent with our intuition, as any ecological process biasing the
distribution towards earlier egestion time would lead to stochastically smaller distribution. In Section B, we analyze
larger class of models to show that our result in stochastic ordering does not hinge on our specific model structure.

B Structural model

Our results from Text S2A imply that, all else being equal, apparent death of the microorganisms leads to stochas-
tically smaller distribution. In this section, we test whether apparent death alone could lead to stochastic ordering,
without hinging on specific model structure. To do so, we drop the assumption of compartments and ignore the
specific movement pattern of the microorganisms within the gut. Instead, we focus on the distribution of microorgan-
isms egested over time with and without apparent death. The basic idea is as follows. We track the microorganisms
as they move through the gut. We “mark” them as dead when they die, but we let them continue to move as if
they were still alive, and count them when they exit. We then have two di↵erent distributions stemming from the
exact same egestion pattern: a distribution of microorganisms with apparent death (only unmarked microorganisms)
and without apparent death (both marked and unmarked microorganisms). We compare these two distributions to
understand the e↵ect of apparent death.

We use the function f(t) to represent the number of microorganisms egested at time t if apparent death were
absent. We use the function f(t)g(t) to describe the number of unmarked microorganisms egested if apparent
death were present. The function g(t) is survival rate. It decreases monotonically with time, because the longer a
microorganism stays in the host, more likely it would be marked as dead. The assumption that g0  0 is natural for
a mortality-only situations, because it just says that the longer a microorganism spends in the host, the more likely
it is to be marked dead. Our model below is actually more general than mortality-only situations, and Theorem 2 is
true even if g(t) is the net result of reproduction and mortality. In fact, a microorganism can even have positive net
reproduction rate in the gut, as long as total amount of f over time eventually goes to 0.

In terms of Text S2A, f is the number of microorganisms we obtain if we set r
i

= 0 for all compartments i.
Conversely, fg is the number of microorganisms we obtain if we have r

i

= b
i

� d
i

< 0 for any compartment i.
Without specifying the exact functions, we ask if qualitative assumptions below are su�cient to generate a bias in
mean egestion time. See Fig. S5 for some examples of f and g satisfying the assumptions below.

Theorem 2. Let f(t) be the number of microorganisms egested at time t, and g(t) be the survival rate of the

microorganisms egested at time t. Assume that f and g are both Lebesgue integrable and continuously di↵erentiable,

f, g � 0 for all t, f is bounded and g0(t)  0 for all t. Let t0 and t1 be the egestion time random variable for the

microorganisms without and with apparent death, respectively. Then,

P (t0  a) ⌘
Z

a

0

f(t)R1
0 f(x)dx

dt 
Z

a

0

f(t)g(t)R1
0 f(x)g(x)dx

dt ⌘ P (t1  a) (S2.18)

for all a � 0, i.e. t0 is stochastically greater (written �
st

) than t1.

Proof. First, note that both denominators are positive constants in the inequality above:

Z
a

0

f(t)R1
0 f(x)dx

dt 
Z

a

0

f(t)g(t)R1
0 f(x)g(x)dx

dt ()
R
a

0 f(t)dt
R1
0 f(t)dt


R
a

0 f(t)g(t)dt
R1
0 f(t)g(t)dt

()
Z

a

0
f(t)dt

Z 1

0
f(t)g(t)dt 

Z
a

0
f(t)g(t)dt

Z 1

0
f(t)dt

(S2.19)
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Second, for a fixed a, let H
a

(x) ⌘
R
a

0 f(t)dt
R
x

0 f(t)g(t)dt and J
a

(x) ⌘
R
a

0 f(t)g(t)dt
R
x

0 f(t)dt:

Z
a

0
f(t)dt

Z 1

0
f(t)g(t)dt 

Z
a

0
f(t)g(t)dt

Z 1

0
f(t)dt () lim

x!1
H

a

(x)  lim
x!1

J
a

(x)

() lim
x!1

Z
x

0
H 0

a

(y)dy  lim
x!1

Z
x

0
J 0
a

(y)dy

() lim
x!1

Z
a

0
H 0

a

(y)dy +

Z
x

a

H 0
a

(y)dy

�
 lim

x!1

Z
a

0
J 0
a

(y)dy +

Z
x

a

J 0
a

(y)dy

�
(S2.20)

Third, note that H
a

(a) = J
a

(a) :

lim
x!1

Z
a

0
H 0

a

(y)dy +

Z
x

a

H 0
a

(y)dy

�
 lim

x!1

Z
a

0
J 0
a

(y)dy +

Z
x

a

J 0
a

(y)dy

�

() lim
x!1

Z
x

a

H 0
a

(y)dy  lim
x!1

Z
x

a

J 0
a

(y)dy

(S2.21)

To prove the inequality in Eq. (S2.21) for all a, we shall consider the derivatives of H
a

and J
a

with respect to x.

H 0
a

(x) =

Z
a

0
f(t)dt

�
f(x)g(x)

J 0
a

(x) =

Z
a

0
f(t)g(t)dt

�
f(x)

(S2.22)

By hypothesis, g0  0 which implies that
R
a

0 f(t)g(t)dt � [
R
a

0 f(t)dt]g(a). So,

H 0
a

(y) =

Z
a

0
f(t)dt

�
f(y)g(y) 

Z
a

0
f(t)dt

�
f(y)g(a) 

Z
a

0
f(t)g(t)dt

�
f(y) = J 0

a

(y) (S2.23)

for y � a. Finally, H 0
a

and J 0
a

are positive and integrable, so H 0
a

 J 0
a

for y � a implies

Z
x

a

H 0
a

(y)dy 
Z

x

a

J 0
a

(y)dy =) lim
x!1

Z
x

a

H 0
a

(y)dy  lim
x!1

Z
x

a

J 0
a

(y)dy (S2.24)

which holds for any chosen a � 0.

Theorem 2 leads us immediately to some useful statistical properties:

• t0 �
st

t1 implies that E[u(t0)] � E[u(t1)] for any non-decreasing function u. In particular, E[t0] � E[t1].

• Suppose E[t0] = E[t1]. Then, V ar[t0] � V ar[t1].

• Suppose we want to compare mutant with wild-type microorganisms, where we have a common baseline death
rate k(t) for both but time-dependent benefit g(t) for mutant. Suppose k(t) is continuously di↵erentiable.
Then, we can replace f(t) with f̂(t) = f(t)k(t) and Theorem 2 holds.

Conjecture 1. Under the assumptions in Theorem 2, V ar[t1]  V ar[t0].

C Supporting theory with empirical data and inferring biological pro-
cess from theoretical results

To apply our theory to our experiments, we first validate our theory by testing some of its key predictions using our
experimental results. We then describe how we use our theoretical results to understand the processes occurring in
the host.
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C.1 Testing theory with experimental and simulated data

For the model in Fig. 4A, we derived the mean egestion time as
P

n

i=0 1/(mi

� r
i

) and the variance of the egestion
time as

P
n

i=0 1/(mi

�r
i

)2, where m
i

and r
i

refer to emigration rate and net reproductive rate at the ith compartment.
For simplicity, let k

i

= 1/(m
i

� r
i

). The mean egestion time is then
P

n

i=0 ki and the variance of the egestion time
is

P
n

i=0 k
2
i

. These formulae lead to two key predictions. We test these predictions on microsphere and microbial
egestion time data from our Egestion Time Experiment (Main Text) and simulated data. Simulated data were
generated for 1000 samples, each with 5 compartments. For each simulated sample, we drew {k

i

} from continuous
uniform distribution with domain [0, 1]. We then calculated the mean and the variance from {k

i

} according to the
formulae.

First, suppose that we have two samples, A and B. Suppose sample A has higher k
i

in some compartments than in
sample B, but the same k

i

in the other compartments. Then, the mean (variance) of the egestion time of sample A is
larger than the mean (variance) of the egestion time of sample B. Therefore, we predict positive correlation between
the mean and the variance of the egestion time. To test this prediction, we performed correlation test between mean
and the variance of the egestion time using Spearman’s rank correlation. Both simulated and experimental data
showed positive correlation (Simulated: Spearman’s ⇢ = 0.96, p < 2.2 ⇥ 10�16; Microsphere: Spearman’s ⇢ = 0.57,
p = 8⇥ 10�5; Bacteria: Spearman’s ⇢ = 0.75, p = 5.7⇥ 10�8; Fig. S6, top row)

Second, our formulae show that

V ariance

Mean2
=

P
n

i=0 k
2
i

(
P

n

i=0 ki)
2
=

P
n

i=0 k
2
iP

n

i=0 k
2
i

+ 2
P

i 6=j

k
i

k
j

 1 (S2.25)

Eq. S2.25 implies that the coe�cient of variation (C.V.) =
p
V ar/Mean2  1. To test this prediction, we performed

Student’s t-test against the null hypothesis of µ = 1. Both simulated and experimental data showed that the mean
of C.V. values are significantly less than 1 (Simulated: mean C.V. = 0.52, p < 2.2⇥ 10�16; Microsphere: mean C.V.
= 0.49, p < 2.2⇥ 10�16; Bacteria: mean C.V. = 0.41, p < 2.2⇥ 10�16; Fig. S6, bottom row)

To ensure that our simulated dataset were not dependent on the number of compartments or the domain of {k
i

},
we also generated 1000 samples where the number of compartments was randomly generated from discrete uniform
distribution with domain [1, 50], and {k

i

} were drawn from continuous uniform distribution with domain [0, 100].
Our conclusions remained the same with this dataset.

Taken together, the data from our experiment support our theory. Next, we use our theory to further analyze
our data.

C.2 Biological implications and inferring within-host population dynamics

Our theoretical results lead to important biological implications:

• The intuition behind our results is the following: as apparent death rate in the host increases (i.e. lower
r), microorganisms that are egested intact are biased towards earlier egestion time whereas dead/retained
microorganisms are not observed to egest. This bias towards earlier egestion time translates into lower mean
of the egestion time. Furthermore, as the bias gets stronger, we expect less variance. The same logic applies
to higher emigration rate (i.e. higher m).

• Even under a very general model, we showed that the qualitative results do not change; any ecological processes
contributing to apparent death leads to shorter mean egestion time. Mean egestion time therefore is useful in
inferring demographic processes.

• We do not need to measure the number of microorganisms ingested by the host; the time-series of the microor-
ganisms egested is su�cient for calculating statistics of the egestion time distribution. Our approach could
therefore be applied to pre-existing datasets, where the number of egested microorganisms was tracked over
time.

While the number of ingested microorgansims is unnecessary to calculate egestion time statistics, it nevertheless
provides additional information on the microbial demographic processes. Below, we categorize di↵erent demographic
patterns of the microorganisms in the host, by leveraging both the proportion of microorganisms that is egested
(relative to the number ingested) and the egestion time statistics.
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C.3 Demographic interpretation of comparisons within treatments or between treat-
ments using proportion of ingested microorganisms that is egested and egestion
time statistics.

In Fig. 4B we identified four possible patterns in the fecal data resulting from di↵erent demographic processes in
the host. Here we use numerical examples to illustrate this classification scheme. Table Table S1 gives parameter
values describing four hypothetical microbial populations and a hypothetical microsphere “population” used in these
examples. All five of these populations had the same set of m

i

values, but di↵ered in the set of r
i

values. Microspheres
had the same set of m

i

parameter values as the microbial population (i.e. m0 = 5,m1 = m2 = m3 = m4 = 1), but
had r

i

= 0 for all i (no birth or mortality). We use Theorem 1 (i.e. mean egestion time =
P

n

i=0
1

mi�ri
and variance

of the egestion time =
P

n

i=0
1

(mi�ri)2
), together with the proportion of ingested particles (bacteria or microspheres)

that is egested, to characterize how population dynamics are a↵ected by the within-host processes.

Example 1: Equal proportions egested, and equal mean and variance of the egestion time.

Consider population A and microsphere in Table S1. Throughout the gut, population A has r
i

= 0 for all i and
therefore has the same population dynamics as the microspheres. Consequently, the proportion of ingested particles
that is egested, the mean, and the variance of the egestion time are equal between microspheres and population A.
=) In general, if two types of particle have no demographic di↵erences, we expect an equal proportion of ingested

particles that is egested, and equal mean and variance of the egestion times.

Example 2: Lower proportion egested, and lower mean and variance of the egestion time.

Consider population A and population D in Table S1. Population D has large mortality and retention occurring
across multiple compartments (r

i

= �5 for all i), resulting in only 0.04% of bacteria being egested in feces. Reduced
population size in the gut a↵ects the egestion time distribution, resulting in smaller mean and variance of the egestion
time for population D than for population A.
=) In general, if one particle type has additional mortality and retention compared to another particle type, occurring

gradually throughout gut passage, we expect a lower proportion that is egested and lower mean and variance of the

egestion time.

Example 3: Lower proportion of particles egested but equal mean and variance of the egestion time.

Consider population B and the microspheres in Table S1. In population B, mortality and retention happen quickly
and intensely in one compartment, but not in others. The fraction of particles egested is lower for the bacteria, by a
factor of 2. In contrast, the mean and variance of egestion time are both very similar to those for the microspheres.
=) In general, if mortality or retention occur rapidly, the proportion of ingested particles that is egested can be low

even when the e↵ect on the egestion time distribution is very small.

Example 4: Equal porportion of particles egested but lower mean and variance of the egestion time.

Consider population B and population C in Table S1. In population B, mortality and retention happen quickly and
intensely in one compartment. In population C, mortality and retention happen gradually but persistently across
the gut. Here, the mean egestion time for population B is 4.1, and the mean egestion time for population C is
3.6. Similarly, the variance of the egestion time for population B is 4.01, and the variance of the egestion time for
population C is 2.91. Despite these di↵erences, the fractions of bacteria that survive to be egested in feces are equal
(both populations 50%).
=) In general, gradual but persistent mortality and retention can result in a similar proportion of ingested particles

that is egested as quick and intense mortality and retention, but the e↵ect on the egestion time distribution is large.

We expect similar proportion of ingested particles that is egested between the two, but large di↵erence in the egestion

time statistics.
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