Supporting Information

Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy

Venkata S. Mandala, Shu Yu Liao, Byungsu Kwon and Mei Hong*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

Figure S1. ¹⁹F CODEX data of the model compound 5-¹⁹F-Trp measured at 298 K on a 400 MHz spectrometer under (a) 10 kHz MAS. (b) 8 kHz MAS. Best-fit magnetization exchange curves used a ¹⁹F-¹⁹F nearest-neighbor distance of 4.62 Å. The best fit overlap integral, F(0), equals 41 μ s for both datasets. The first z-filter time in the S₀ experiments was 1 ms in these experiments.

Figure S2. Representative ¹⁵N MAS spectrum of U-¹³C, ¹⁵N-labeled histidine at pH 8.5. The ¹H-¹⁵N CP contact time was 3 ms and the rf field strengths were 40 kHz for both ¹H and ¹⁵N, with a moderate rf field ramp of 90-100% on the ¹⁵N channel. The spectrum was measured at 293 K on a 400 MHz spectrometer under 7 kHz MAS. The unprotonated N\delta1 has a large CSA, giving rise to two sidebands (*ssb*). With these sideband intensities included, the integrated N\delta1 intensity is approximately the same as the N ϵ 2-H peak intensity. The CP scaling factor, $\kappa = I_{NH}/I_N$, is 1.0 for this spectrum. The 98-ppm peak results from N α of anionic His, which coexists with the zwitterionic form at this pH.

Figure S3. Statistical analysis of the distributions of the four H37 pK_a 's in (a) W41F AM2-TM, (b) WT AM2-TM, and (c) BM2-TM. The reduced chi-square values are calculated assuming 1 degree of freedom as described in the Experimental section.

Figure S4. A30 cross sections extracted from 2D ¹³C-¹³C DARR spectra of W41F AM2-TM at pH 7.5 (black), pH 5.5 (green) and pH 5.5 with bound Amt (red). (a) The C α cross section at 53.4 ppm, showing the same chemical shift for three samples. (b) C β cross sections. The C β peak at 16.7 ppm in the pH 7.5 and pH 5.5 samples moves downfield in the drug-bound sample, while the C β peak at 14.7 ppm in the pH 5.5 sample moves upfield in the drug-bound sample. Drug binding also narrows the linewidths. These observations indicate that all W41F AM2-TM channels contain bound drug.

Figure S5. (a) 2D ¹H-¹³C correlation spectra without ¹H homonuclear decoupling of W41F AM2-TM at pH 7.5. Spin diffusion mixing times were 4 ms for the S spectrum and 100 ms for the S_0 spectrum. The lack of ¹H-¹H homonuclear decoupling ensures that only the ¹H signals of mobile water and lipid are detected. (b) Water ¹H cross sections of the pH 7.5 and pH 5.5 samples at 4 ms (red) and 100 ms (black) mixing. The pH 5.5 sample shows higher intensities of the 4 ms spectrum relative to the pH 7.5 sample, indicating that the channel is better hydrated at low pH. The spectra were measured on an 800 MHz spectrometer at 293 K under 12 kHz MAS.

Figure S6. 2D ¹H-¹³C correlation spectra with ¹H homonuclear decoupling of W41F AM2-TM. (a) pH 7.5; (b) pH 5.5; (c) pH 5.5 with bound Amt. His37 assignments are shown in red, blue and green for the τ tautomer, π tautomer, and cationic states, respectively. The spectra were measured at 263 K on an 800 MHz spectrometer. The ¹H-¹³C LG-CP contact time was 300 µs and FSLG decoupling was applied during t₁.

H37 state	Сα	Сβ	Сү	Сδ2	Ce1	Νε2	Νδ1
neutral, τ	55.8	30.7	136.1	112.1	135*	161	252*
neutral, π	55.8	27.8	126.0	124.2	135*	252*	170
cat1	59	29	128	114	135*	169*	169*
cat2	58	26	127	117	135*	175*	175*
cat3	56.5	25.9	131.1	115.7	134.1	176	181*
cat4	58.0	25.9	131.5	117.2	135*	175	181*

Table S1. ¹³C and ¹⁵N chemical shifts (in ppm) of imidazole atoms of H37 in W41F AM2-TM. Asterisks denote peaks with partial overlap and thus larger chemical shift uncertainty.

Table S2. Intensity ratios of H37 imidazole nitrogens in W41F AM2-TM. The scaling factor κ was measured before the experiment for each sample. The uncertainty in the scaling factor κ is estimated to be 0.05.

Sample pH	$I_{\rm NH}/I_{\rm N}$	к	[His]/[HisH ⁺]
7.5	1.31±0.03	1.2	22.3±2.5
6.2	2.34±0.16	1.3	2.49±0.88
5.9	4.42±0.18	1.2	0.70±0.14
5.5	6.83±0.47	1.2	0.43±0.14
4.5	34.0±4.7	1.0	0.06±0.03

	W41F AM2-TM			WT AM2-TM			BM2-TM					
	pK _{a1}	pK _{a2}	pK _{a3}	pK _{a4}	pK _{a1}	pK _{a2}	pK _{a3}	pK _{a4}	pK_{a1}	pK _{a2}	pK _{a3}	pK _{a4}
pK _{a1}	1.00	-0.36	-0.17	0.10	1.00	-0.59	0.03	-0.06	1.00	-0.76	0.35	-0.09
pK_{a2}	-0.36	1.00	-0.36	0.07	-0.59	1.00	-0.22	0.07	-0.76	1.00	-0.51	0.18
pK_{a3}	-0.17	-0.36	1.00	-0.41	-0.03	-0.22	1.00	-0.06	0.35	-0.51	1.00	-0.63
pK_{a4}	0.10	0.07	-0.41	1.00	-0.06	0.07	-0.06	1.00	-0.09	0.18	-0.63	1.00

Table S3. Pearson product-moment correlation coefficient matrices for W41F AM2, WT AM2 and BM2.

Table S4. Approximate proton dissociation equilibrium constants K_a for WT and W41F M2 channels under different pH and drug binding conditions.

M2	High pH	Low pH	Low pH with drug
Wild type	k'_{off}/k_{on}	$\left(k_{off} + k_{off}\right) / k_{on}$	k_{off}/ϵ
W41F	$\left(k_{off} + k_{off}^{W41F}\right) / k_{on}$	$\left(k_{off}^{'}+k_{off}^{W41F}\right) / \left(k_{on}+k_{on}^{'}\right)$	$K_{a}^{W41F, drug} \approx k_{off}^{W41F} / (k_{on} + \varepsilon)$