Supporting Information

Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution

Laurent Liardet and Xile Hu*

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Corresponding Author: *xile.hu@epfl.ch

Figure S1. Tafel slopes of m- $CoVO_x$, CoO_x and VO_x in 1 M KOH and 1 M Fe-free KOH.

Figure S2. a) Comparison of extracted XRD peaks for m- $CoVO_x$ and CoO_x . b) Comparison of extracted XRD peaks for m- $CoVO_x$ and $Co(CO_3)_{0.35}Cl_{0.2}(OH)_{1.1} \cdot 1.74 H_2O$. c) Comparison of extracted XRD peaks for CoO_x and $Co(CO_3)_{0.35}Cl_{0.2}(OH)_{1.1} \cdot 1.74 H_2O$. d) Comparison of extracted XRD peaks for VO_x and $V_2O_2(OH)_3$.

Figure S3. SEM images of CoO_x .

Figure S4. a) TEM image of m- $CoVO_x$. b) STEM-EDX mapping of m- $CoVO_x$.

Figure S5. SEM images of m- $CoVO_x$ on nickel foam.

Figure S6. a) Polarization curves for $m\text{-}CoVO_x$ on nickel foam and extracted tafel slopes in 1 M KOH. Scan rate 1 mV s⁻¹; iR drop corrected. b) Stability of $m\text{-}CoVO_x$ on nickel foam at 10 mA cm⁻² in 1 M Fe-free KOH.

Figure S7. a) Polarization curves on glassy carbon of cobalt vanadium oxides synthesized with different Co:V ratio in the hydrothermal solution in 1 M KOH and 1 M Fe-free KOH. Scan rate 10 mV s⁻¹; iR drop corrected. b) Overpotentials for the different cobalt vanadium oxides with different Co:V ratios in 1 M KOH and 1 M Fe-free KOH at 10 mA cm⁻².

Figure S8. SEM images of a- $CoVO_x$ on nickel foam.

Figure S9. a) High resolution region spectra of Na 1s of XPS spectra of a- $CoVO_x$. b) Polarization curves on glassy carbon (loading 140 μ g cm⁻²) of a- $CoVO_x$ in 1 M Fe-free KOH and 1 M Fe-free NaOH. Scan rate 10 mV s⁻¹; iR drop corrected.

Figure S10. a) SEM image of $a\text{-}CoVO_x$ on nickel foam before electrolysis. b) SEM image of $a\text{-}CoVO_x$ on nickel foam after 15 h of electrolysis at 10 mA cm⁻² in 1 M Fe-free KOH. c) STEM image of $a\text{-}CoVO_x$ initially deposited on nickel foam. d) STEM-EDX mapping of $a\text{-}CoVO_x$ initially deposited on nickel foam after 15 h of electrolysis at 10 mA cm⁻² in 1 M Fe-free KOH. e) EDX spectrum of of $a\text{-}CoVO_x$ initially deposited on nickel foam after 15 h of electrolysis at 10 mA cm⁻² in 1 M Fe-free KOH.

Figure S11. Agreement between measured and predicted moles of O_2 produced by a- $CoVO_x$ on nickel foam indicates nearly 100% faradaic efficiency. a-Co

Figure S12. Mass activity of different a- $Co_yV_{1-y}O_x$ on glassy carbon (loading 140 μ g cm⁻²). Scan rate 10 mV s⁻¹; iR drop corrected.

Table S1. Comparison between the Co:V concentration ratios in the deposition solution and the Co:V ratios in the final catalysts determined by XPS.

Catalyst	Deposition bath CoCl ₂ :VCl ₃	XPS Co:V ratio (atomic %)
	ratio	
$Co_{0.89}V_{0.11}O_x$	5:1	Co: 89%, V: 11% (9:1)
$\mathbf{Co}_{0.75}\mathbf{V}_{0.25}\mathbf{O}_{x}$	3:1	Co: 75%, V: 25% (3:1)
$\mathbf{Co}_{0.58}\mathbf{V}_{0.42}\mathbf{O}_{x}$	1:1	Co: 58%, V: 42% (3:2)
$Co_{0.36}V_{0.64}O_x$	1:3	Co: 36%, V: 64% (2:3)
$\mathbf{Co}_{0,21}\mathbf{V}_{0,79}\mathbf{O}_x$	1:5	Co: 21%, V: 79% (1:4)

Table S2. Bond strength of the different $Co_yV_{1-y}O_x$ for physical mixtures calculated using the method proposed by Bockris and Otagawa.¹

Mixture of metal hydroxides	M-OH bond strength (kcal mol ⁻¹)
Со-ОН	130.4
0.89 Co-OH + 0.11 V-OH	136.8
0.75 Co-OH + 0.25 V-OH	144.9
0.58 Co-OH + 0.42 V-OH	154.8
0.36Co-OH + 0.64 V-OH	167.6
0.21 Co-OH + 0.79 V-OH	176.3
V-OH	188.5

Table S3. Summary of the mass activities of the different oxides in 1 M KOH at $\eta = 350$ mV.

Metal oxide	Mass activity (A g ⁻¹ at $\eta = 350$ mV)
$CoO_x (Co(CO_3)_{0.35}Cl_{0.2}(OH)_{1.1} \cdot 1.74 H_2O)$	19.2
$Co_{0.89}V_{0.11}O_x$	56.3
$Co_{0.75}V_{0.25}O_x$	69.5
$Co_{0.58}V_{0.42}O_x$	45.6
$Co_{0.36}V_{0.64}O_x$	25.4
$Co_{0.21}V_{0.79}O_x$	6.8
$VO_x (V_2O_2(OH)_3)$	2.1

Reference

(1) Bockris, J. O. M.; Otagawa, T. J. Electrochem. Soc. 1984, 131, 290-302.