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e fig. S2. Increase in the regional flood protection level required to preserve the
current high-end flood risk for the period 2035 to 2044 (realization 83.3
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e fig. S3. Required adaptation relative to current protection to preserve the current

high-end flood risk for the period 2035 to 2044 (realization ensemble median).
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fig. S9. Hydrological model agreement (historic period).

fig. S10. Hydrological model agreement (future period).

fig. S11. Example histogram of affected people (in India).

fig. S12. Example histogram of affected people (in Egypt).

fig. S13. Zoomed-in views of selected metropolitan areas; increase in the regional

flood protection level required to preserve the current high-end flood risk for the

period 2035 to 2044.

e fig. S14. Schematic of the method to yield the affected population from discharge.

o fig. S15. Probability plot correlation coefficient for the preindustrial control run of
439 years as a goodness of (GEV) fit measure.

o fig. S16. Probability density functions for the fitted GEV distribution at four
representative grid cells (hot/cold and wet/dry).



e fig. S17. Increase in the regional flood protection level required to preserve the
current high-end flood risk for the period 2035 to 2044 (realization ensemble
median) using the Gumbel distribution for the extreme value fit (cf. Fig. 3 for
GEV fit).

e table S1. Main characteristics of the GHMs as used in this study, based on the
study of Warszawski et al. (7).

Other Supplementary Material for this manuscript includes the following:
(available at advances.sciencemag.org/cgi/content/full/4/1/eaa01914/DC1)

e CSV (comma-separated-values) file of the raw data (Microsoft Excel format)
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fig. S1. Increase in the regional flood protection level required to preserve the current
high-end flood risk for the period 2035 to 2044 (realization 16.7 percentile, lower likely
range). Additional protection is given in levels, starting with O for regions without adaptation
need. Level boundaries are 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1000. Numbers
shown are absolute difference in level numbers to current protection per sub-national region
in the FLOPROS database (6). Sub-figures show regional foci on the USA (a), Europe (b),

Africa (c), and Southeast and East Asia (d).
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fig. S2. Increase in the regional flood protection level required to preserve the current
high-end flood risk for the period 2035 to 2044 (realization 83.3 percentile, upper likely
range). Additional protection is given in levels, starting with 0 for regions without adaptation
need. Level boundaries are 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1000. Numbers
shown are absolute difference in level numbers to current protection. Sub-figures show

regional foci on the USA (a), Europe (b), Africa (c), and Southeast and East Asia (d).
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fig. S3. Required adaptation relative to current protection to preserve the current high-
end flood risk for the period 2035 to 2044 (realization ensemble median). Numbers
shown are relative difference (in multiples of current protection level) in return period in years
protected against. Sub-figures show regional foci on the USA (a), Europe (b), Africa (c), and

Southeast and East Asia (d).
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fig. S4. Affected people in the historic period. High-end flood risk (90" percentile) per sub-

national region given in number of affected people (logarithmic plot); historic period 1971-

2004.
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fig. S5. Affected people in the future period. High-end flood risk (90" percentile) per sub-

national region given in number of affected people (logarithmic plot); future period 2035-2044.
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fig. S6. Absolute increase in high-end flood risk. Difference in high-end flood risk (90
percentile) per sub-national region given in absolute number of additionally affected people

(lower bound 0); historic period 1971-2004, future period 2035-2044.
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fig. S7. Climate model agreement (historic period). Number of climate models with data
points (i. e. annual maximum flood events) larger or equal the historic overall 90" percentile
(without correcting for realizations of pre-industrial control run); over all ten hydrological

models per climate model run.
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fig. S8. Climate model agreement (future period). Number of climate models with data
points (i. e. annual maximum flood events) larger or equal the future overall 90" percentile
(without correcting for realizations of pre-industrial control run); over all ten hydrological
models per climate model run. The regions of histogram in figs. S11 and S12 are marked by

(1) and (2), respectively.
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fig. S9. Hydrological model agreement (historic period). Number of hydrological models
with data points (i. e. annual maximum flood events) larger or equal the historic overall 90%"
percentile (without correcting for realizations of pre-industrial control run); over all five climate

models per hydrological model run.
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fig. S10. Hydrological model agreement (future period). Number of hydrological models
with data points (i. e. annual maximum flood events) larger or equal the future overall 90%
percentile (without correcting for realizations of pre-industrial control run); over all five climate

models per hydrological model run.



A B 0.05

0.05
I GFDL-ESM2M
I HadGEM2-ES
0.04 — [ IPSL-CM5A-LR L 0.04
MIROC-ESM-CHEM
NorESM1-M
- 0.03 —  90th percentile L 003 .
o o
c c
() [}
=} =}
o o
< o
L 0.02 - 0.02 W
0.01 — 0.01
0.5 1 1.5 2 25 3 3.5 4 0.5 1 1.5 2 25 3 3.5 4
Population affected [millions] Population affected [millions]

fig. S11. Example histogram of affected people (in India). Histogram of affected people
(annual maximum of daily affected people) for the historic period (a) and the future period (b).
Example for Maharashtra state in India as marked (1) in fig. 8. Model years are binned into
0.1 million per bin (first bin excluded due to high frequency) and are differentiated by color for
different climate models. All climate models contribute to the 90" percentile of the overall

distribution (without correcting for realizations of pre-industrial control run).
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fig. S12. Example histogram of affected people (in Egypt). Histogram of affected people
(annual maximum of daily affected people) for the historic period (a) and the future period (b).
Example for the Red Sea Governate (Al Bahr al Ahmar) in Egypt as marked (2) in fig. S8.
Model years are binned into 0.05 million per bin (first bin excluded due to high frequency) and
are differentiated by color for different climate models. Only three climate models contribute to
the 90" percentile of the overall distribution for the future period (without correcting for

realizations of pre-industrial control run).
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fig. S13. Zoomed-in views of selected metropolitan areas; increase in the regional flood
protection level required to preserve the current high-end flood risk for the period 2035
to 2044. Numbers and sub-national areas as in Fig. 2. For each sub-figure the cities
mentioned (or corresponding sub-regions) in the title are indicated by black outlines.
Metropolitan regions chosen here show a lower adaptation need than their surrounding areas,

mostly due to already higher protection. Though some are coastal areas, numbers are only

for fluvial flood risk.
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fig. S14. Schematic of the method to yield the affected population from discharge. It

includes bias correction for model run biases as well as for bias because of only 34 years

used for extreme value fit.



probability plot correlation coefficient

fig. S15. Probability plot correlation coefficient for the preindustrial control run of 439
years as a goodness of (GEV) fit measure. The Generalized Extreme Value distribution
very well describes the observed annual maximum daily discharge for almost all non-dry grid

cells (cf. Figure 1).
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fig. S16. Probability density functions for the fitted GEV distribution at four

representative grid cells (hot/cold and wet/dry). Shown are fits for the 12 realizations, one
without correction for the pre-industrial control run (“history fit”), and the pre-industrial control

run itself with 439 years (“whole range fit”).
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fig. S17. Increase in the regional flood protection level required to preserve the current
high-end flood risk for the period 2035 to 2044 (realization ensemble median) using the
Gumbel distribution for the extreme value fit (cf. Fig. 3 for GEV fit). Additional protection
is given in levels, starting with O for regions without adaptation need. Level boundaries are 0,
1,2, 4,8, 16, 32, 64, 128, 256, 512, and 1000. Numbers shown are absolute difference in
level numbers to current protection. Sub-figures show regional foci on the USA (a), Europe

(b), Africa (c), and Southeast and East Asia (d).



table S1. Main characteristics of the GHMs as used in this study, based on the study of Warszawski et al. (7).

Time . . co
Model Meteorological Energy Evaporation . Vegetation 2
- step a alance b Runoff scheme Snow scheme dynamics 4 References
length forcing scheme effect
(Tang et al.
P, T,W,Q, Energy
DBH 1lh Yes Infiltration excess Energy balance No Constant 2007b; Tang
LW, SW, SP balance
et al. 2008)
(Hanasaki et
R,S,T,W,Q, al. 2008a;
HO08 Daily Yes Bulk formula | Saturation excess, non-linear Energy balance No No
LW, Sw, SP Hanasaki et al.
2008b)
(Best et al.
30 R,S, T,W,Q, Penman- Infiltration excess, saturation
JULES Yes Energy balance Yes Varying 2011; Clark et
mins LW, SW, SP Monteith excess, groundwater.
al. 2011)
(Bondeau et
Priestley-
LPImL Daily P. T, LWn’ Sw No Saturation excess Degree-day Yes Varying al. 2007; Rost
Taylor
et al. 2008)
Mac- P, T, W1 Q1 Penman- (Arnell 1999,
Daily No Saturation excess, non-linear Degree-day No No
PDM.09 LW . SW Monteith

Gosling and




Arnell 2011)

MATSIRO

1hr

R,S, T,W,Q,

LW, Sw, SP

Yes

Bulk formula

Infiltration excess, saturation

excess, groundwater.

Energy balance

No

Constant

(Takata,
Emori, and
Watanabe
2003; Pokhrel

etal. 2012)

(Hagemann

MPI-HM

Daily

P, T,W,Q,

LW , SW, SP
n

No

Penman-

Monteith

Saturation excess, non-linear

Degree-day

No

No

and DUmenil
Gates 2003;
Stacke and
Hagemann

2012)

PCR-

GLOBWB

Daily

P,T

No

Hamon

Saturation Excess Beta

Function

Degree Day

No

No

(Wada et al.
2010; van
Beek, Wada,
and Bierkens
2011; Wada et

al. 2011)

ViC

Daily,
3hr

snow

P, T,W,Q,

LW, SW, SP.

Only for

SNOow.

Penman-

Monteith

Saturation excess, non-linear

Energy balance.

No

No

(Liang et al.
1994;
Lohmann and

Raschke




1998)
(Vorosmarty,
Empirical temp and Federer, and
WBM Daily P,T No Hamon Saturation Excess precip based No No Schloss 1998;
formula Wisser et al.
2010)

a
R: rainfall rate, S: snowfall rate, P: precipitation rate (rain and snow calculated in the model), T: air temperature, W: wind speed, Q: air specific humidity, LW: downwelling

longwave radiation; LW : net longwave radiation; SW: downwelling shortwave radiation, SP: surface pressure.
n

Bulk formula: Bulk transfer coefficients are used when calculating turbulent heat fluxes.

c
Non-linear: Subsurface runoff is a non-linear function of soil moisture.

d
CO2 concentration in calculation of stomatal conductance.






