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fig. S1. Increase in the regional flood protection level required to preserve the current 

high-end flood risk for the period 2035 to 2044 (realization 16.7 percentile, lower likely 

range). Additional protection is given in levels, starting with 0 for regions without adaptation 

need. Level boundaries are 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1000. Numbers 

shown are absolute difference in level numbers to current protection per sub-national region 

in the FLOPROS database (6). Sub-figures show regional foci on the USA (a), Europe (b), 

Africa (c), and Southeast and East Asia (d). 
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fig. S2. Increase in the regional flood protection level required to preserve the current 

high-end flood risk for the period 2035 to 2044 (realization 83.3 percentile, upper likely 

range). Additional protection is given in levels, starting with 0 for regions without adaptation 

need. Level boundaries are 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1000. Numbers 

shown are absolute difference in level numbers to current protection. Sub-figures show 

regional foci on the USA (a), Europe (b), Africa (c), and Southeast and East Asia (d). 
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fig. S3. Required adaptation relative to current protection to preserve the current high-

end flood risk for the period 2035 to 2044 (realization ensemble median). Numbers 

shown are relative difference (in multiples of current protection level) in return period in years 

protected against. Sub-figures show regional foci on the USA (a), Europe (b), Africa (c), and 

Southeast and East Asia (d). 
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fig. S4. Affected people in the historic period. High-end flood risk (90th percentile) per sub-

national region given in number of affected people (logarithmic plot); historic period 1971-

2004. 
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fig. S5. Affected people in the future period. High-end flood risk (90th percentile) per sub-

national region given in number of affected people (logarithmic plot); future period 2035-2044. 
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fig. S6. Absolute increase in high-end flood risk. Difference in high-end flood risk (90th 

percentile) per sub-national region given in absolute number of additionally affected people 

(lower bound 0); historic period 1971-2004, future period 2035-2044. 
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fig. S7. Climate model agreement (historic period). Number of climate models with data 

points (i. e. annual maximum flood events) larger or equal the historic overall 90th percentile 

(without correcting for realizations of pre-industrial control run); over all ten hydrological 

models per climate model run. 
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fig. S8. Climate model agreement (future period). Number of climate models with data 

points (i. e. annual maximum flood events) larger or equal the future overall 90th percentile 

(without correcting for realizations of pre-industrial control run); over all ten hydrological 

models per climate model run. The regions of histogram in figs. S11 and S12 are marked by 

(1) and (2), respectively. 
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fig. S9. Hydrological model agreement (historic period). Number of hydrological models 

with data points (i. e. annual maximum flood events) larger or equal the historic overall 90th 

percentile (without correcting for realizations of pre-industrial control run); over all five climate 

models per hydrological model run. 
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fig. S10. Hydrological model agreement (future period). Number of hydrological models 

with data points (i. e. annual maximum flood events) larger or equal the future overall 90th 

percentile (without correcting for realizations of pre-industrial control run); over all five climate 

models per hydrological model run. 
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fig. S11. Example histogram of affected people (in India). Histogram of affected people 

(annual maximum of daily affected people) for the historic period (a) and the future period (b). 

Example for Maharashtra state in India as marked (1) in fig. 8. Model years are binned into 

0.1 million per bin (first bin excluded due to high frequency) and are differentiated by color for 

different climate models. All climate models contribute to the 90th percentile of the overall 

distribution (without correcting for realizations of pre-industrial control run). 
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fig. S12. Example histogram of affected people (in Egypt). Histogram of affected people 

(annual maximum of daily affected people) for the historic period (a) and the future period (b). 

Example for the Red Sea Governate (Al Bahr al Ahmar) in Egypt as marked (2) in fig. S8. 

Model years are binned into 0.05 million per bin (first bin excluded due to high frequency) and 

are differentiated by color for different climate models. Only three climate models contribute to 

the 90th percentile of the overall distribution for the future period (without correcting for 

realizations of pre-industrial control run). 
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fig. S13. Zoomed-in views of selected metropolitan areas; increase in the regional flood 

protection level required to preserve the current high-end flood risk for the period 2035 

to 2044. Numbers and sub-national areas as in Fig. 2. For each sub-figure the cities 

mentioned (or corresponding sub-regions) in the title are indicated by black outlines. 

Metropolitan regions chosen here show a lower adaptation need than their surrounding areas, 

mostly due to already higher protection. Though some are coastal areas, numbers are only 

for fluvial flood risk. 
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fig. S14. Schematic of the method to yield the affected population from discharge. It 

includes bias correction for model run biases as well as for bias because of only 34 years 

used for extreme value fit. 
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fig. S15. Probability plot correlation coefficient for the preindustrial control run of 439 

years as a goodness of (GEV) fit measure. The Generalized Extreme Value distribution 

very well describes the observed annual maximum daily discharge for almost all non-dry grid 

cells (cf. Figure 1). 
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fig. S16. Probability density functions for the fitted GEV distribution at four 

representative grid cells (hot/cold and wet/dry). Shown are fits for the 12 realizations, one 

without correction for the pre-industrial control run (“history fit”), and the pre-industrial control 

run itself with 439 years (“whole range fit”). 
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fig. S17. Increase in the regional flood protection level required to preserve the current 

high-end flood risk for the period 2035 to 2044 (realization ensemble median) using the 

Gumbel distribution for the extreme value fit (cf. Fig. 3 for GEV fit). Additional protection 

is given in levels, starting with 0 for regions without adaptation need. Level boundaries are 0, 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1000. Numbers shown are absolute difference in 

level numbers to current protection. Sub-figures show regional foci on the USA (a), Europe 

(b), Africa (c), and Southeast and East Asia (d).
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table S1. Main characteristics of the GHMs as used in this study, based on the study of Warszawski et al. (7). 

Model 

name 

Time 

step 

length 

Meteorological 

forcing
a
 

Energy 

balance 

Evaporation 

scheme
b
 

Runoff scheme 
c
 Snow scheme 

Vegetation 

dynamics 

CO
2

 

effect
d
 

References 

DBH 1h 
P, T, W, Q, 

LW, SW, SP 
Yes 

Energy 

balance 
Infiltration excess Energy balance No Constant 

(Tang et al. 

2007b; Tang 

et al. 2008) 

H08 Daily 
R, S, T, W, Q, 

LW, SW, SP 
Yes Bulk formula Saturation excess, non-linear Energy balance No No 

(Hanasaki et 

al. 2008a; 

Hanasaki et al. 

2008b) 

JULES 
30 

mins 

R, S, T, W, Q, 

LW, SW, SP 
Yes 

Penman-

Monteith 

Infiltration excess, saturation 

excess, groundwater. 
Energy balance Yes Varying 

(Best et al. 

2011; Clark et 

al. 2011) 

LPJmL Daily P, T, LW
n
, SW No 

Priestley-

Taylor 
Saturation excess Degree-day Yes Varying 

(Bondeau et 

al. 2007; Rost 

et al. 2008) 

Mac-

PDM.09 
Daily 

P, T, W, Q, 

LW
n
, SW 

No 
Penman-

Monteith 
Saturation excess, non-linear Degree-day No No 

(Arnell 1999; 

Gosling and 



Arnell 2011) 

MATSIRO 1 hr 
R, S, T, W, Q, 

LW, SW, SP 
Yes Bulk formula 

Infiltration excess, saturation 

excess, groundwater. 
Energy balance No Constant 

(Takata, 

Emori, and 

Watanabe 

2003; Pokhrel 

et al. 2012) 

MPI-HM Daily 

P, T, W, Q, 

LW
n
, SW, SP 

No 
Penman-

Monteith 
Saturation excess, non-linear Degree-day No No 

(Hagemann 

and Dümenil 

Gates 2003; 

Stacke and 

Hagemann 

2012) 

PCR-

GLOBWB 
Daily P,T No Hamon 

Saturation Excess Beta 

Function 
Degree Day No No 

(Wada et al. 

2010; van 

Beek, Wada, 

and Bierkens 

2011; Wada et 

al. 2011) 

VIC 

Daily, 

3hr 

snow 

P, T, W, Q, 

LW, SW, SP. 

Only for 

snow. 

Penman-

Monteith 
Saturation excess, non-linear Energy balance. No No 

(Liang et al. 

1994; 

Lohmann and 

Raschke 



1998) 

WBM Daily P,T No Hamon Saturation Excess 

Empirical temp and 

precip based 

formula 

No No 

(Vörösmarty, 

Federer, and 

Schloss 1998; 

Wisser et al. 

2010) 

 

a
 R: rainfall rate, S: snowfall rate, P: precipitation rate (rain and snow calculated in the model), T: air temperature, W: wind speed, Q: air specific humidity, LW: downwelling 

longwave radiation; LW
n
: net longwave radiation; SW: downwelling shortwave radiation, SP: surface pressure. 

b
 Bulk formula: Bulk transfer coefficients are used when calculating turbulent heat fluxes. 

c
 Non-linear: Subsurface runoff is a non-linear function of soil moisture. 

d
 CO

2
 concentration in calculation of stomatal conductance. 

 

 




