Supplemental Information

Table S1

DAG	T2D	T2D + VLCD
PO C18_1 C16	46.6±6.7	31.6±5.0
AE C20_4 C20_5	107.3±7.2	67.3±4.8***
AP C16 C20_4	5.1±0.4	3.3±0.2**
AS C18 C20_4	3.7±0.2	2.5±0.2**
SS C18,C18	3.9±0.7	3.8±0.3
LS C18_2,C18	11.8±1.7	7.8±0.9
OS C18_2,C18	5.0±0.8	3.9±0.7
PP C16,C16	14.1±3.2	12.7±2.2
SP C18,C16	7.0±1.1	5.8±0.7
OO C18_1	33.5±4.7	25.1±4.8
OL C18_1,C18_1	57.8±9.5	38.0±7.0
LL C18_2,C18_2	81.8±16.4	60.0±11.7
PL C16,C18_2	119.4±16.5	76.8±9.8
Total DAG	497.1±57.3	343.4±37.8
Ceramide	T2D	T2D + VLCD
C16	50.1±5.0	54.4±2.8
C18	8.5±0.9	9.9±0.8
C20	42.8±10.9	47.8±11.7
C22	39.6±4.7	44.7±4.5
C24:1	15.0±1.3	16.7±0.9
C24	50.2±5.0	56.4±2.7
Total ceramide	206.2±23.4	229.8±22.1

Table S1, related to Fig. 1. Individual DAG and ceramide species. Data are the mean \pm S.E.M. ofn=6 per group, with *P<0.05, **P<0.01 and ***P<0.001 by the 2-tailed unpaired Student's t-test.</td>

Fig. S1, related to Fig. 1. Caloric restriction reverses fasting hyperglycemia in a rat model of T2D without any alterations in gluconeogenic substrates (lactate, alanine, amino acids), gluconeogenic hormones (corticosterone, glucagon), FGF-21 or hepatic ceramide content. (A) Liver ceramide content. (B)-(C) Plasma lactate and whole-body lactate turnover. (D) Plasma amino acid concentrations. (E)-(G) Plasma glucagon, corticosterone, and FGF-21. (H)-(I) Plasma ALT and AST. (J) Liver inflammatory cytokine concentrations. (K)-(L) ER stress markers. In all panels, data are the mean±S.E.M. of n=6 per group, with no differences by the 2-tailed unpaired Student's t-test.

Fig. S2, related to Fig. 2. Liver glycogen content is reduced and hepatic insulin sensitivity is improved in VLCD rats. (A) Liver glycogen in 8 hr fasted rats. ***P*<0.01 by the 2-tailed unpaired Student's t-test. n=6 per group. (B) Ratio of hepatic pyruvate kinase flux to the sum of pyruvate carboxylase and pyruvate dehydrogenase flux. n=5 per group. (C)-(D) Plasma glucose and glucose infusion rate required to maintain euglycemia during a hyperinsulinemic-euglycemic clamp. In panels (C)-(I), n=6 per group. (E) Insulin-stimulated glucose disposal rate. (F)-(G) Plasma NEFA and suppression of NEFA concentrations during the clamp. In panels (F) and (H), **P*<0.05 by the 2-tailed paired Student's t-test. (H)-(I) Plasma glycerol and suppression of glycerol concentrations during the clamp. In all panels, data are the mean±S.E.M.

Fig. S3, related to Fig. 3. A very low calorie diet does not alter hepatic mitochondrial oxidation. (A) Plasma β OHB. (B) Liver malonyl-CoA. (C) Hepatic PPAR α and PGC1 α protein expression, normalized to GAPDH. In all panels, data are the mean \pm S.E.M. of n=6 per group. No significant differences were observed with the 2-tailed unpaired Student's t-test.

Fig. S4, related to Fig. 4. VLCD reverses hyperglycemia in Western diet fed rats. (A) Body weight. (B)-(C) Plasma glucose and insulin concentrations following an 8 hr fast. (D) Liver glycogen concentrations. (E)-(G) Hepatic TAG, DAG, and membrane/cytosol PKC ε protein expression. Data are the mean±S.E.M. of n=6 per group. In all panels, **P*<0.05, ***P*<0.01, ****P*<0.001 by the 2-tailed unpaired Student's t-test.