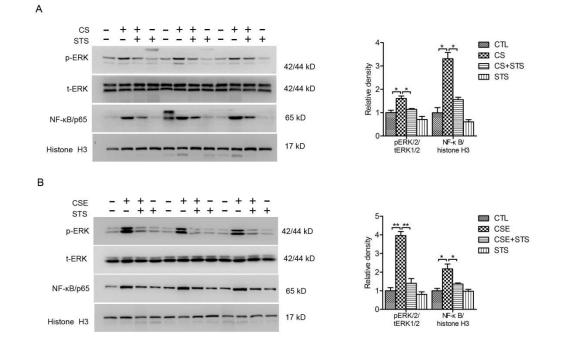
Supplementary information

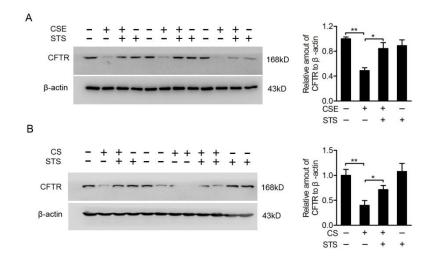
Tanshinone IIA sulfonate protects against cigarette smoke-induced COPD and

down-regulation of CFTR in mice

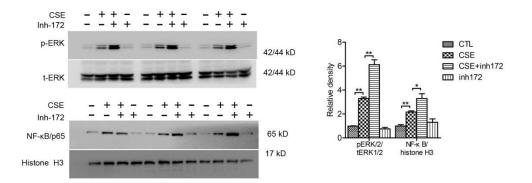
Defu Li¹*, Jian Wang¹*, Dejun Sun⁴*, Xuefang Gong¹, Hua Jiang¹, Jiaze Shu¹, Ziyi Wang¹, Zhen Long¹, Yiguan Chen⁵, Zili Zhang¹, Liang Yuan¹, Ruijuan Guan¹, Xue Liang¹, Ziying Li¹, Hongwei Yao^{1,6}, Nanshan Zhong¹, Wenju Lu^{1, 2, 3§}


¹State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; ²Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; ³Sino-French Hoffmann Immunology Institute, Guangzhou Medical University, Guangzhou, Guangdong, China; ⁴Department of Respiratory Medicine, The People's Hospital of Inner Mogolia; ⁵Faculty of Biology, Medicine and Health, University of Manchester, Manchester City, Britain; ⁶Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Warren Alpert Medical School, Providence, RI, USA.

Running title: TIIA inhibits cigarette smoke-induced COPD


*These authors contributed equally to this article.

%Correspondence:


Wenju Lu, MD, PhD Professor of Respiratory Medicine State Key Lab of Respiratory Diseases The First Hospital of Guangzhou Medical University Rm501E, Building 16 195 Dongfengxi Road, Guangzhou, China Email: wlu92@yahoo.com Tel: 86-20-83205040; Fax: 86-20-83205162 Email: wlu92@yahoo.com

Supplementary figure 1. STS reduces CS-induced activation of ERK/NF- κ B pathway in 16HBE cells and mouse lungs. (A) Levels of phosphorylated ERK1/2 in cytosol protein and levels of NF- κ B in nuclear protein from lung tissue of mice exposed to CS with or without STS treatment. *P< 0.05 and **P< 0.01, n=3. CSE, cigarette smoke extract; CS, cigarette smoke. (B) 16HBE cells were treated with 2% CSE for 1 h with or without 2 h of STS pretreatment. Levels of ERK1/2 and phosphorylated ERK1/2 in cytosol protein and levels of NF- κ B with histone H3 as loading control in nuclear protein. *P< 0.05 and **P< 0.01. CFTR, cystic fibrosis transmembrane conductance regulator; CSE, cigarette smoke extract; CS, cigarette smoke extract ext

Supplementary figure 2. STS protects against CS-induced reduction of CFTR in 16HBE cells and mouse lungs. 16HBE cells were treated with 2 % CSE for 48 h with 2 h of STS (10 µg/ml) pre-incubation. (A) The level of CFTR in total cell extract was determined with β -actin as internal control (n=4 per group). (B) Western blotting tested the impact of STS on CFTR expression in lungs from CTL, CS, CS plus STS (CS+STS) and STS-treated mice (n=6 mice per group). *P< 0.05 and **P< 0.01. CFTR, cystic fibrosis transmembrane conductance regulator; CSE, cigarette smoke extract; CS, cigarette smoke; STS, Sodium tanshinone IIA sulfonate.

Supplementary figure 3. CFTR inhibition increases CSE-induced activation in ERK/NF- κ B pathway. 16HBE cells were treated with 2% CSE for 1 h with 2 h of STS (10 µg/ml) pre-incubation. In order to inhibit CFTR function, cells were treated with CFTR specific inhibitor CFTR-Inh172 (10 µM) 1 h prior to STS treatment. The levels of phosphorylated ERK1/2 in cytosol protein were determined with ERK1/2 as internal control (n=3). The level of p65/NF- κ B in nuclear extraction was determined with histone H3 as internal control (n=6). *P< 0.05 and **P< 0.01, CFTR, cystic fibrosis transmembrane conductance regulator; CSE, cigarette smoke extract; STS, Sodium tanshinone IIA sulfonate.