Supplementary Information

Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water

Md Mhahabubur Rhaman,¹ Mohammad H. Hasan,² Azmain Alamgir,¹ Lihua Xu,³ Douglas R. Powell,⁴ Bryan M. Wong^{*},³ Ritesh Tandon^{*2} and Md. Alamgir Hossain^{*1}

¹ Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA

² Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA

³Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California-Riverside, Riverside, CA 92521, USA

⁴Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA

*Correspondence and requests for materials should be addressed to M. A. H. (alamgir.hossain@jsums.edu), B. M. W. (bryan.wong@ucr.edu) or R. T. (rtandon@umc.edu)

Table of contents

	Page
NMR and mass spectra of L	S2
Packing diagram of 1'	S3
Glutamate titration	S3
Phosphate titration	S4
Adipate titration	S4
Tartrate titration	S5
Benzoate titration	S5
Acetate titration	S6
Selectivity test of citrate	S6
Job's plot	S7

Figure S2. ¹³C NMR of **L** in CDCl₃.

Figure S3. ESI-MS (+) spectra of L.

Figure S4. Packing diagram of 1' showing an infinite polymer along the *a*-axis.

Figure S5. The enhancement of fluorescence intensity of $[1 \cdot \text{EY}]$ (1/EY = 5:1) upon the addition of glutamate ($[1 \cdot \text{EY}]_0 = 2 \times 10^{-6} \text{ M}$, [glutamate]₀ = 2 x 10⁻³ M) in water buffered with 20 mM HEPES at pH 7.0. $\lambda_{\text{ex}} = 470 \text{ nm}$, $\lambda_{\text{em}} = 536 \text{ nm}$. The inset shows the titration plot of I/I_o against [glutamate]₀/[1·EY]₀ at $\lambda_{\text{em}} = 536 \text{ nm}$.

Figure S6. The enhancement of fluorescence intensity of $[1 \cdot \text{EY}]$ (1/EY = 5:1) upon the addition of K₂HPO₄ ($[1 \cdot \text{EY}]_0 = 2 \times 10^{-6} \text{ M}$, $[\text{K}_2\text{HPO}_4]_0 = 2 \times 10^{-3} \text{ M}$) in water buffered with 20 mM HEPES at pH 7.0. $\lambda_{\text{ex}} = 470 \text{ nm}$, $\lambda_{\text{em}} = 536 \text{ nm}$. The inset shows the titration plot of I/I_o against $[\text{K}_2\text{HPO}_4]_0/[1 \cdot \text{EY}]_0$ at $\lambda_{\text{em}} = 536 \text{ nm}$.

Figure S7. The enhancement of fluorescence intensity of $[1 \cdot \text{EY}]$ (1/EY = 5:1) upon the addition of adipate ($[1 \cdot \text{EY}]_0 = 2 \times 10^{-6} \text{ M}$, $[\text{adipate}]_0 = 2 \times 10^{-3} \text{ M}$) in water buffered with 20 mM HEPES at pH 7.0. $\lambda_{\text{ex}} = 470 \text{ nm}$, $\lambda_{\text{em}} = 536 \text{ nm}$. The inset shows the titration plot of I/I₀ against $[\text{adipate}]_0/[1 \cdot \text{EY}]_0$ at $\lambda_{\text{em}} = 536 \text{ nm}$.

Figure S8. The enhancement of fluorescence intensity of $[1 \cdot \text{EY}]$ (1/EY = 5:1) upon the addition of tartrate ($[1 \cdot \text{EY}]_0 = 2 \times 10^{-6} \text{ M}$, $[\text{tartrate}]_0 = 2 \times 10^{-3} \text{ M}$) in water buffered with 20 mM HEPES at pH 7.0. $\lambda_{\text{ex}} = 470 \text{ nm}$, $\lambda_{\text{em}} = 536 \text{ nm}$. The inset shows the titration plot of I/I₀ against $[\text{tartrate}]_0/[1 \cdot \text{EY}]_0$ at $\lambda_{\text{em}} = 536 \text{ nm}$.

Figure S9. The fluorescence intensity of $[1 \cdot \text{EY}]$ (1/EY = 5:1) upon the addition of benzoate ($[1 \cdot \text{EY}]_0 = 2 \times 10^{-6} \text{ M}$, [benzoate]₀ = 2 x 10⁻³ M) in water buffered with 20 mM HEPES at pH 7.0. $\lambda_{\text{ex}} = 470 \text{ nm}$, $\lambda_{\text{em}} = 536 \text{ nm}$, showing insignificant change in fluorescence intensity.

Figure S10. The fluorescence intensity of $[1 \cdot \text{EY}]$ (1/EY = 5:1) upon the addition of acetate ($[1 \cdot \text{EY}]_0 = 2 \times 10^{-6} \text{ M}$, [acetate]₀ = 2 x 10⁻³ M) in water buffered with 20 mM HEPES at pH 7.0. $\lambda_{\text{ex}} = 470 \text{ nm}$, $\lambda_{\text{em}} = 536 \text{ nm}$, showing insignificant change in fluorescence intensity.

Figure S11. The selectivity of citrate in presence of 10 equivalents of other anions without oxalate, $\lambda_{ex} = 470 \text{ nm}$, $\lambda_{em} = 536 \text{ nm}$, $d_{ex} = 2$, $d_{em} = 3$.

Figure S12. The selectivity of citrate in presence of 10 equivalents of other anions, $\lambda_{ex} = 470$ nm, $\lambda_{em} = 536$ nm, $d_{ex} = 2$, $d_{em} = 3$.

Figure S13. Job's plot for the formation of the citrate complex with 1.EY. The data was obtained from the titration of 1.EY with citrate as shown in Figure 4 in the main manuscript.