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Supplementary Information 

 

Supplementary Methods 

 

DNA barcoding of seeds 

DNA was extracted from seeds using the DNeasy Plant Mini Kit (Qiagen) following the 

manufacturer instructions. The DNA samples were subjected to an additional step of 

purification with Phenol: Chloroform: Isoamyl alcohol. DNA was re-suspended in 40 μl 

of elution buffer and kept at 20 ºC. Two chloropastid loci (the psbA-trnH intergenic 

spacer, and the trnL intron and trnL-F intergenic spacer) were amplified using a Hot 

Start Taq Master Mix (QIAGEN) as described in1. Amplification was performed in 25 μl 

containing 1 μl of DNA and 1 μl of each primer. Conditions of the PCR were as follows: 

95ºC (15min); 94ºC (1min); then 30 cycles for trnL-F and 35 cycles for psbA at 94ºC 

(1min)/ 50ºC (1min)/ 72ºC (1min), and a final extension at 72°C (10 min). The PCR 

products were purified using ExoSAP-IT (Affymetrix), and sequenced in a Sanger ABI 

3730xl at GATC Biotech (Germany). The sequences were compared with the available 

online databases using BLAST2. The species were identified based on the best BLAST 

matches and the list of plant species known for the Gorongosa National Park. 

 

Multilayer modularity 

Modularity is a structural pattern of interactions between nodes of a network whereby a 

group of species – a module or community, interact more frequently than expected 

among them than with other groups of species6,7. A multilayer approach to modularity 

allows the identification communities that span across multiple layers of the network, 

which can be important to the structural unity of the whole network8. We used a 

modularity quality function that uses a “generalized Louvain” method to community 

finding9,10. The Louvain method for the identification of communities progresses in two 

iterative phases: in the first phase, all nodes are considered one-by-one and assigned 

to a specific set of nodes – community, until a configuration is reached that maximizes 

the modularity quality function. In the second phase, the communities previously found 

are now used as nodes of a reduced network, and the same procedure is repeated 

until no further increase in modularity is detected11. This is a popular locally-greedy 

method for modularity-optimization as it is fast and delivers reliable results12,13. 

Following14, we changed the contribution of the original standard null-model for 

unipartite networks7:   
      

   
, i.e. the expected interaction frequency of any two nodes i 

and j within layer s, on original code of this function (available at 
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http://netwiki.amath.unc.edu/GenLouvain/GenLouvain), to:   
      

  
, reflecting the 

bipartite nature of the network: 
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where Aijs is the weight of the intra-layer edge between nodes i and j within layer s; Cjsr 

is a tensor element giving the weight of the inter-layer between node j and its replica on 

layers r and s (given the categorical nature of the multilayer coupling in spatial 

multilayer networks all values Cjsr > 0, and it is assumed to be equal for any inter-layer 

coupling, Cjsr = ω); γs is the resolution  parameter for layer s; kis and djs are the degrees 

of plant i and dispersers j within layer s, respectively; ms is the total edge weight of 

layer s; gis and gjr  are the set of nodes forming the communities that contain the 

nodes-layer (i,s) and (j,s), respectively; the Kronecker delta between indices x and y is 

denoted as δxy (this will be 1 for x = y and 0 for x ≠ y), and 2µ = ∑ijs Aijs
9. 

The “generalized Louvain” methods requires the specification of two parameters: the 

resolution limit γ; and the inter-layer coupling ω. The resolution limit γ defines the detail 

to which the network will be resolved into communities, and can be seen as the 

importance given to the null model relative to the empirical network12. We used the 

default resolution parameter value of γ = 19,12. The choice of the coupling parameter ω 

is a matter of intense investigation, and takes a value of either 0 or ω12. When ω = 0 it 

is equivalent to optimizing the modularity for each layer independently, where any node 

never belongs to the same community across the different layers, i.e. communities are 

not persistent across the multilayer network. If however ω > 0, and as it increases, 

nodes are less likely to belong to different communities, which tend to span across the 

different layers of the network, and can assume different values of each pair of layers 

depending on the importance of the coupling between those pairs of layers9,12.  

 

Versatility 

To assess the importance of nodes to the structure we calculated centrality for each 

node accounting for the multilayer nature of our network, defined by the animal-plant 

interaction in each of the habitats of Gorongosa. This allows to identify the most 

important nodes – versatile species, in our system15. We used a widely used measure 

of centrality based on Google’s PageRank16, which is a random walk centrality 

measure corresponding to the path taken by a walker moving between adjacent nodes, 

with the importance of each node being calculated recursively by the sum of the 
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importance of all nodes connected to it. PageRank centrality was extended to the case 

of multilayer networks by allowing “teleportation” of nodes between any layers of the 

network15. 

 

Multistrength 

Node multistrength measures the strength of a node as the combined weight of its 

connections, across the different layers of a network17,18, and expresses the importance 

of a node to the community of nodes with which it interacts in the multilayer network. 

Two concepts are important to understand multistrength, namely: multidegree and 

multilink. Multidegree is the number of links in which a node participates, and it is an 

extension of node degree for monolayers17,18. A multilink is defined as the set of links 

that connect two nodes in different layers of a network17,18:   ⃗⃗  = m1,m2,…mα, …mM), 

with each    accepting either of two values mα = 1 or 0, defining the set of links 

between any two nodes in different layers, and in any layer   if     . It is now 

introduced the multi-adjacency matrices   ⃗⃗⃗  where elements    
 ⃗⃗⃗    if a multilink  ⃗⃗  

exists between nodes i and j, or zero if no link exists: 

 

   
 ⃗⃗⃗  ∏[   

    (     
 )  (    )]

 ⃗⃗⃗ 

  

  

 

where    
  is the weight of the link between nodes i and j in layer  . Any i and j pair of 

nodes must satisfy the condition: 

 

∑   
 ⃗⃗⃗ 
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Multidegree  ⃗⃗   of any node i,   
 ⃗⃗⃗  is definded as the total number of multilinks  ⃗⃗  

incident on node i: 

 

  
 ⃗⃗⃗  ∑   

 ⃗⃗⃗ 

 

   

  

 

Then, species multistrength     
 ⃗⃗⃗  measures the total weights of the links incident on a 

node in a given layer which forms a multilink of type  ⃗⃗ 17,18:  
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Supplementary Tables 

 

Supplementary Table 1 – Sampling completeness of animal species and plant 

species. The estimated number of species (Sest) was calculated using the non-

parametric estimator Chao219, and is compared with the observed number of species 

(Sobs). In brackets is present the proportion (%) of Sobs in relation to Sest. 

 
Grassland 

Transition 

forest 
Mixed forest Miombo  

 Sest Sobs  Sest Sobs  Sest Sobs  Sest Sobs  

Animal species 19.5 
14 

(72%) 
27.3 

16 

(59%) 
32.5 

21 

(65%) 
15.9 

12 

(76%) 

Plant species 49.5 
29 

(59%) 
81.0 

42 

(52%) 
219.1 

69 

(32%) 
82.2 

24 

(29%) 
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Supplementary Table 2 – Differences in animal richness, plant richness, and number 

of interactions among the main habitats of Gorongosa. When the overall G-test for 

detected a significant difference, the results of pair-wise G-tests are shown. 

Variable/G-test Pairwise G-test: p value 

Animal richness: 

G = 1.836 

df = 3 

p = 0.607 

 

Plant richness: 

G = 9.395 

df = 3 

p = 0.025 

 Grassland 
Transition 

forest 
Mixed forest 

Transition 

forest 
0.258   

Mixed forest 0.003 0.071  

Miombo 0.541 0.097 0.001 

No. of Interactions: 

G = 139.64 

df = 3 

p < 2.2e-16 

    

Transition 

forest 
1.4e-09   

Mixed forest < 2.0e-16 4.5e-05  

Miombo 0.290 4.3e-07 < 2.0e-16 
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Supplementary Table 3 – Results of the generalized linear mixed model (Gamma 

family) fitted to dispersers specialization (d’) by habitat type, with animal species as a 

random factor. Model fit assessed with the Akike’s Information Criterion (AIC) against a 

reduced model, which only included the intercept. 

 Parameter Estimate ± SEM t- test P 

Dispersers 

specialization 

(d’) 

Intercept 0.743 ± 0.073 10.204 < 2e-16  

Habitat (Transition forest) - 0.052 ± 0.057 - 0.910 0.363 

Habitat (Mixed forest) - 0.062 ± 0.057 - 1.078 0.281 

Habitat (Miombo) 0.018 ± 0.065 0.274 0.784 

Habitat (overall effect) Χ2 = 2.487, df = 3, p = 0.478 

Χ2 = 2.338, 3 df, p = 0.505 

AICreduced = - 16.02; AICmodel= -12.36 
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Supplementary Table 4 – Versatility, specialization (d’), multistrength, and number of 

habitats where each disperser species is present. 

Species 

M
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N
. 
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Papio ursinus 1.000 1.000 0.320 52 4 

Loxodonta africana 0.750 0.665 0.483 38 4 

Cercopithecus 

pygerythrus 
0.608 0.465 0.426 30 4 

Civettictis civetta 0.545 0.384 0.622 26 4 

Phacochoerus africanus 0.496 0.268 0.340 21 2 

Aepyceros melampus 0.467 0.216 0.711 19 3 

Hystrix africaeaustralis 0.466 0.255 0.777 21 3 

Redunca arundinum 0.446 0.195 0.669 18 3 

Chlorocichla flaviventris 0.438 0.059 0.835 13 1 

Andropadus importunus 0.438 0.059 0.390 13 1 

Ourebia ourebi 0.432 0.054 0.889 13 2 

Herpestidae (Mongoose) 0.432 0.054 0.065 13 1 

Hippotragus niger 0.429 0.052 0.828 13 1 

Oriolus larvatus 0.427 0.052 0.619 13 1 

Kobus ellipsiprymnus 0.426 0.178 0.578 18 3 

Numida meleagris 0.426 0.078 0.472 14 1 

Connochaetes taurinus 0.425 0.050 0.058 13 1 

Cephalophus natalensis 0.425 0.052 0.691 13 2 

Tragelaphus sylvaticus 0.423 0.053 0.979 13 3 

Corythaixoides concolor 0.417 0.050 0.507 13 1 

Otolemur crassicaudatus 0.417 0.050 0.084 13 1 

Genetta tigrina 0.406 0.074 0.658 14 2 

Potamochoerus larvatus 0.404 0.100 0.493 15 2 

Pycnonotus tricolor 0.401 0.126 0.832 16 3 

Tragelaphus 

strepsiceros 
0.398 0.073 0.856 14 2 

Tragelaphus angasii 0.396 0.119 0.776 16 3 
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Supplementary Figures 
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