Force Field Parameterization of Metal Ions From Statistical Learning Techniques - SUPPORTING INFORMATION

Francesco Fracchia^{*a*},* Gianluca Del Frate^{*a*}, Giordano Mancini^{*a*}, Walter

Rocchia^b, and Vincenzo Barone^a

E-mail: francesco.fracchia@sns.it

^aScuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

^bDepartment of Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genova, Italy

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

Figure S1: Computed radial distribution functions (rdf, solid lines) and running integration number (dashed lines) for the metal ion-water oxygens interaction in Molecular Dynamics simulations (NVT ensemble, room temperature) using $Merz^1$ (Zn^{2+}), $Aqvist^2$ (Mg^{2+} , Na^+) and Li et al.³ (Ni^{2+} , Ca^{2+}) force fields.

Figure S2: Computed radial distribution function between Ni²⁺, Mg²⁺, Ca²⁺, Na⁺ and water oxygens, using the 12-6-1_F (red line), 12-6-1 (green) and 12b-1-E1Gr (blue) models. In the case of Ni²⁺, also the experimental distribution (black line) is shown.

Figure S3: Second peak from radial distribution functions for the metal ion-water oxygens interaction in Molecular Dynamics simulations using the Li³ (black line, Zn²⁺, Ni²⁺, Mg²⁺, Ca²⁺), Babu and Lim⁴ (orange, Zn²⁺, Ni²⁺, Mg²⁺, Ca²⁺), Joung and Cheatham⁵ (magenta, Na⁺), 12-6-1_F (red), 12-6-1 (green) and 12b-1_F-E1Gr (blue) models.

	σ (Å)	$\epsilon ~(\rm kJ/mol)$
Zn^{2+}	0.2339341	0.028551
Ni^{2+}	0.1145527	744.7884
Mg^{2+}	0.1939073	0.734308
Na^+	0.2150201	1.686356
Ca^{2+}	0.2577062	2.029290

Table S1: Metal ions LRR-DE optimized parameters for the $12\text{-}6\text{-}1_F$ model.

Table S2: Metal ions LRR-DE optimized parameters for the 12-6-1 model.

	C^{-6} (kJ mol ⁻¹ nm ⁶)	C^{-12} (kJ mol ⁻¹ nm ¹²)	q(e)
Zn^{2+}	-0.004349	3.405e-08	2.300773
Ni^{2+}	-0.000057	1.232e-07	2.213392
Mg^{2+}	-0.005197	3.344e-08	2.321638
Na^+	0.000620	3.689e-07	1.021000
Ca^{2+}	-0.008399	6.562 e- 07	2.271904

Table S3: Metal ions LRR-DE optimized parameters for the 12b-1-E1Gr model.

	$C1 (kJ mol^{-1} nm^{12})$	C2(e)	$\theta_1 \ (nm)$	$\theta_2 \ (\mathrm{nm}^{-1})$	$\theta_3 \ (\mathrm{nm}^{-2})$	$\theta_4 \ (nm)$
Zn^{2+}	2.912e-05	696.482913	-0.099025	15.281931	0.270012	0.126974
Ni^{2+}	4.1724190	4.9229e-07	-0.021800	10.000000	7.000000	0.100000
Mg^{2+}	-22.109731	-91.616616	-0.795994	20.000000	10.00000	0.270071
Na^+	5.782 e- 06	2.4124543	-0.057371	8.4124410	6.089116	0.182687
Ca^{2+}	1.085e-04	11.3382033	-0.101856	10.1049636	8.342623	0.218861

References

- Hoops, S. C.; Anderson, K. W.; Merz Jr, K. M. Journal of the American Chemical Society 1991, 113, 8262–8270.
- (2) Aqvist, J. J. Phys. Chem. **1990**, 94, 8021–8024.
- (3) Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz Jr, K. M. J. Chem. Theory Comput. 2013, 9, 2733–2748.
- (4) Babu, C. S.; Lim, C. The Journal of Physical Chemistry A 2006, 110, 691–699.
- (5) Joung, I. S.; Cheatham III, T. E. J. Phys. Chem. B 2008, 112, 9020-9041.