

Figure S1, related to Figure 1

(A) Tumor volume shown as a relative change from the initiation of chemotherapy (day 0) in MMTV-PyMT animals. Mice were treated with an IgG_{2a} isotype control or α PD-1, alone or together with 10 mg/kg PTX as indicated. n=8-10 mice per group, pooled over 4 cohorts. Data are mean ± SEM. (B) Correlation between *TIMD4* expression and myeloid genes (*CD163*, *CSF1R*, *LAMP3*) in human breast cancer samples from the TCGA dataset (n=1161, R² values by linear regression). (C) Gating strategy for human DCs shown in a peripheral blood sample. (D) Percentage of TIM-3⁺ cells within the CD141⁺ cDC1, CD1c⁺ cDC2 or CD14⁺ monocyte/macrophage populations in the peripheral blood of healthy volunteers (n=5) or breast tumors (n=9). Horizontal bars represent the mean.

8-

6

4

2

0 PTX αTIM-3

g/dL

Total Protein

+

+

+

_ Albumin

_

5-

4

3

2

1

g/dL

-∆-∆-∆ ______

+ +

BUN

50-

Figure S2, related to Figure 2

(A) Automated analysis of Ki67 positive nuclei or cleaved caspase 3 immunohistochemistry staining in orthotopic PyMT tumors following treatment with IgG_{2a}/PTX or $\alpha TIM-3/PTX$. n=8-10 per group, data pooled from 2 experiments. **p<0.01, significance determined by an unpaired t-test. (B) The frequency and size of metastatic foci in the lungs of MMTV-PyMT animals treated with $\alpha TIM-3$, $\alpha TIM-4$, or PTX. Representative images are shown to the right. n=8-16, pooled over 8 cohorts. p value shown compared to PTX alone, with significance determined by Mann-Whitney. (C) Metabolic function tests reflecting serum isolated from mice treated with IgG_{2a} alone, PTX/IgG_{2a} , or $PTX/\alpha TIM-3$. Samples were taken by cardiac puncture at end-stage. Significance was determined by an unpaired t-test, with none found. The horizontal dotted lines indicate the expected range for healthy animals. ALT, alanine transaminase; ALP, alkaline phosphatase; BUN, blood urea nitrogen. (D) Weight of mice treated with IgG_{2a} alone, PTX/IgG_{2a} , or $PTX/\alpha TIM_3$. n=10 per group, pooled over 8 cohorts. Data are shown as the mean \pm SEM; *p<0.05, ***p<0.001, with significance determined by 2-way ANOVA compared to IgG_{2a} control. Horizontal bars in A-C represent the mean.

Figure S3, related to Figure 3

(A) cDC subsets (gated on CD45⁺CD11c⁺MHCII⁺F4/80⁻) within MMTV-PyMT tumors from animals either proficient (+/-) or deficient (-/-) in *Batf3*, or from the spleen or lymph nodes (LN) of wild type FVBN/J animals either proficient or deficient in *Batf3*. One of two representative experiments shown. (B) cDC subsets (gated on CD45⁺CD11c⁺MHCII⁺F4/80⁻) within PyMT tumors implanted into chimeric C57BL/6J animals reconstituted with either *Itgax-cre;Irf8^{n/fl}* or *Irf8^{n/fl}* bone marrow. (C) Frequency of myeloid subsets as a percentage of total CD45⁺ cells within MMTV-PyMT tumors of mice treated for 15 days with PTX and a combination of α TIM-3 and/or α TIM-4 antibodies. n=8-12 per group, data pooled over 7 cohorts. *p<0.05, **p<0.01, with significance determined by unpaired t-test with Welch's correction compared to PTX alone group. (D) Surface expression of MHCI and MHCII on macrophages and cDCs from MMTV-PyMT animals treated with PTX for 7 days in conjunction with either IgG_{2a} or α TIM-3. n=13-15 per group with data pooled over 3 experiments by normalizing to 1. Horizontal bars in C, D represent the mean.

Figure S4, related to Figure 4

(A) Haver2 mRNA expression levels in leukocyte populations isolated from MMTV-PyMT mice treated with PTX, as determined by real time PCR. Data are normalized to *Tbp* expression and displayed as mean \pm SEM with n=6-8 per cell type. (B) Immunofluorescent staining for TIM-3 (red) and CD3, CD4 or CD8 (green) in human breast cancer. DNA was visualized with Hoechst 33342 (blue). 3 patient samples were analyzed for each combination. (C) Clonality of T cell receptor β (TCR β) in the peripheral blood of MMTV-PyMT mice treated with αTIM-3 and PTX (day 15), as determined by immunoSEQ. n=6-7 per group, data pooled over 2 cohorts. (D) Percentage of $CD3^+$, $CD3^+CD4^+$ or $CD3^+CD8^+$ T cells within the lymph nodes (LN), spleens, and tumors of animals bearing implanted tumors treated with DMSO or FTY720 for 7 days. Data merged from 3 experiments. (E) Frequency of CD8⁺ and CD4⁺ T cells within MMTV-PyMT tumors as a percent of total CD45⁺ cells 2 days following the 2nd dose of PTX (day 7). n=13-15 mice per group pooled over 3 cohorts. (F) Frequency of CD8⁺ and CD4⁺ T cells within MMTV-PyMT tumors as a percent of total CD45⁺ cells (day 15). n=8-12 per group, data pooled over 7 cohorts (G) Percent of T cells expressing CD69 (left) or CD44 (right) within MMTV-PyMT tumors, 2 days post PTX (day 7). n=13-15 mice per group pooled over 3 cohorts. (H) CD8⁺Gzmb⁺ T cells shown as percentage of total CD8⁺T cells. Data are from mice bearing PyMT implantable tumors treated with IgG_{2a} isotype control, αTIM-3, or PTX. Tumors were analyzed 2 days post PTX (day 7), n=8-12 per group, data pooled from 2 experiments. Horizontal bars in C-H represent the mean; *p<0.05, **p<0.01, ***p<0.001 by an unpaired t-test.

	Λ.
	4
-	•

Α							В		
MHCII ^{HI} MOs				MHCII ^{LO} MOs				40-	Cxcl9
Gene	Fold	p value		Gene	Fold	p value	io		
Ccl7	1.7976	0.0015		Cd3eap	2.5285	0.0425	SSS	30-	1
Hcst	1.7330	0.0481		Gata3	2.2161	0.0025			I r
Irf7	0.6562	0.0069		Ltf	2.2066	0.0087	ш	20-	1
Tlr5	0.6477	0.0102		Zbtb7b	2.0216	0.0496		40	
Cxcl1	0.6376	0.0045		Bcl2	1.9110	0.0079	elat	10-	
Cd34	0.6036	0.0366		Rorc	1.8199	0.0012	Ř	0	$ \perp $
Ifitm 1	0.5872	0.0106		Smad5	1.7975	0.0076		0-	
Il1r2	0.3914	0.0010		Casp2	1.7947	0.0148			ithelic at
				Ptk2	1.7739	0.0471		4	is. Fugo
$CD11b^+ DCs$				Abcb10	1.7576	0.0047			
Gene	Fold	p value		Il15ra	1.7369	0.0257		60-	Cxcl10
Traf2	2.6839	0.0022		S100a8	1.7351	0.0302			
Cxcl9	2.5956	0.0141		Muc1	1.6901	0.0346	ess	40-	
Cd22	2.5538	0.0029		Cd24a	1.6558	0.0047	x	40-	
Cxcl11	1.9942	0.0237		C3	1.6094	0.0000	Ш Д		
Cx3cr1	1.8214	0.0071		Rela	1.6025	0.0441	ti	20-	-
Pdgfb	1.8168	0.0008		116st	1.5794	0.0066	ela		
Fcgr4	1.7617	0.0355		Psmd7	1.5782	0.0405	¥		
Cxcl10	1.6686	0.0311		Stat5a	1.5377	0.0112		0-	·····
Ccl3	1.6685	0.0305		Pdcd2	1.5259	0.0193			unellan ut
Vcam1	1.6580	0.0356		Ccl12	0.6253	0.0435		<	Epit Endor
Tnfsf13b	1.6482	0.0425		Ifngr2	0.6061	0.0143			•
Tlr1	1.6399	0.0371		Cxcl1	0.6008	0.0393		60-	0
Cd69	1.6384	0.0144		Clec4e	0.5897	0.0451		00	CXCITT
Tgfbr1	1.5793	0.0087		Msr1	0.5672	0.0453	ssic		
Cmklr1	1.5758	0.0142		Ifit2	0.5576	0.0155		40-	{
Irf8	1.5616	0.0120		Crlf2	0.5559	0.0281	_ X		
Trem2	1.5530	0.0474		Fcgr2b	0.4848	0.0386	le F	00	
Tnfrsf14	1.5506	0.0430		Trem1	0.4236	0.0350	ati>	20-	1
Ccl12	1.5366	0.0186		Ifitm1	0.4209	0.0078	Sel		
Clqa	1.5204	0.0300						0-	L_
Cd40	1.5066	0.0051		CD103 ⁺ DCs					lial
Tlr5	0.6409	0.0344		Gene	Fold	p value			pitte. dott
Fkbp5	0.6153	0.0040		Cxcl11	2.5306	0.0037		Ň	- FUR
				Cxcl10	1.9417	0.0201			
				Cxcl9	1.6854	0.0440			
				Tagap	1.5823	0.0181			
				Cd40	1.5252	0.0243			

Figure S5, related to Figure 5

(A) Fold change in mRNA expression levels in tumor macrophages and cDCs isolated from mice bearing orthotopically implanted PyMT tumors 2 days following second dose of PTX (day 7). Expression was determined by NanoString. Significance was determined by an unpaired t-test, with data pooled from 2 experiments. (B) mRNA expression of *Cxcl9, Cxcl10*, or *Cxcl11* by epithelial and stromal cells in untreated MMTV-PyMT tumors. Data are normalized to *Tbp* expression and displayed as mean \pm SEM with n=8 per cell type. (C) Percentage of MMTV-PyMT tumor macrophages and cDCs expressing CXCL9 following ex vivo stimulation with 40 ng/ml IFN- γ for 4 hr in the presence of brefeldin A. Representative intracellular staining is shown to the left. Horizontal bars represent the mean (n=9), with data pooled from two experiments. (D) Transwell migration of activated CD8⁺ splenic T cells in response to recombinant murine CXCL9 or CXCL10, either in the presence of 100 nM of the CXCR3 inhibitor (\pm)-AMG 487. Normalized data are displayed as mean \pm SEM of biological replicates compiled from three independent experiments. Significance was determined by an unpaired t-test, with *p<0.05, **p<0.01.

Figure S6, related to Figure 6

(A-C) Surface expression of TIM-3 on FLT-3L-induced BMDCs as measured by flow cytometry, either unstimulated or stimulated with the indicated conditions for 24 hr. (A) Histogram displaying TIM-3 surface expression relative to fluorescence minus one (FMO) control. (B) TIM-3 surface mean fluorescence intensity (MFI) following incubation with IL-10 or VEGFA. (C) TIM-3 surface MFI following stimulation with Poly(I:C), LPS, Imiquimod, CpG, α CD40, or IFN- γ . A representative histogram is shown on the right. Data for B-C are displayed as mean \pm SD of technical replicates; *p<0.05, **p<0.01, ***p<0.001, significance determined by an unpaired t-test. One of two representative experiments is shown. (D) TIM-3 surface MFI on macrophage and cDC subsets from tumors of MMTV-PyMT mice treated with PTX and either IgG₁ isotype control or α IL-10R antibody. n=7 per group, data shown as mean ± SEM. (E) Surface expression of TIM-3 in monocytes, macrophages, CD11b⁺ cDCs, and CD103⁺/CD8⁺ cDCs in the mammary gland, lung, spleen and lymph nodes (LNs) of non-tumor bearing animals. n=4, one of two representative experiments shown. (F) Expression of activation markers by splenic cDCs following incubation with aTIM-3 and/or tumor cell debris generated by heat shock (HS). One of two representative experiments is shown, with data displayed as mean \pm SD of 4 technical replicates. (G) Representative galectin-9 immunohistochemistry in human breast cancer samples (n=5). (H) Representative immunofluorescent staining for TIM-3 (red) and galectin-9 (green) in human breast cancer. DNA was visualized with Hoechst 33342 (blue). 3 patient samples were analyzed for each combination.

Figure S7, related to Figure 7

(A) Linear regression analysis between *CXCL9* expression and *CSF1R* or *IRF4* in human breast cancer samples from the TCGA dataset (n=1161). (B-C) Linear regression analysis between *CXCL9* expression and (B) *LAMP3* or (C) *CD8A* in samples from intrinsic luminal A (n=513), luminal B (n=286), Her2 (n=112) and basal (n=145) molecular subtypes. (D) Recurrence free survival (RFS) based upon median expression of *CD8A* or *HAVCR2* in breast tumor tissue. Data are shown for intrinsic luminal A, luminal B, Her2 and basal molecular subtypes (n=1933, 1149, 251, 618 for *CD8A*; n=841, 407, 156, 360 for *HAVCR2*). Hazard ratio (HR) and logrank p values are shown in the upper right of each Kaplan-Meier Plot.