
Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

1	

S1 Supplemental Material
	
	
Bioinformatics	lab:	Introduction	to	command	line	computing	with	
CyVerse/iPlant	using	the	Tuxedo	pipeline	for	RNA-seq	(lab	1)	

	Introduction	to	Unix	
	

This	exercise	will	introduce	you	to	some	simple	Unix	commands	that	you	will	need	
later	to	work	with	data	files.	At	the	beginning,	Unix	will	seem	to	be	cumbersome	and	
annoying	to	you.	Over	time,	commands	will	become	second	nature	to	you	and	you	
will	start	to	appreciate	the	power	of	Unix.	
	

PRELAB	(5	points)	
Please	sign	up	for	an	CyVerse/iPlant	account	AND	request	access	to	“Atmosphere”	
AND	launch	an	“instance”,	AND	suspend	it	as	follows:		
Note	that	depending	on	your	access	rights	and	website	updates,	some	of	these	
website	URLs	might	change.	In	that	case,	follow	the	latest	instructions	on	the	
CyVerse	and	Atmosphere	websites	to	create	an	account	and	gain	access	to	
Atmosphere.	CyVerse	is	the	new	name	of	iPlant.	You	might	find	references	to	both	in	
this	module.	Both	refer	to	the	same	computing	platform.	
	
Signing	up	for	CyVerse		

1. Go	to	http://www.cyverse.org/learning-center/create-account	and	sign	up	
for	a	free	account.	

2. After	signing	up,	request	free	access	to	“Atmosphere”.	
https://user.cyverse.org/services/mine	.	It	may	take	a	few	days	for	your	
account	to	be	set	up	and	access	to	Atmosphere	granted.	

	
Logging	in,	launching	an	instance:	

1. If	you	logged	out	since	creating	the	account,	go	to	
http://www.cyverse.org/learning-center/	and	login	using	your	user	account	
and	password.	

2. Login	to	Atmosphere.	
3. Click	on	Launch	New	Instance.	In	the	image	search	box	type	the	name	of	the	

image	you	will	use	for	RNAseq	analysis:	RNAseq_Analysis_gt_V2.	
4. Click	on	Launch	New	Instance.	In	the	image	search	box	type	the	name	of	the	

image	you	will	use	for	RNAseq	analysis:	RNAseq_Analysis_gt_V2.	
5. Select	this	image,	click	Launch,	select	a	“large	3”	instance	from	the	pull-down	

menu,	leave	the	other	options	at	their	default,	and	click	“launch	instance”.	
6. Sometimes	instances	get	stuck	during	deplaoyment.	To	get	them	unstuck,	try	

redeploying	or	rebooting	(hard	reboot)	them	using	the	buttons	on	the	right	
of	the	“Projects”	tab.	

	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

2	

Starting	the	instance	may	take	up	to	30	minutes	but	sometimes	it	takes	just	a	few	
minutes.	You	will	receive	an	email	to	your	email	address	that	you	linked	to	the	
account	telling	you	that	the	instance	is	ready	and	providing	you	your	IP	address	and	
the	ssh	username.	You	will	need	both	in	the	next	steps.	
	
4.	When	your	instance	is	launched	you	are	ready	for	data	analysis.	For	right	now,	
however,	click	on	“suspend”	instance.	Wait	a	few	minutes	for	it	to	suspend,	then	log	
out	and	close	the	website.	You	are	now	ready	to	quickly	get	started	when	you	come	
to	lab,	because	waking	up	a	suspended	instance	is	much	quicker	than	launching	a	
new	one.	 	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

3	

Week	1:	In-Lab	Exercise	1	
For	the	following	exercises	your	do	not	need	access	to	iPlant.	A	Mac	computer	is	
preferred.	If	you	do	not	have	a	Mac,	use	an	iPlant	instance	instead.	
Exercise	1:	Working	in	the	Unix/Linux	environment.	

1. Go	to	the	Terminal	program	(or	your	emulator	if	you	are	using	a	PC)	and	
open	a	Terminal	window.	

2. Your	window	opens	and	shows	you	the	owner	and	user	names	followed	by	a	
$	sign,	as	in:	
TH223F-6657:~	amadlung$		
Every	computer	has	a	specific	name	plus	the	login	name	of	the	user	and	will	
be	different	for	each	of	you.	Commands	you	enter	will	be	entered	after	the	$.	
You	do	not	type	the	$	in	your	commands.	Later	on	we	will	do	all	of	our	
computations	on	a	remote	server,	to	which	you	have	to	log	in.	You	can	then	
use	your	keyboard	and	screen	to	run	that	remote	computer/server,	using	
Terminal.	

3. For	now	let’s	learn	some	very	basic	commands	to	be	able	to	move	around	on	
your	own	computer.	Following	you	will	see	in	this	document	exactly	what	
you	have	to	type	after	the	$	sign.	Also,	anything	following	a	#	is	NOT	entered,	
and	only	serves	the	purpose	of	explaining	parts	of	the	command	to	you.	

4. Remember	from	the	lecture	that	each	command	is	composed	of	multiple	
parts:	the	command	itself,	any	options	(specifics	for	the	command),	and	the	
argument	(usually	the	file	you	want	the	command	to	be	worked	on).	Start	by	
typing	in	this	simple	command	and	hit	return.	

a. $ ls	 #	After	the	$	sign	type	ls	and	hit	return.	(You	never	have	to	
type	the	$	sign.	It	automatically	shows	up	in	an	active	command	line.)	
This	will	list	all	the	files	that	you	have	in	your	home	folder.	Note	that	
there	is	no	option	and	no	argument.	

b. Let’s	augment	the	command	with	an	option.	First	use	$ls –a
c. This	command	lists	all	files,	even	those	normally	hidden	to	regular	

users.	Now	type	$ls –lh	
d. The	list	of	files	includes	so	called	“permissions”	(the	dwrx---	etc	

string),	date,	the	file	size,	and	a	few	other	things.		
e. Now	type	$ls-lh	but	leave	out	the	space	between	ls	and	–lh.	You	will	

see	that	you	get	an	error.	One	thing	to	note	with	Unix	is	that	it	only	
recognizes	exactly	what	you	type	and	will	not	second-guess	you.	If	the	
command	is	not	typed	correctly,	Unix	will	not	do	anything	for	you.	
Likewise,	please	be	careful	because	Unix	does	not	ask	you	if	you	are	
sure	about	what	you	are	asking	the	computer	to	do.	For	example,	if	
you	use	a	command	that	directs	Unix	to	delete	your	hard	drive,	Unix	
will	do	so	without	warning.	

5. The	next	thing	to	learn	is	how	to	move	around	on	your	computer	to	access	or	
specify	documents.	The	unique	address	of	a	document	on	your	computer	is	
called	the	path.	You	are	probably	used	to	windows,	using	a	mouse,	and	
dragging-and-dropping.	Unix	requires	written	commands	for	everything.	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

4	

Understanding	the	hierarchy	of	the	file	system	is	very	important,	or	else	you	
are	moving	around	in	the	dark.		

Unix	calls	folders	“directories”	and	files	“documents”.	In	this	figure	a	
directory	located	inside	another	directory	is	designated	with	a	line	between	
directories.	The	root	directory	is	on	the	left	marked	with	a	slash	/.		
Unix	computers	have	a	“home	directory”	(in	the	example	figure	above	called	
“lucy”).	Generally,	data	files	you	work	with	should	be	stored	downstream	of	
the	home	directory,	for	example	the	desktop	or	in	Document	directories.	
Upstream	of	your	home	are	directories	that	contain	software	programs,	such	
as	Unix.	An	important	one	to	know	is	the	bin	directory.	
	
Go	back	to	your	terminal	window.	We	will	now	move	around	in	the	file	
hierarchy.	You	should	be	in	the	equivalent	location	to		
TH223F-6657:~ amadlung$,	which	is	your	home	directory.	To	verify	
your	location	you	can	use	the	command	pwd	(print	working	directory).	Try	
out	the	following	commands:	
	

a. $pwd		#You	should	now		see	/Users/amadlung	(or	in	your	case	your	
username).	Look	back	at	the	figure	and	notice	that	the	home	directory	
is	in	the	Users	directory.		Now	let’s	move	down	one	step	in	the	
hierarchy	and	enter	the	Desktop	folder.	The	command	cd	(change	
directory	followed	by	your	destination)	will	do	that.	

b. $ cd Desktop			#	Make	sure	to	use	the	correct	spaces.	After	the	
$	there	is	a	space	and	after	cd	there	is	a	space.		Note	that	with	cd	you	
can	only	go	to	a	directory	that	is	one	step	removed	from	your	
current	location.	If	you	want	to	jump	into	a	directory	elsewhere,	you	
need	to	specify	the	entire	path.	We	will	learn	how	to	do	that	soon.	For	
now	look	at	the	content	of	your	Desktop	like	this:	

c. $ ls	 #	With	this	command	you	are	listing	all	the	folders	and	files	on	
your	Desktop.	You	are	now	“inside”	that	directory	and	you	cannot	get	
ahold	of	any	file	or	folder	outside	this	directory.	You	can	either	work	
on	a	file	in	the	directory	you	are	currently	in	(Desktop)	or	you	can	
move	deeper	into	the	file	structure	(in	some	cases	aka	a	complete	
unorganized	mess)	or	you	can	move	back	out	into	your	home	
directory.	To	move	backwards	in	the	hierarchy,	use	the	command	cd	
space	dot	dot	(cd	..).	This	moves	you	to	the	parent	directory.	Try	this:	

d. $ cd ..	 #	Use	cd	followed	by	a	space	and	two	periods	(followed	
by	hitting	return)	and	you	are	now	back	in	your	home	directory.	To	
convince	yourself	that	you	have	returned	to	the	home	directory	you	
can	use	a	ls	command	and	look	around	or	you	can	use	pwd	to	ask	
where	you	are.	

e. You	can	get	back	to	the	home	directory	from	anywhere	(not	just	down	
one	directory)	using	cd ~	

	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

5	

6. Next	you	should	learn	a	very	useful	trick	that	avoids	misspelling	files	or	
directories	and	also	allows	you	to	see	if	the	computer	finds	the	file	or	
directory	you	specify	as	you	are	putting	in	a	new	command.	This	can	help	
you	avoid	frustration	when	your	computer	refuses	to	do	what	you	want	
(since	it	often	won’t	tell	you	exactly	why	it	refuses	a	command).	

a. Go	to	your	home	directory	and	type	in	Desk	as	if	you	were	typing	
Desktop.	Don’t	complete	the	name	yet	and	after	Desk	hit	the	tab	key.	
Like	this:	$ cd Desk		 #Then	hit	TAB.	You	should	see	that	the	
computer	“autocompletes”	the	file	or	directory	name	to	Desktop/						
Make	it	a	habit	to	use	autocomplete	all	the	time.	If	you	don’t	have	the	
correct	file	in	the	correct	directory	or	you	are	misspelling	it,	
autocomplete	will	not	work	and	you	will	know	that	you	have	to	fix	
something.	

7. Next,	let’s	learn	what	the	path	to	a	file	is.	Assume	you	are	lost	in	your	file	
structure.	One	way	to	find	out	is	to	ask	the	computer	where	you	currently	are,	
using	pwd,	as	you	learned	above.	

a. $ pwd	 #The	“present	working	directory”	command	returns	
your	location.	If	you	are	not	in	your	Desktop	directory,	move	into	it	
now.	Then	type:	$ pwd	 	
The	computer	will	tell	you	more	than	you	expected:	It	will	give	you	
what	is	called	the	“file	path”.	Usually	that	starts	with	the	Users	folder	
followed	by	the	username	(your	username,	which	is	the	name	of	your	
home	directory),	followed	by	the	directory	you	are	in.	Right	now	you	
should	be	in	the	Desktop	directory,	so	you	should	see	this:					
/Users/yourusername/Desktop		#where	yourusername	is	in	fact	your	
actual	user	name	(not	“yourusername”,	which	I	am	using	here	as	a	
place	holder).	
	

8. There	are	two	ways	to	use	the	path.	You	can	specify	a	file	on	your	computer	
by	typing	in	the	entire	list	of	hierarchical	directories	from	your	home	down	
to	the	file	you	want	to	specify.	For	example	
/Users/yourusername/Desktop/yourfile	would	be	one	way	to	specify	the	file.		
The	file	path	is	difficult	to	understand	for	a	new	Unix/Linux	user.		
	 The	file	path	is	the	only	way	to	specify	a	file	to	the	computer	to	work	
on.	There	is	the	“absolute	path”,	which	lists	all	directories	from	the	“Users”	
directory	on	down	to	where	your	file	is	located	(like	a	Russian	doll),	or	you	
can	use	shortcuts	-	if	you	understand	them.	As	you	start	out	using	Unix,	make	
it	a	habit	to	always	move	into	the	folder	in	which	the	file	is	located	that	you	
want	to	use	for	a	command.		

	
DO	THIS:	Draw	a	partial	hierarchical	tree	structure	similar	to	the	figure	above	but	
indicating	some	of	the	directory	names	actually	on	your	computer.	
Draw	the	file	system	of	YOUR	computer	on	a	large	piece	of	paper.	Use	the	commands	
cd, ls,	and	cd ..	to	move	around	the	computer.	After	each	step	up	or	down,	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

6	

use	ls	to	list	the	folders	on	your	system.	(No	need	to	draw	all	of	them,	just	the	ones	
similar	to	those	in	the	figure	but	with	your	names).		
As	you	progress	through	the	exercise	you	will	create	more	directories	on	the	
desktop	and	later	inside	the	new	directory	on	the	desktop.	Add	those	
directories	to	your	tree.	
TURN	IN	THE	DRAWING	OF	THE	TREE	AT	THE	END	OF	LAB.	
	
Exercise	2:	Making	files	and	directories,	and	using	wild	cards	

1. In	Terminal,	go	to	your	Desktop	directory	using	the	command	cd Desktop.	
2. Using	command	ls,	list	the	files	on	your	Desktop.	
3. Now	create	a	new	file	by	using	the	command	touch	to	create	a	file	called:		

Bio332_firstfile.txt	
4. Use	ls	to	list	the	files	in	the	directory.	Your	Desktop	directory	should	now	

list	the	file	you	just	created.	Verify	that	this	is	true.	
5. Use	touch	and	create	a	second	file	called	Bio332_secondfile.txt.	
6. When	you	use	autocomplete	to	search	for	a	file,	the	computer	might	detect	

similarly	named	files.	In	this	case	it	will	autocomplete	up	to	the	first	
ambiguous	letter	of	the	file.	We	will	try	this	out	in	the	next	step	with	your	
two	Bio332_	files	where	we	will	remove	one	of	the	files.	

7. To	delete	a	file	use	the	command	rm.	Type	Bio4	and	then	hit	tab	to	
autocomplete.	You	will	hear	a	warning	signal	and	the	computer	will	
autocomplete	only	as	far	as	Bio332_.	Type	in	f,	which	is	the	next	letter	that	
will	resolve	the	ambiguity	between	the	two	files	Bio332_firstfile.txt	and	
Bio332_secondfile.txt.	Hit	tab	to	autocomplete.	The	rest	of	the	file	name	
should	fill	in	automatically.	Hit	return	and	Bio332_firstfile.txt	is	deleted.	

8. Use	ls	to	verify	that	the	file	has	been	removed.	
9. Ok,	you	now	know	how	to	delete	a	file,	but	it	turns	out	that	we	do	need	this	

file	later,	so	remake	the	file	Bio332_firstfile	now.	
10. Next	we	will	create	a	folder/directory.	Use	the	command	mkdir to	create	a	

folder	called	Bio332_unix_data	on	your	desktop.	Use	ls	to	verify	that	you	
have	the	folder.	

11. Next	we	will	move	the	file	Bio332_firstfile.txt	into	the	new	folder	using	the	
following	command:	
$ mv Bio332_firstfile.txt Bio332_unix_data/ #Notice	the	
command	(mv)	and	the	argument	(your	file)	followed	by	the	place	where	to	
put	the	file.	

12. Now	move	into	the	unix_data	directory	using	the	cd	command.	Once	in	the	
correct	folder,	use	ls	to	verify	that	it	contains	Bio332_firstfile.txt.	

13. Move	back	into	the	Desktop	directory	and	move	Bio332_secondfile.txt	into	
the	Bio332_unix_data	directory.	To	move	back	down	one	level	in	the	
hierarchy	use	cd ..	

14. Next	we	will	learn	the	use	of	wild	cards,	which	can	help	you	later	save	a	lot	of	
time.	Wild	cards	are	used	to	list	ALL	files	that	have	certain	parts	of	their	file	
name	in	common.	First,	create	a	new	directory	inside	your	Bio332_unix_data	
directory	and	call	it	Bio332_unix_data_2ndlevel.	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

7	

15. Use	ls	to	list	the	content	of	your	Bio332_unix_data	directory.	You	should	now	
have	two	files	and	a	directory	inside	this	directory.	

16. Use	ls *.txt	to	list	all	files	that	end	in	.txt.	
17. Now	move	your	two	.txt	files	into	the	2nd	level	folder	by	using	the	following	

wildcard	command:	mv *.txt Bio332_unix_data_2ndlevel.	Use	
autocomplete	to	avoid	(mis-)typing	the	whole	directory	name.	

18. Use	cd	to	move	into	the	2nd	level	directory,	then	use	ls to	check	if	you	
moved	the	files.	Then	use	cd	to	move	back	one	level	and	check	if	your	
directory	Bio332_unix_data	is	empty	as	it	should	after	moving	the	files	to	
Bio332_unix_data_2ndlevel.	

	
Exercise	3:	Downloading	data	from	the	web	using	Unix	

1. Later	we	will	load	data	into	your	Bio332_unix_data	directory	that	we	can	
work	with.	Much	of	the	data	we	use	will	be	downloaded	from	FTP	sites.	The	
first	data	we	will	download	is	simply	a	copy	of	the	Unix	commands	cheat	
sheet	from	this	website:	
ftp://ftp.solgenomics.net/bioinfo_class/other/interns/	

	 Alternatively	you	can	try:	ftp://lxftp01.pugetsound.edu/pub/	
	 	

Using	a	regular	web	browser,	open	this	page,	locate	the	pdf	file	
unix_command_sheet.pdf	and	copy	the	“link	location”	into	the	computer’s	
memory.	There	are	multiple	ways	to	do	this:	Either	control-click,	or	right-
click,	or	tap	with	two	fingers	on	the	file.	From	the	drop	down	menu	that	will	
appear	select	“Copy	link	location”.	

2. Go	back	to	the	Terminal	and	use	the	command	curl	(stands	for	copy	URL)	
as	follows:		
$ curl –O	(this	is	an	Oh,	not	a	zero)	add	one	space	and	then	paste	the	link	
with	command-v	into	the	terminal	window.	
(The	–O	option	following	the	command	curl	creates	a	file	with	the	same	
name	as	the	one	you	are	downloading	via	FTP.)	So	the	full	command	is	
$ curl –O	
ftp://ftp.solgenomics.net/bioinfo_class/other/interns/
unix_command_sheet.pdf #	There	is	a	space	between	the	command	
and	the	ftp	address.	
(If	you	use	the	terminal	window	in	iPlant	and	not	your	own	computer,	the	
command	is	wget,	not	curl.)	

3. Check	your	success	with	ls.	
	
Exercise	4:	Using	a	text	editor	

Next,	we	will	create	a	file,	write	text	in	the	file,	save	the	file,	read	the	file,	and	
eventually	move	files	around.	Earlier,	you	created	and	deleted	a	file	on	the	
desktop.	Create	a	new	file	using	touch	in	the	directory	
Bio332_unix_data_2ndlevel	and	call	it	“Bio332_data_file1”	(not	typing	the	“		“).	
Use	ls	to	verify.	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

8	

1. To	write	things	in	a	file	you	have	to	use	a	“text	editor”.	There	are	many	
options	available.	We	will	use	one	that	is	already	loaded	in	Terminal	called	
emacs	(one	loaded	in	PC	terminals	is	called	nano).	On	the	command	line	type	
$	emacs Bio332_data_file1	

2. A	blank	window	will	open.	Now	type	the	following	text	in	the	window:	“This	
is	the	test	file	text”.	

3. To	save	and	close	the	editor	use	control-X	followed	by	control-S	(This	
command	means	holding	both	the	control	and	the	X	(or	S)	key	at	the	same	
time.)	Then	use	control-X	followed	by	control-C	to	close	the	editor.	

4. To	open	a	file	and	read	the	content	you	can	use	the	text	editor	or	use	a	unix	
command	called	less.	Type	$	less Bio332_data_file1.	Use	
autocomplete	instead	of	typing	the	full	name!	

5. To	close	the	file	use	q.	(Note	that	using	a	text	editor	and	using	less	and	q	are	
different	ways	to	read	a	file.	Only	if	you	use	the	editor	can	you	actually	edit	
the	file,	though.)	

6. Next	we	will	move	the	file.	Make	sure	you	are	in	the	directory	
Bio332_unix_data.	Make	a	new	directory	called	“Bio332_unix_subdirectory1”	
(no	quotes	and	don’t	forget	the	underscore	between	the	words)	into	which	
we	will	move	the	file.	This	new	directory	should	be	inside	the	current	
directory	(Bio332_unix_data).	Use	ls	to	verify.	

7. 	Move	yourself	into	the	new	directory	to	see	if	you	created	a	directory	as	
opposed	to	a	file,	into	which	you	cannot	move	(which	command	do	you	
need?).	Move	back	out	to	Bio332_unix_data.	

8. You	should	be	back	in	the	directory	Bio332_unix_data.	To	move	a	file	you	
should	be	in	the	directory	from	which	you	want	to	move	the	file.	Now	move	
the	.pdf	file	you	have	in	the	Bio332_unix_data	directory	into	the	
Bio332_unix_subdirectory1	using	the	following	command:	
$ mv unix_command_sheet.pdf Bio332_unix_subdirectory1/
#make	sure	there	is	a	space	between	mv	and	the	file	name	and	the	
destination	directory.	

9. Move	into	the	directory	Bio332_unix_subdirectory1	and	verify	that	the	.pdf	
file	was	moved	there	and	is	now	also	gone	from	the	unix_data	directory.	

	
Exercise	5:	Writing	scripts,	changing	permissions	

1. We	will	now	download	data	files	into	the	Bio332_unix_subdirectory1	
directory.	If	you	can,	use	a	hard-	
	wired	internet	connection	(not	wi-fi)	to	speed	up	the	process	considerably.	

2. Go	back	to	your	web	browser	and	browse	to	
ftp://ftp.solgenomics.net/bioinfo_class/interns/					

3. From	there	drill	down	five	levels	as	follows:	data	à	ch04	à	breaker	à	
SRR404334	à	SRR404334_ch4.fq	

4. (If	steps	2+3	don’t	work	go	to	http://solgenomics.net/	and	click	on	‘tools’	in	
their	menu	bar	and	select	‘FTP	Site.’	Click	on	‘FTP	Top	Level’	and	from	here	
à	bioinfo_class	à	other	à	interns	à	data	à	ch04	à	breaker	à	SRR404334	
à	SRR404334_ch4.fq)	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

9	

5. Right	click		(or	two	finger	click)	on	SRR404334_ch4.fq	to	copy	the	link	
location.	Then	download	the	file	into	the	Bio332_unix_subdirectory1	using	
curl	–O		

6. curl -O	
ftp://ftp.solgenomics.net/bioinfo_class/other/interns/data/ch04/breaker/S
RR404334/SRR404334_ch4.fq		 #	There	is	a	space	between	the	command	
and	the	ftp	address.	

7. This	will	take	a	while.	The	file	is	quite	large	(73.8MB).	
8. Use	ls	to	verify	it	is	in	the	correct	folder	Bio332_unix_subdirectory1.	
9. Type	$	head SRR404334_ch4.fq	(use	autocomplete)	and	hit	return.	This	

command	returns	the	head	of	the	file,	which	is	just	as	much	as	it	can	fit	onto	
your	screen.	Never	mind	what	it	says	for	now.	

10. Now	try	$ less SRR404334_ch4.fq	(use	autocomplete).	The	less	
command	allows	you	to	scroll	through	the	entire	file	window	by	window.	
The	first	window	is	displayed.	Hit	the	space	bar	and	you	the	next	section	is	
loaded	or	use	up	and	down	arrows	to	scroll.	To	get	out	of	the	window	use	q.	

11. Use	tail	to	view	the	last	bit	of	the	file.	(This	is	often	useful	to	see	where	the	
file	ends,	if	the	file	is	complete,	or	if	data	manipulation	that	you	have	
performed	finished	all	the	way	to	the	end.)	tail SRR404334_ch4.fq	

12. We	need	the	other	three	files	that	are	similar	to	the	one	we	just	downloaded.	
Doing	the	same	task	4	times	is	tedious,	so	let’s	write	a	small	script	that	will	
do	the	work	without	us	having	to	perform	individual	downloads.	The	type	of	
script	you	will	write	is	called	a	shell	script	and	has	the	file	extension	.sh	(for	
“shell	script”).	

13. Create	a	new	file	using	touch	and	call	it	Bio332_script_1.sh	
14. Use	ls	to	check,	but	use	the	option	–l		(this	is	the	letter	l,	not	the	number	1)						

with	your	command	to	see	the	list	of	your	files,	including	the	permissions.	
(Remember	to	leave	a	space	between	command	and	options).	You	should	get	
something	like	this:		

-rw-r--r-- 1 amadlung staff 0 Sep 14 09:48 Bio332_script_1.sh
	
The	dashes	and	letters	x	(execute),	r	(read),	and	w	(write)	list	the	type	of	
permissions	associated	with	the	file.	(This	one	currently	only	has	r	and	w	
permissions.)	The	first	character	can	be	a	dash	(for	a	file),	letter	d	(a	
directory)	or	letter	l	(link).	The	next	three	characters	(2-4)	are	the	
permissions	for	the	owner	(that	is	you),	the	next	three	(5-7)	for	the	group	
(that	depends	on	the	network	configuration,	but	could	be	all	of	a	small	group	
using	the	same	server),	and	the	last	three	(8-10)	are	for	other,	which	is	
everyone	getting	access	to	this	script.	Usually	you	want	to	be	able	to	execute	
a	file	you	write	(that	is	its	purpose)	and	often	want	to	allow	co-workers	to	
use	it	too,	but	not	allow	access	to	change	things	by	just	anyone.		The	types	of	
permissions	are	coded	using	numbers:	4	means	“give	permission	to	read”,	2	
means	“give	permission	to	write”,	1	means	“give	permission	to	execute”.	In	
the	command	option	these	numbers	are	added	up	for	each	of	the	three	
“modes”	(read,	write,	execute).	Therefore	a	7	in	the	first	digit	would	mean	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

10	

4+2+1	=	give	read,	write	and	execute	permission	to	the	owner.	A	5	in	the	
second	digit	would	mean	give	permission	to	read	and	execute	to	the	group.	
And	a	5	in	the	last	digit	would	mean	the	same	but	for	everyone	else.	So	using	
the	code	755	means	to	give	read	and	execute	rights	to	all	but	only	you	can	
write/edit	the	script.	

	
7	 	 5	 	 5	
user	 	 group	 	 everyone	
rwx	 	 rx	 	 rx	
4+2+1		 4+0+1		 4+0+1			 =	755	

	
15. Use	$ chmod 755 Bio332_script_1.sh,	then	use	ls –l	to	check	if	

the	permissions	were	changed	as	you	intended.	
16. You	now	have	an	executable	script,	but	no	commands	in	the	script	yet.	Next	

we	will	write	the	script	text.	Using	the	ftp.solgenomics.net	website	you	have	
used	above,	put	four	lines	of	code	into	the	script,	each	separated	by	a	
return/enter,	that	use	curl –O	and	the	ftp	address	of	the	four	files	you	need	
(two	from	the	“breaker”	directory,	and	two	from	the	“immature	fruit”	
directory).	In	the	end	your	script	should	look	like	this:	

curl	-O	ftp://ftp.solgenomics.net/bioinfo_class/other/interns/data/ch04/breaker/SRR404336/SRR404336_ch4.fq	
curl	-O	ftp://ftp.solgenomics.net/bioinfo_class/other/interns/data/ch04/breaker/SRR404334/SRR404334_ch4.fq	
curl	-O	ftp://ftp.solgenomics.net/bioinfo_class/other/interns/data/ch04/immature_fruit/SRR404331/SRR404331_ch4.fq	
curl	-O	ftp://ftp.solgenomics.net/bioinfo_class/other/interns/data/ch04/immature_fruit/SRR404333/SRR404333_ch4.fq	
17. Since	you	already	have	the	*334_ch4.fq	file	you	can	delete	it	from	your	script	

to	save	time	during	the	download.	
18. Use	control-X		(hold	both	keys	down	together	starting	with	the	control	key)	

followed	by	control-S,	and	then	control-X	followed	by	control-C	to	save	and	
close	the	script	file.	

19. To	run	the	script	all	you	have	to	do	is	to	navigate	into	the	directory	where	the	
script	is,	then	use	./Bio332_script_1.sh	(use	autocomplete).	Note	that	
there	is	NO	space	between	the	./	and	the	script	name.	

20. The	script	will	now	download	your	three	files	specified	in	the	script.	The	
Terminal	window	will	show	you	the	progress	in	real	time.	When	done,	
Terminal	will	return	to	the	command	line.	Use	ls –l	to	check.	

	
Exercise	6:	Using	screen,	uncompressing	and	concatenating	files,	pattern	
search	with	grep	

1. Create	a	script	called	Bio332_script_2.sh.	Change	the	permissions	to	allow	
you	to	run	it.	Using	the	text	editor	emacs,	write	the	script	so	that	it	will	fetch	
the	file	called	unix_class_file_samples.zip	from	the	website	
ftp://ftp.solgenomics.net/bioinfo_class/other/interns/	.	Save	the	script.	

2. This	time	we	will	run	the	script	a	different	way.	When	downloading	large	
data	files	there	is	always	a	chance	that	the	connection	from	your	computer	to	
the	server	you	are	using	is	interrupted	momentarily.	This	leads	to	a	“break	in	
the	pipe”	and	incomplete	file	downloads.	To	prevent	that	the	command	from	
being	interrupted,	you	can	use	a	command	called	“screen”.	When	using	
screen	the	command	runs	in	the	background,	independent	of	your	computer.	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

11	

For	running	scripts	or	commands,	using	screen	is	the	best	option	to	avoid	
time-consuming	server	problems.	Run	your	script	like	this:	
$ screen ./Bio332_script_2.sh		Note	that	there	is	no	space	
between	./	and	the	script	file	name.	

3. Use	ls –l	to	check.	You	should	now	have	a	.zip	file	in	your	directory.	The	
zip	file	contains	several	compressed	files	that	we	will	have	to	uncompress	
now.	Use	$ unzip unix_class_file_samples.zip		#	Note	that	there	
is	exactly	one	space	between	$	and	the	command	“unzip”.	Use	ls –l	to	list	
the	new	files	that	expanded	into	your	directory.	

4. You	will	notice	that	you	have	three	files	called	sample1/2/3.fasta	and	three	
more	files	called	sample1/2/3.fastq.	We	will	now	merge	the	three	files	into	
one	file	that	contains	all	the	sequences	that	are	in	each	of	the	files.	We	will	
make	one	file	for	the	.fasta	files	and	one	containing	all	the	.fastq	files.	To	do	
this	for	the	first	file	we	can	use	the	cat	command,	list	the	three	files	we	want	
to	merge,	and	the	>	sign	to	designate	the	new	file	name.	Instead	of	typing	out	
three	file	names,	let’s	use	the	wildcard	*fasta.	Before	you	start	doing	stuff	
with	a	wildcard,	make	it	a	habit	to	always	first	list	what	the	wildcard	will	
specify	so	that	there	aren’t	files	that	you	didn’t	see	that	would	get	used	as	
well.	Use	ls	*fasta	to	list	all	fasta	files.		

5. These	three	are	indeed	the	correct	ones	to	merge,	so	the	wildcard	works	for	
you	here.	Use	cat *.fasta > samples123.fasta		to	merge	the	files	
into	the	new	file	named	samples123.fasta.	Check	with	ls	and	open	the	file	
with	less to	see	what’s	in	it.	If	you	see	stuff,	that’s	good.	Close	with	q.	

6. Now	merge	the	.fastq	files	into	a	new	file	and	call	it	samples123.fastq	
7. Open	the	samples123.fasta	file	with	less.		This	file	contains	several	protein	

sequences	from	the	Arabidopsis	thaliana	genome.	Each	gene	has	an	identifier	
name	that	starts	with	Atha_,	followed	by	the	gene	name	AT	(for	Arabidopsis	
thaliana,	a	number	(the	chromosome	number	the	gene	resides	on),	G	(for	
nuclear	genome	there	could	also	be	a	C	or	M	for	the	chloroplast	or	
mitochondrial	genome),	and	a	5-digit	number,	followed	by	the	version	
number,	e.g.	.1.	All	FASTA	files	start	with	a	>	sign.	Use	the	space	bar	to	step	
through	the	file.	You	will	see	it	only	has	a	few	protein	sequences.	Let’s	extract	
the	gene	names	only	from	the	file	and	eventually	put	the	gene	names	into	a	
new	file.	Here	we	can	use	the	pattern	search	command	grep.	Grep	will	look	
for	a	string	you	specify	between	‘				‘	marks.	It	will	also	take	wildcards.	Let’s	
start	with	extracting	the	first	gene	name	only:								>Atha_AT1G51370.2	

8. Use	grep '>Atha_AT1G51370.2' samples123.fasta	.	Note	the	
placement	of	the	single	quotes	and	the	spaces	between	command,	argument,	
and	file	name.	

9. Unix	displays	the	extracted	phrase	on	the	screen.	If	you	want	to	put	it	into	a	
new	file	you	can	specify	the	file	name	in	the	same	command.		 	 	

grep '>Atha_AT1G51370.2' samples123.fasta > Bio332_firstgrep	
10. Check	with	ls	and	less	that	this	worked	out	for	you.	Then	use	rm	to	

remove	the	file.	Again	check	that	the	file	is	gone.	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

12	

11. Now	use	grep	and	a	wildcard	command	(try	to	figure	this	one	out	yourself)	
to	extract	all	gene	names	from	the	samples123.fasta	file	and	place	them	into	
a	new	file	called	Bio332_genenames.	Use	ls	and	less	to	check.	How	many	
gene	names	were	extracted	and	placed	into	the	file?	(If	you	need	help	with	
the	wildcard,	please	ask!)	

12. Another	way	to	count	lines	automatically	is	to	use	the	grep	command	with	an	
option.	Try	grep -c '>Atha_AT*' samples123.fasta	(Note	that	this	
command	does	not	use	the	file	name	or	else	your	file	will	be	overwritten	with	
the	new	results.)		

	
This	concludes	the	exercise.	Make	sure	that	all	files	that	you	made	today	are	in	
the	correct	directories	with	the	correct	names	so	I	can	find	them	when	I	check	
your	accounts	and	assign	the	points	you	earned	for	the	lab.			

	 	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

13	

Bio	332	
Bioinformatics	lab:	Introduction	to	command	line	computing	with	

iPlant	using	the	Tuxedo	pipeline	for	RNA-seq	(lab	2)	
	

Prelab	assignment:
1. Download the reading for this lab from Moodle (Trapnell et al., 2012, Differential gene
and transcript expression analysis of RNA-seq experiments with TopHat and
CufflinksNature Protocols, 7, 562-578). Don’t get bogged down in details and try in your
reading to get an overview of what each of the major steps accomplishes during the
analysis.
	
2.	Considering	the	experimental	set	up	for	the	experiment	whose	data	we	are	
analyzing	and	the	overall	experimental	question,	please	answer	the	following	
question	by	writing	a	4-5	sentence	paragraph	and	including	2-3	primary	references	
to	back	up	your	assertions	and	predictions:	

	
PRE	LAB	QUESTION:	In	general	terms	describe	the	metabolic	pathways	and	

reactions	that	occur	during	ripening	in	“climacteric	fruit”,	such	as	tomato.	Suggest	
specific	genes	whose	expression	level	you	would	expect	to	change	during	the	
ripening	process,	explain	why	you	think	these	genes	would	change,	and	give	
citations	that	would	support	your	predictions.	(Tip:	see	Taiz	+	Zeiger	textbook,	p	
665-662)	
	
	
When	you	come	to	lab:	
	
Log	in,	resume	your	running,	but	suspended,	instance:	

1. If	you	logged	out	since	creating	the	account,	go	to	
http://www.cyverse.org/learning-center/	and	login	using	your	user	account	
and	password.	

2. Login	to	Atmosphere.	
3. The	following	steps	were	probably	already	done	by	you	previously.	Only	if	

not,	follow	steps	4	-6.		
4. Click	on	Launch	New	Instance.	In	the	image	search	box	type	the	name	of	the	

image	you	will	use	for	RNAseq	analysis:	RNAseq_Analysis_gt_V2.	
5. Select	this	image,	click	Launch,	select	a	“large	3”	instance	from	the	pull-down	

menu,	leave	the	other	options	at	their	default,	and	click	“launch	instance”.	
6. Sometimes	instances	get	stuck	during	deplaoyment.	To	get	them	unstuck,	try	

redeploying	or	rebooting	(hard	reboot)	them	using	the	buttons	on	the	right	
of	the	“Projects”	tab.	

	
	
ONCE	THE	INSTANCE	HAS	BEEN	RESUMED:	
	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

14	

A	Mac	is	preferred	for	the	following	work	but	a	PC	can	be	used	as	well	with	a	few	
changes	(not	described	in	the	lab	module,	though).	
PC	users	only:	Go	to	the	Start	button	(bottom	left)	and	find	the	“search”	box,	which	
is	just	one	row	above	the	Start	button.	Type	in	cmd.exe
Locate	the	file	cmd.exe,	click	on	it	and	a	black	window	will	open	in	your	screen	that	
works	similarly	to	a	Mac	Terminal.	Use	the	instructions	for	Mac	users	from	there.	
Alternatively,	use	the	browser	as	a	Terminal	by	clicking	on	“Open	Webshell”	in	the	
Projects	tab.	A	shell	will	open.	You	might	have	to	click	on	the	X	in	the	top	right	
corner	and/or	the	icon	in	the	top	middle	of	the	shell	to	get	the	login	prompt.	
	
Mac	users:	Open	a	terminal	window	and	login	to	the	Atmosphere	cloud	using	the	
unix	command	ssh,	your	username	and	the	IP	address	you	were	sent	to	your	email.	
In	the	example	johntester	is	the	username.	
	

	
	
Answer	“yes”	when	asked	about	wanting	to	connect.	Then	provide	your	CyVerse	
password.	
You	will	be	logged	in	and	your	window	should	look	similar	to	this:	

	
	
Refresh	your	Unix	skills	before	continuing	on	by	looking	around	in	your	file	
hierarchy.	It	will	be	vitally	important	that	you	pay	attention	to	where	in	the	file	
hierarchy	on	your	cloud	computer	you	create	files.	If	you	create	your	file	for	
example	in	your	home	directory	and	later	try	to	run	a	command	from	within	your	
Desktop,	your	will	get	error	message.		After	ascertaining	where	you	are	(use	pwd	if	
you	are	unsure)	do	the	following:	

1. Move	to	the	Desktop	directory.	
2. On	the	desktop,	create	a	new	file	that	you	call	Bio332_Atmospherefile1	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

15	

3. Using	the	text	editor	emacs	open	the	file	you	created	and	type	in	“test	text	
here”.	Save	and	close	the	text	editor.	(If	you	don’t	remember	how	to	do	that,	
look	in	the	manual	for	the	unix	intro	lab.)	

4. Open	the	file	with	less	to	check.	Then	show	your	instructor	the	file	with	
content	before	moving	on.	

	
	
Your	command	line	history	should	look	something	like	this	now:	
[johntester@vm64-193 ~]$ ls
Desktop
[johntester@vm64-193 ~]$ cd Desktop/
[johntester@vm64-193 Desktop]$ ls
idrop.desktop
[johntester@vm64-193 Desktop]$ touch Bio332_14_Atmospherefile1
[johntester@vm64-193 Desktop]$ ls
Bio332_14_Atmospherefile1 idrop.desktop
[johntester@vm64-193 Desktop]$ emacs Bio332_14_Atmospherefile1
[johntester@vm64-193 Desktop]$ less Bio332_14_Atmospherefile1
[johntester@vm64-193 Desktop]$

	
Next	we	need	to	download	the	four	files	with	the	RNAseq	data	we	used	last	time	
(breaker,	immature	fruit)	to	your	virtual	cloud	hard	drive.	The	connection	between	
Atmosphere	and	the	data	server	is	very	fast,	so	we	can	simply	download	them	from	
the	server	again	(rather	than	upload	them	from	the	computer	to	which	you	
downloaded	them	last	time).	
The	iPlant	server	uses	a	slightly	different	unix/linux	version	from	the	one	you	have	
used	so	far	but	the	only	thing	we	need	to	change	is	using	a	different	command	to	
download.	Instead	of	using	curl	we	will	now	use	wget.	
If	necessary	look	back	at	the	exercise	we	did	previously	to	do	the	following	steps.	

1. Make	a	directory	on	your	iPlant	desktop	called	Bio332_BTI_exercise_data.	
NOTE:	double	check	your	spelling	on	“exercise”	-	you	will	later	run	into	
problems	if	this	isn’t	spelled	correctly.	

2. Write	a	script	to	download	the	four	files	called	Bio332_iPlant_Script1.	Make	
sure	this	script	is	in	your	Bio332_BTI_exercise_data	file,	or	the	script	won’t	
run	without	using	an	absolute	path	later	on.	You	can	copy	+	paste	the	
addresses	from	the	lab	manual	from	last	week	to	speed	up	the	script	writing.	

3. Make	the	script	executable	by	changing	the	permissions.	
4. Download	the	files	using	the	screen	command	to	invoke	your	download	

script.	
5. If	necessary,	move	your	just	downloaded	SSR*	files	into	the	

Bio332_BTI_exercise_data	directory,	and	check	successful	transfer	using	ls.	
Show	your	instructor	the	directory	when	done	with	this	step.	

	
RNA-seq	analysis	
Step	1:	Read	quality	analysis	using	the	software	program	FastQC	
FastQC	is	freeware	that	checks	the	reads	that	come	from	the	sequencing	lab	for	
quality.	The	software	is	available	for	free	download	from	the	bioinformatics	group	
that	has	developed	it.	We	will	download	a	zipped	version	of	the	program,	unzip	it,	
install	it	on	our	iPlant	instance,	check	the	permissions	of	the	software	and	change	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

16	

them	if	necessary,	move	out	of	the	downloaded	folder	back	into	our	data-containing	
folder,	write	a	shell	script	for	fastqc	analysis	in	one	step,	and	then	run	the	analysis.	
After	that	the	analysis	files	will	be	viewed	on	a	web	browser.	
	

1. Download	FastQC:	Go	to	www.bioinformatics.babraham.ac.uk	
2. Click	on	“Projects”,	find	“FastQC”	and	click	on	that,	then	click	on	“Download	

now”.	
3. Copy	the	link	location	(right	click,	two-finger	click,	or	control-click)	for	

FastQC	v0.11.4	(Win/Linux	zip	file)	(regardless	of	Mac	or	PC	use,	since	we	
want	the	Linux	version)	and	use	wget	to	download	the	file	into	your	
Bio332_BTI_exercise_data	directory.		

[johntester@172 BTI_exercise_data]
$ wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.4.zip

	
4. Use	[johntester@172 Bio332_BTI_exercise_data]$ ls to	check	if	the	

fastqc_v0.11.4.zip	file	is	present.
5. Unzip the downloaded program directory: $ unzip fastqc_v0.11.4.zip
6. Your Bio332_BTI_exercise_data directory should now contain a FastQC

directory. Move into that directory using cd.
7. List the files using the option –l to see the permissions for the executable

program fastqc.
8. If your fastqc has the permissions -rw-r--r—1 you do not have execution

permissions. Since you now own the program you can change the permissions
using $ chmod 755 fastqc.

9. Check your new permissions with ls –l.
10. Since you are in the FastQC directory, move back one level into the

Bio332_BTI_exercise_data directory.
11. Using touch, create a shell script and call it Bio332_fastqc_analysis.sh. Change

the permissions to allow yourself and others execution permission. Use the emacs
text editor to write four lines of code, each using fastqc to analyze one of your
four SRR… files. Since you are in the directory with your SRR… files this is a
tiny bit tricky, because you have to specify where the fastqc program is located
using absolute path notation. To get you started, the first line (of four) should look
like this: FastQC/fastqc SRR404336_ch4.fq

12. After you have all four lines coded, save the file, close the text editor, and run the
script, using screen. Take note that when using the screen command you have to

a. be in the directory that contains the data files you want to use (in this case
Bio332_BTI_exercise_data)

b. follow the screen command with a space and then ./ followed without
space by the script file name.
à So in this case screen ./Bio332_fastqc_analysis.sh

13. Next you have to download the fastqc.zip files that were generated in the analysis
to your own computer’s hard drive before viewing them in your web browser.
Open a new Terminal window so you can control download to your actual (not
virtual iPlant) machine.

14. Using this new terminal window, customize the following command so it fits your
username and IP address: $ scp

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

17	

johntester@128.196.64.174:/home/johntester/Desktop/	
Bio332_BTI_exercise_data/SRR404331_ch4_fastqc.zip .
Make sure to use your IP address, and after home/ again your username. (If you
are not using your computer you can use pwd to see the full path to the username
of the machine you are using.) There should be no space after Desktop/ . Note
that the space dot after fastqc.zip is part of the command. This specifies the
location on your computer. If you are prompted to enter your password, enter the
password of your iPlant account. The file should be directed in your home
directory now.

15. Find the file in the home directory of your actual computer (not the virtual
machine), (if you are using a Mac, open a new Finder window and look in your
home directory) double click on it, let it unzip, open the folder it creates, and
double click on the fastqc_report.html. A browser window will open.

16. You will need to download the other three .zip fastqc result files. You could do
this three more times as you did above, but you could also have done this in one
single command, without even having to write a script and instead using a
wildcard-containing command. Modify the command in step 14 now in such a
way that you can download the rest of the files. (The file you already downloaded
can be overwritten if you re-download it again – which is fine.) Make sure that
you have the correct IP address and username.

17. Now go to your home directory window (not using the Terminal but the mouse),
locate the four zipped files, unzip them by double-clicking, open the folders, then
open each fastqc_report.html to display them on a web browser.

18. Before looking at your reports, point your web browser to
https://www.youtube.com/watch?v=bz93ReOv87Y and listen to the explanations
of how to read the results. (Please plug in a headset or take your computer out into
the hallway.)

19. Now check your results. You will see that there is a problem with one category.
Recall that we are doing RNA-seq analysis, not DNA sequencing. You should be
curious about the problem you see. The way you get most information in the
bioinformatics world is via the Internet using Google. Also, there are specialized
bioinformatics help sites where you can post questions or read answer to already
posted questions. Chances are VERY high that your question has been posed and
answered. This is the case for your problem at hand. Try out one of these help
sites and get familiar with it by searching on the site for an answer. (Hint: there is
one). Start here: https://www.biostars.org/

20. Check some discussion entries but don’t spend too much time on it.

Step 2: Mapping the sequences to the reference genome using Bowtie and Tophat

1. From here on you are back on the iPlant platform using Terminal. The next step in
your RNA-seq analysis is to map the sequence reads to the genome, from which
they originate (in this case tomato). After they have been aligned to the reference
you can count how many reads were found in each sample and then ask if one
sample had higher gene expression for a given gene compared to the other sample.
In our case we have two replicates (bioreps) for each developmental condition
(breaker (orange color) versus immature fruit). First we need to download the

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

18	

reference genome from the tomato genome database and “index” it in such a way
that the aligner software can find where chromosomes start and end, where genes
are, and what genes are annotated with known functions etc.

2. We will get the genome data directly from the tomato genome database. Either go
to the ftp website, copy the link location there or from here:
ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG2.4_release/ITAG2.4_
genomic.fasta

3. Then, from the iPlant Desktop directory, use wget to download the genomic
sequence, which contains all genic, intergenic, and unsorted/unmapped regions of
the genome. $ wget
ftp://ftp.solgenomics.net/tomato_genome/annotation/ITA
G2.4_release/ITAG2.4_genomic.fasta

4. Still in the Desktop directory, using the software Bowtie2, build the index using
this command: $ bowtie2-build -f ITAG2.4_genomic.fasta
ITAG2.4_genomic_btindex #Note that bowtie2-build is the
command, -f an option specifying the input format as FASTA, the genome input
file is provided in FASTA format, and at the end of the input the name of the
output file is created, which in this case should be ITAG2.4_genomic_btindex.
Make sure there is a space after build and before –f, and another space after .fasta
and before ITAG2.4.

5. Depending on network traffic and connection speed, this will take about 20
minutes to process. (While waiting for Bowtie, skip to step 7 and write the
tophatin script, see below.) The Bowtie software produces a number of files all
ending in .bt2. Later on the next software will use a hidden wildcard to find all of
these .bt2 files as it needs them without you having to specify each.

6. Once Bowtie finishes, check that the btindex files are in your Desktop directory.
If they are not already there, move all btindex files onto your Desktop using mv.

7. Check that you are in the Desktop directory and make a new script called
tophatin.sh (using touch, chmod, etc.).

8. Write the script for all four files (breaker *334, *336 and immature fruit *331,
*333). The tophat2 command looks like this. Note that there is a space after
“breakerXXX” (or “immatureXXX”), and a space after “btindex”.

$ tophat2 -o tophatout_breaker334 ITAG2.4_genomic_btindex
/home/johntester/Desktop/Bio332_BTI_exercise_data/SRR404334_ch4.fq

(Double check that you spelled the word exercise correctly in the script.)
For each file use a separate line of code separated by a return. The –o option
specifies the name you want for the output file. Here we will use
tophatout_breaker334 for the first file. The other files have to have the out option
according to the input file name, in other words breaker336 or immature331 or
333, otherwise you will overwrite the file each time you reuse the same output file
name. After the space put the prefix of the bowtie index files that you made in the
previous steps. All you need is to write the prefix as you see in the example. Then
specify the absolute path to your input files. The only thing you need to change is
the username (if you named all the directories and files as suggested in this
manual and spelled them correctly). Note that there is exactly one single space

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

19	

between btindex and /home/… and nothing else (the line break is only for
readability in this document). Each individual tophat command will take ~ 25
minutes to complete (x4 = ~2 hours total).

Ls –l

9. To run your script with all four lines of code use the screen command
$ screen -L ./tophatin.sh #Note that you cannot run this script until Bowtie
finishes and produces the files tophat needs.

10. You can now either wait 2 hours or turn off the computer and open it back up
later at home.

11. Once Tophat finishes you should have four tophatout* directories, each of them
with multiple files of alignments that you will later need.

12. Verify that this is the case before the next lab period (or you will have no files to
work on next week) as follows: Use cd to move into each tophatout* directory
and check that each of them has a file called “accepted_hits.bam”.

13. Go back to the login webpage for iPlant Atmosphere. If you have used up more
than 50% of your allotted AUs (see the bar on the left under “My Resource
Usage”), click on “Request more Resources” and in the two boxes ask for “200
more AUs” “for a workshop”. It will take up to a day (or over the weekend) to get
the AUs.

14. Once you have verified that Tophat has finished and worked, make sure to
suspend your instance on the iPlant website or you will run out of CPU hours.

	 	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

20	

Bio332	
Bioinformatics	lab:	Introduction	to	command	line	computing	with	

iPlant	using	the	Tuxedo	pipeline	for	RNA-seq	(lab	3)	
	
Step 3: Assembling reads and quantifying expression levels with Cufflinks	

1. Login to Atmosphere, move to the Desktop directory and use ls to check for the
tophatout* directories from the previous step.

2. Use cd to move into each tophatout* directory and check that each of them has a
file called “accepted_hits.bam”.

3. Then move back into the Desktop directory.
4. Next you need to write a script for inputting the accepted_hits.bam files into the

Cufflinks software. Using touch, chmod, and the emacs text editor commands,
create an executable script, called cufflinksin.sh, that contains four lines of code
(two biological replicates for each of two conditions breaker and immature fruit).
The command for the first line is composed of the following elements:
$ cufflinks -o cufflinksout_breaker334
tophatout_breaker334/accepted_hits.bam
The command is cufflinks, the option –o tells cufflinks that you want to specify
the directory name it will produce for the output (here you specify
cufflinksout_breaker334 as your first directory). Following a space (not a line
break), you tell cufflinks where to find the input file for the command. In this case
it is the accepted_hits.bam file in the tophat_out334 directory. Note: each line of
code in the script has to specify a different output directory name, or else the same
directory will be overwritten every time the script moves to the next line of
commands to execute. Also notice that the file “accepted_hits.bam” has the same
name for each of the four different data sets (*334, *336, *331, and *333).
Therefore it is very important that you specify the correct directory these files are
located in. Also note that this will only work if you are in the Desktop directory –
otherwise the path to the files is incomplete and you will get a “no such file or
directory” error message.

5. If you need help writing the script take a look here. (Note that inside a script you
don’t have a $ sign at the beginning of a line)
cufflinks -o cufflinksout_breaker334 tophatout_breaker334/accepted_hits.bam
cufflinks -o cufflinksout_breaker336 tophatout_breaker336/accepted_hits.bam
cufflinks -o cufflinksout_immature331 tophatout_immature331/accepted_hits.bam
cufflinks -o cufflinksout_immature333 tophatout_immature333/accepted_hits.bam

6. When your script is ready, run it with $ screen -L ./cufflinksin.sh
This complete dataset should take about 1 hour and 20 min to run on your iPlant
instance using 1 CPU. (You can already do step 8 while you wait.)

7. Once done, look at each directory to check if it has the expected files inside:
genes.fpkm_tracking isoforms.fpkm_tracking skipped.gtf transcripts.gtf

8. Before you can merge the four assembly files that you got from cufflinks into one
assembly that will have all of the expressed genes from all treatments against
which you will later compare each individual sample, you need to write a small
input file that the software “cuffmerge” needs in the next step. You also need to
download an annotation file from the tomato genome database, called a .gff3 file.
This file contains all gene model annotations known for all genes in the genome.

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

21	

A gene model describes for example the number of exons, the intron/exon splice
junctions etc.
First the small input file: using touch, chmod, and emacs, write a file with
four lines that specifies the location of the transcript files and call it assemblies.txt.
Make sure the assemblies.txt file is in the Desktop directory.
./cufflinksout_breaker334/transcripts.gtf
./cufflinksout_breaker336/transcripts.gtf
./cufflinksout_immature331/transcripts.gtf
./cufflinksout_immature333/transcripts.gtf

9. Next download the .gff3 annotation file from
ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG2.4_release/ITAG2.4_
gene_models.gff3 into the Desktop directory using wget.

10. Now, use the following command to merge the four transcript files.
$ cuffmerge -g ITAG2.4_gene_models.gff3 -s
ITAG2.4_genomic.fasta assemblies.txt # The –g option specifies the
genome annotation file that follows (the .gff3 file you just downloaded). The –s
option specifies which genomic DNA file to use as reference genome. Following
a space, the assemblies.txt file has the location for the 4 individual transcript
assemblies (see above). This operation will take about 40 minutes to complete.
The output directory is one directory called “merged_asm” and contains the
merged assemblies of all conditions and bioreps.

11. Check that you have a directory called merged_asm on the Desktop. Use cd to
enter the directory and look if you have a file called merged.gtf. Move back out
into the Desktop directory.

Step 4: Identify differentially expressed genes between treatments/conditions using
Cuffdiff

1. The Cuffdiff command is best run in screen from a shell script. Using touch,
chmod, and emacs, make an executable script called cuffdiff_in.sh in the
Desktop directory.

2. The cuffdiff input is quite complex. Look at the command first:
$ cuffdiff -o diff_out -b ITAG2.4_genomic.fasta -L immature,breaker -u
merged_asm/merged.gtf ./tophatout_immature331/accepted_hits.bam,./topha
tout_immature333/accepted_hits.bam ./tophatout_breaker334/accepted_hits
.bam,./tophatout_breaker336/accepted_hits.bam

The option –o specifies the output directory’s name to be made (diff_out). Option –b
specifies the reference genome. –L lists the names of the two conditions that you later
want the graphics to use (here “immature” and “breaker”). Option –u specifies the
merged alignment file. Then there is a space and a list of bioreps for each condition (we
only have two bioreps). The ./ specifies that the path starts in the present directory. So
cuffdiff will look for the tophatout_breaker334 directory, open it and look in it for the
file “accepted_hits.bam”. The bioreps are separated by a comma (no space after the
comma). The two conditions (strings of bioreps) are separated by a space (no comma).
There is also a space after the –L and after the –u.

3. Place this command in the cuffdiff_in.sh script. (This needs to be typed into the
script because of “hidden” characters in the Word document, such as line breaks,
returns etc.)

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

22	

4. Execute the script as follows: $ screen -L ./cuffdiff_in.sh
5. With only one CPU running, this program will take about 180 minutes to run. At

the end you should have an output directory called “diff_out” in your Desktop
directory. Open the directory and check that it has the following files:

[johntester@172 diff_out]$ ls
cds.count_tracking genes.count_tracking isoforms.read_group_tracking tss_groups.count_tracking
cds.diff genes.fpkm_tracking promoters.diff tss_groups.fpkm_tracking
cds_exp.diff genes.read_group_tracking read_groups.info tss_groups.read_group_tracking
cds.fpkm_tracking isoform_exp.diff run.info cds.read_group_tracking
isoforms.count_tracking splicing.diff gene_exp.diff isoforms.fpkm_tracking tss_group_exp.diff

6. Go back to the login webpage for iPlant Atmosphere. If you have used up more
than 50% of your allotted AUs (the bar on the left under “My Resource Usage”),
click on “Request more Resources” and in the two boxes ask for “200 more AUs”
“for a workshop”. It will take up to a day (or over the weekend) to get the AUs.

7. Once you have verified that Cuffdiff has finished and worked, make sure to
suspend your instance on the iPlant website until you come back to do the last
part or you will run out of CPU hours.

Notes:
If files need to be transferred between two iplant accounts, the following command can
be adapted:
[johntester@vm65-168 Desktop]$ scp –r
johntester@128.196.65.168:/home/johntester/Desktop/tophatout_breaker336
/accepted_hits.bam
nlouisesmith@128.196.65.169:/home/nlouisesmith/Desktop/tophatout_breake
r336

Note the spaces after $, after scp, after –r, after …bam (and nowhere
else)

General usage is:
scp user@sourceservername:sourcefilepath
user@destservername:destdirectory

use option –r for entire directories

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

23	

Postlab
(One set of answers per individual, please. Due 2 days after lab by email.)

If you haven’t read the reading for this lab on Moodle (Trapnell et al., 2012, Differential
gene and transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks Nature Protocols, 7, 562-578), get the paper now to answer the questions. To
answer d) and e) you need to read ahead in the manual for next week.

For each of the following five major steps of the analysis pipeline, explain in 1-2
sentences what each step accomplishes in the grater scheme of the analysis. Do not copy
verbatim from the paper but answer in your own words. It is important that I can tell from
your answer if you understand the principal behind each individual step.

a) Bowtie
b) Tophat
c) Cufflinks package
d) CummeRbund
e) TopGO

	 	

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

24	

Bio	332	
Bioinformatics	lab:	Introduction	to	command	line	computing	with	

iPlant	using	the	Tuxedo	pipeline	for	RNA-seq	(lab	4)	
Note: Read the postlab assignment on the last page of this lab so you know which
files to save.
Log into Atmosphere and navigate to your desktop files.

Step 5: Visualizing differential gene expression from CuffDiff output in R

1. The visualization of the data files you produced using the Tuxedo pipeline
happens on your own computer (not the iPlant cloud computer) using the software
R. If you have R on your computer, check that the version is up to date (you want
version 3.1.2 for Mac). Install the free software R on your computer as follows.
Note that R-Studio may or may not be sufficient. Also note that you do need to
have the newest version of R. If your version is old it may not be compatible with
the packages you will later download. If in doubt, download the latest version.
Go to http://cran.fhcrc.org/
Click on the Download button for Mac or Windows (depending on the type of
machine you use). Read the instructions and install the software on your hard
drive. Once the file is downloaded to your download file (it will take 2-3 minutes,
then look there for it), double click on the file, click “continue”, “agree”, and
“install”. Type in the password for your computer (not your iPlant password), so
you can install the software.
R uses a prompt that looks like this: >, whereas the Unix prompt is this: $
Once R is installed you will need to install several more packages. Start with
“Bioconductor”: open R and type in after the > (don’t type the >)
> source("http://bioconductor.org/biocLite.R") . Hit return.
When R finishes, type in > biocLite() and hit return. If R asks if you want to
update something, respond with a (as in “all”).
Now install the software package cummeRbund by typing after the prompt:
> biocLite(“cummeRbund”) # wait a few minutes even if the computer
seems to be not responding.
Type > library(cummeRbund) to see if the software is loaded.

2. First you need to download the gene expression differences file called
“gene_exp.diff” that is inside the directory diff_out from your iPlant account to
your own hard drive using a unix command called scp. Since you will need more
files out of that directory later, we will copy the entire directory.

3. Open a new (second) terminal window on your machine (not on the virtual iPlant
machine).

4. Modify the following command to fit your username and IP address.
 TH223F-6657:~ amadlung$
 scp -r johntester@128.196.64.198:/home/johntester/Desktop/diff_out .

5. NOTE: at the end after the diff_out there is a space and then a dot. This means
you want the file to be copied with the same name to directory on your hard drive
from which you issue the scp command, aka the “current directory”. The option
–r is needed when copying a whole directory, not just a file, as you are doing here.

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

25	

6. On your computer, go to your home directory (in Macs use your mouse to go to
Finder and then click on the house icon) and locate the folder you downloaded
called “diff_out”. Drag it onto your desktop.

7. If you haven’t already, start R now and open the cummerbund library
> library(cummeRbund)

8. The library should load (if it isn’t already loaded).
9. Next you have to create a database file that R will use later on repeatedly to draw

the graphs you will want. Use this command:
> cuff_data <- readCufflinks (‘diff_out’) #NOTE: You will
have to replace ‘diff_out’ with the correct file path for your computer. If you
followed each step as described above your file path should be:
‘/Users/yourusernameforyourcomputer/Desktop/diff_out’
Make sure you replace yourusernameforyourcomputer with the username of your
own computer, not the virtual iPlant username (if you don’t know your username
open a terminal window and look before the $. You can also help yourself in R by
using tab-complete. R will give you the choices it finds on your computer). Also,
take note that there is an underscore in the diff_out folder. On my computer the
command looks like this:
> cuff_data <- readCufflinks ('/Users/amadlung/Desktop/diff_out')

10. R will create the database. This will take a few minutes.
11. Now you can use the database to draw a variety of figures and write tables to

illustrate the data.
12. Type > cuff_data for a list of descriptive statistics about your data set.
13. We are of course interested in those genes that are statistically significantly

differently expressed between immature fruit and fruit at breaker stage. Use the
following series of commands. Note: R uses <- to assign a series of data to a
new file name. The new file name is left of the <-. Note also how the new file
name is then used in the second line again to provide the subset of data that go
into the next file of only the significant genes.
> gene_diff_data <- diffData(genes(cuff_data)) #This makes a file
with gene expression differences.
> sig_gene_data <- subset(gene_diff_data, (significant=='yes'))
This makes a file with gene expression differences of only those genes that are
also passing a statistical test of significance. Notice that there are two = signs after
“significant”.
> nrow(sig_gene_data) # now list the number of significant genes in the
sample.
Question to answer: How many significant genes are in your data set? ________

14. Next we will graph the data, still using R. After you type the command below and

hit return, a new window will open with the scatter plot. Genes with differential
expression are those not on the line.
> csScatter(genes(cuff_data), 'immature', 'breaker') +
geom_point(aes(scale_size=4, scale_shape=19))
#Note that after the + sign you need to hit RETURN (the prompt on the next line
will change from a > to a +, which means that R expects more information to
follow. Or provide the command on one line.

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

26	

15. A new window will open (the Quartz viewer) displaying the expression values of
each gene for the two conditions. Any gene not differentially expressed between
the two should fall along the line. Any different genes will be above or below the
diagonal line.

16. Now that we have a visual impression of the results, let’s get a list of all the genes
that are significantly different, so we can start to understand what types of genes
are affected.
> write.table(sig_gene_data, 'diff_genes.txt', sep='\t',row.names
= T, col.names = T, quote = F)

17. Go to your home directory where the gene list is deposited with the name
“diff_genes.txt”. You can open it as a text file, but it is easier to see as an Excel
file. Now that the list is short, we can use Excel again. Go to Excel on your
computer, go to “open” and then navigate to this file and open it in Excel. Excel
will ask you how you want to import the .txt file. Click on “next” twice, then
“finish” and Excel will put your tab-delimited text file into a regular Excel
spreadsheet. We won’t need this exact list right now, but later you will need to
know how to download a similar list and expand it into an Excel file. For right
now, look at the column headers and see if you can find the last column that tells
you if a gene is significantly differently expressed between immature fruit and
fruit at the breaker stage (should say “yes” or “no”).

18. There is a problem with the Excel list! On the left hand side you see two columns
of gene names and identifiers. Unfortunately, those are not the gene identifiers
(GeneIDs) that are currently being used in the tomato database anymore. Go to
your Terminal window and open the original file from which this list of
differentially expressed genes was extracted (Desktop/diff_out/gene_exp.diff)
with less. You will see that there is a third column with gene names in the form
of Solyc04gxxxx. That is the gene identifier we need (Solyc stands for Solanum
lycopersicum, 04 for chromosome 4 and g for genomic content, not chloroplast or
mitochondrial). How can we extract the data we want (all those that are
significant) from this file without having to look at it by hand? The instructions
for cummeRbund do not have a command that extracts the columns that we want.
We can use Unix to extract the lines or columns we need. The grep command
allows us to extract rows (always entire rows) that contain something all rows we
want have in common. For example, you could extract all rows with gene names
starting with or containing the word “Chromosome 1” (if there were any in our
example).

19. Open the file again in Terminal with less and look if there is something that might
be useful to us in extracting all those rows that are significant (compared to those
that are not).

20. You might have noticed the column that lists “no” (or “yes”) for significance.
That is the handle we can use to filter the rows we want. grep has a specific
pattern of usage:
$ grep ‘stringtolookfor’ filetouse > newnameoffiletomake

21. Make sure to use the single quotes for the string and use spaces but no commas.
Here is a command you can use:
$ grep 'yes' gene_exp.diff > grep_yes_gene_exp.txt

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

27	

22. Using the command wc, determine how many significant genes (=lines in the file)
there are. (The three values provided by wc are lines, words, and bytes)
ANSWER: There are ____________significant genes (lines of text)

23. The new file should be on your computer’s hard drive on the Desktop in the
diff_out directory. Open it up with Excel as before. Now you have the gene list of
differentially expressed genes with gene identifiers that we can use in the next
step.

Step 6: Graphing gene expression for specific genes from the data set using R

1. Let’s get a bar graph for the expression of single genes that we might be
specifically interested in in our data set. We will use the first gene on the list:
 XLOC_011676

2. Use the following set of commands to first define the gene, tell R to get the
information for that gene from the database you made earlier and then graph it in
the Quartz viewer that you have used before and that automatically opens.
> XLOC_011676 <- getGene(cuff_data, 'XLOC_011676') # “getGene is the
command, XLOC_011676 is the file name for the info for that gene, left of <-,
and the same name is used in ‘ ‘ within the () to tell the command what row to
look for in document cuff_data.
> expressionBarplot(XLOC_011676) # Now the command is “expressionBarplot”
and the argument from which to make the bar plot is simply the file name we
specified in the previous command. Hit return and look for the quartz viewer
window on your desktop. This command even gives you the Solyc gene name on
the bar plot.

Usually you will want to show more than just one gene. You can display
the list of significant genes in R. You already made a file earlier that you called
sig_gene_data (Step 16 on previous section). Just for fun, stretch your R window
wide and type > sig_gene_data and hit return. You should see the entire file
displayed. (Do not do this if your list is thousands of lines long or you will have a
long list to scroll through.)

3. In the next step we will use the list of significant genes as input to graph or
display all significant results in a heatmap. For that you will first need to create a
text file that only contains the list of gene_id names. Your grep_yes_gene_exp.txt
file (in your diff_out directory on the Desktop) contains one column called
gene_id. We will need to get this column into a text file without any formatting.
Theoretically we could open the diff_genes.txt file in Excel, copy and paste the
column into a new text file and use that. Sometimes that might work and
sometimes it may not, because Excel uses underlying invisible characters (like tab
formatting, line end returns etc.) that will give us problems later. It is easier to do
this with a few simple Unix commands. First, in your terminal window for your
own (non-virtual) machine, create a file (using touch) inside your diff_out
folder called sig_genes_grep_yes.txt.

4. Now use the cut command (see your unix cheat sheet) as follows:
th223f-6657:diff_out amadlung$ cut -f 2 grep_yes_gene_exp.txt >
sig_genes_grep_yes.txt #Note that you need to be inside your diff_out folder,
like in this example or it won’t work.

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

28	

5. Check the file you made using less. You should have a list of XLOC identifiers.
6. Now that you have the file with the gene identifiers of significantly differentially

regulated genes you can go back to R and use the cufflinks data to create more
analysis graphs and figures. First, R needs to extract the subset of genes you want
to display (in this case the significant ones) from the data set R has already made
in steps 5.12 and 5.13. Using the R console, type the following command. Make
sure to use your own username instead of “amadlung”. If you get an error “no
such file or directory”, check that your file is in fact in a directory on your
Desktop called diff_out.
> mySIGGENEIDS <-
read.table("/Users/amadlung/Desktop/diff_out/sig_genes_grep_yes.txt")
the new file you are making in R is the one called mySIGGENEIDS; read.table
is the command to R to read the text file with your input gene IDs (called
sig_genes_grep_yes.txt).

7. Check that the file was made correctly by displaying it:
> mySIGGENEIDS # You should have 83 genes.

8. Next, use the getGenes command in R to create a smaller database that has the
expression data (and a lot more information) only for your significant genes.
> MYSIGGENES <-getGenes(cuff_data,mySIGGENEIDS[,1])

 # This file uses the file mySIGGENEIDS (with just the list of significant genes)
and pulls data from the database made in steps 5.12/5.13. The command is
getGenes. The [,1] portion is needed to specify which rows and columns of that
file you want. Leaving the space before the comma blank means “all rows”. The
“1” after the comma means: “use column 1”.

9. R will now spit out ~25 rows of red text before returning the > cursor.
10. Type > MYSIGGENES
11. R will provide some information on the data set you specified and extracted for

the large database.
12. Make a heatmap of the genes that are significant using these commands:

> h <-csHeatmap(MYSIGGENES, clustering="row", heatscale=
c(low='red', high='green'))
 # Here the command is csHeatmap, the argument to be worked on is
MYSIGGENES. The modifying addition heatscale = tells R something about your
specific wishes for the optics of the heatmap. Ignore the red text R returns with
information and type
> h

14. If the resulting map is a bit cluttered you can make the font of the names smaller
by adding a definition to the plot instructions:

 hm <- h +
theme(axis.text.x=element_text(size=14),axis.text.y=element_text(
size=6)) #Hit return and then issue the following command:
> hm

15. R can now also use the list of genes specified above for a barplot of all significant
genes simply using > expressionBarplot(MYSIGGENES)

16. To customize the barplot use the following commands:
> b <-expressionBarplot(MYSIGGENES)
> bm <- b + theme(axis.text.x=element_text(size=6),axis.text.y=element_text(size=10))
> bm

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

29	

17. Now let’s create a new subset of genes we want to display. We will use the 10
genes starting at XLOC_012549. First, create a new subset .txt file from the file
sig_genes_grep_yes.txt. Create a file using touch called
sig_genes_grep_yes_10.txt

18. Now use grep as you did before to extract only 10 lines of text. We will use the
option –A. The number following –A is the number of lines you want displayed after
grep detects the first word (called a string) you specify. Try this command:
$ grep -A 10 -i "XLOC_012549" sig_genes_grep_yes.txt

Your terminal will display the 10 lines starting with XLOC_012549. To direct
them into the new file you just made use this command instead:
$ grep -A 10 -i "XLOC_012549" sig_genes_grep_yes.txt >
sig_genes_grep_yes_10.txt
19. Use the following command to create a new R object in the R console containing
the 10 genes you want to display:
my10SIGGENEIDS <-
read.table("/Users/amadlung/Desktop/diff_out/sig_genes_grep_yes_10.txt")
20. Verify using > my10SIGGENEIDS
21. Now use the getGenes command to populate the file with the data form the
database:
> MY10SIGGENES <- getGenes(cuff_data,my10SIGGENEIDS[,1])
22. Verify using > MY10SIGGENES
23. Create a new object to display later:
> b10 <-expressionBarplot(MY10SIGGENES)
24. Specify the fonts etc.
> bm <- b10 +
theme(axis.text.x=element_text(size=6),axis.text.y=element_text(size=10))
25. Display the graph using > bm
26. ANSWER THIS QUESTION: One gene appears to be completely off in
immature fruit and transcribed in early ripening fruit. Which gene is it?

Step 7: Determining functional categories for the significant genes
To determine the general functions of a selection of genes, often a gene ontology, or GO
search is performed. There are multiple tools that will do GO analysis and each has their
pros and cons. We will use an R package called TopGO.
GO analyses can accomplish multiple things: usually the first thing you want to do with a
list of significant genes from an experiment is to see what functional categories your
significantly differentially expressed genes fall into. For most sequenced genes there is an
annotated list available that contains the gene IDs, the gene names, their functions, and
also their GO category. You can then compare your list of significant genes with the GO
term list, pull out the GO terms for your genes, and do a statistical analysis that
determines if the number of genes per category on your list of significant genes is
particularly high in a given functional category, and thus suggests that these categories
are particularly affected by the treatment in your experiment. In that case you can say that
GO category X is “overrepresented” among your significant genes. The test you run for
that is called a Fisher’s Exact Test. Let’s briefly look at an example of GO
overrepresentation: Let’s assume your genome has 10,000 genes and your treatment
found a total of 1000 genes to be differentially regulated using RNAseq analysis. 1000

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

30	

out of 10,000 is 10%. Now let’s assume a particular GO category (say glucose
metabolism) contains a total of 100 genes. Given that you found 10% of genes to change
in your experiment you could argue that every category might be equally affected and
thus you might expect 10% of each category to be differentially expressed. For the
example category (glucose metabolism) you would expect 10 genes to be significantly
different (100 genes in category, 10% rate of overall change = 10 genes in this category).
Let’s say a different category has only 30 genes in it, so for that the expected change
would be 3 genes (also 10%). Let’s now say your experiment found that among the
glucose metabolism genes not 10 but 50 genes were affected, then that is a lot more than
you would expect if all categories were equally affected (that’s your null hypothesis).
50% instead of 10% of genes affected from the glucose metabolism GO category
suggests that clearly this GO category is overrepresented among the categories containing
your significant genes. Maybe something is going on with this entire pathway that you
might now want to investigate more carefully in a follow up experiment. You could now
form a new hypothesis based on your GO analysis using your RNAseq data. But what if
your level of change in this category was 15 genes (As opposed to the expected 10 among
the total of 100) – is that a significant overrepresentation? When it isn’t as clear as in the
previous example, you need to employ statistical tests, and that is where we will use the
Fisher Exact test.
 What you will do in this analysis is two things:

a) Determine the GO categories for your significant genes
b) Determine if there are GO categories that are statistically significantly

overrepresented among the GO categories of your genes (that were to be
found significantly differentially regulated) using Fisher’s Exact test.

1. We need two files: the file that contains all genes in the genome and their GO
categories, and the file that contains a list of the gene names that were interesting
(significantly differentially regulated) in your RNAseq analysis. Let’s get the first file
first. Go to the tomato genome database and download a file that contains what you need:
gene IDs and GO categories. The file is on their ftp site. Download it to your physical
(not iPlant) desktop using the curl command. The URL is:
ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/id_conversion/tomato_unigene
s_solyc_conversion_annotated.txt
As you download the file, name it tomato_goterms.txt
$ curl ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/id_conversion/tomato_unigenes_solyc_conversion_annotated.txt >
tomato_goterms.txt

2. Open the file using Excel and look at the many different columns. You will need
columns 2 and 15. We will need to cut the file to size using unix commands. Close the
excel file.

3. Go to your terminal window and check if you have the file on your physical computer
desktop. Then cut columns 2 and 15 and place them into a new file called
tomato_goterms_only

$ cut -f 2,15 tomato_goterms.txt >tomato_goterms_only.txt

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

31	

4. Now open this file up in Excel. Next we need to delete the last two digits of the Solyc
gene ID to have the same gene ID format as in the list from the RNAseq data. To do so,
a) insert a new column (Insert à columns) left of your geneID column, then
b) click on the top cell in the empty new column (column A, row1) and type the
following function:
 =LEFT(B1,16)
This function returns the string of letters and numbers from cell B1 up to the 16th digit
and places it in cell A1 where your cursor is.
c) Click and drag the cursor from cell A1 to the bottom of column B so that all cells in
column A are selected up to the bottom of column B (while keeping the cursor in column
A), let go and go to Edit à Fill down. (You can do this also by double clicking on the
lower right hand corner of the A1 cell after typing in the formula. It will fill down to the
end of the data in the adjacent column.)
d) Now highlight columns A-C with the mouse, and click Data à Sort à Sort by col. C.
e) Now scroll down to where the GO numbers end and delete the geneID rows without
GO number. that’s quite a few that don’t have functional annotation yet (about 12K).
f) Now save the file as tomato_goterms_only_edit.txt BUT MAKE SURE to set the
“Format” pull down tab in the save window to “Windows Formatted Text (.txt)” or your
file will not work and later give you a lot of gibberish with inserted ^M characters in your
file.
g) Now you must delete the column with the old Solyc numbers. That might require you
to copy and “paste special” the values of the new column in yet another column, before
you can throw away the old columns, leaving you with exactly 2 columns: The new Solyc
gene IDs and the GO categories.

5. Go to your terminal window and open the file you made and edited:
$ less tomato_goterms_only_edit.txt
Check that it is clean with no extraneous characters. If that is the case, this concludes
formatting your first input file!

6. Now we need to create the second input file, which needs to contain all significant
genes listed by their gene ID (Solyc.xxxxx number). Using grep we already made a file
earlier that contains all significant genes that we called “grep_yes_gene_exp.txt”. It
should be in your diff_out folder. Check that you have this file and open it.

7. Next we will cut the column we want, and place it in a new file that we will call
sig_genes_Solyc.txt as follows:
$ cut -f 3 grep_yes_gene_exp.txt > sig_genes_Solyc_clean.txt

8. Using Excel, open the file you just made. Click “next” twice and then “finish”. The list
of significant genes (Solyc numbers) needs a bit of tidying up, which we will do by hand.
Each row should have one number only. You can achieve this by cut and paste. Either
add the additional numbers to the bottom of your list or create new rows (àinsert à
row). When you are done, double check that you have deleted the extra commas in rows

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

32	

that had several gene names as well or the file won’t read in properly in the next step.
You should have to make about ~7 changes and end up with a list of about 86 genes.
Save the file as “windows formatted text (.txt)” in the pull down menu. (Other formats
insert hidden characters and mess up your file for the next step).

9. Back in Terminal, go to the diff_out folder on your physical desktop and, using ls,
look for the file
 sig_genes_Solyc_clean.txt
and open it with less. You should see one column of Solyc gene IDs with a suffix ending
in .1 or .2 (just like your Solyc number in your input file 1 from steps 1-5 above).

10.Next we will use R to do the following:
a) create tables sorting the significant genes of the RNAseq analysis into GO categories,
b) conduct two types of Fisher Exact tests, one “classical”, and one that weighs adjacent
GO categories differently from those that are far apart in the GO hierarchy functional
network.
Open R Studio on your computer now. Open a new R-script (File à New à R-script)

11. Copy and paste the script below into the empty top left pane.

##START COPYING HERE
Script written by Keisha Carlson, edited by Andreas Madlung
#July 9th 2015
#make sure to have biocoductor, and topGO packages, need to load separately Rgraphviz
#for graph only
source("http://bioconductor.org/biocLite.R")
biocLite("topGO")
library(topGO)
biocLite("Rgraphviz")

###This set of commands analyzes the list of significant genes and tests if they are
#overrepresented in their
##respective categories of gene functions.

#read in the text file with column 1 = solyc numbers and column 2 = GO IDs into topGO
#format
gene_GO_map <- readMappings("/Users/amadlung/Desktop/tomato_goterms_only_edit.txt")
#make a list of solyc numbers
geneNames <- names(gene_GO_map)
#open up file with genes of interest: file contains 1 column of solyc numbers of
#differentially expressed genes from RNAseq analysis
myINTgenes_file <- read.table("/Users/amadlung/Desktop/diff_out/sig_genes_Solyc_clean.txt", header = T)
#take column 1 (only column, but now no longer a table)
myInterestingGenes <- myINTgenes_file[[1]]
#takes gene names and adds 1 or 0 depending whether "interesting gene" or not
geneList <- factor(as.integer(geneNames %in% myInterestingGenes))
names(geneList) <- geneNames

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

33	

#make topGO data object GOdata using biological process gene ontology and own
#annotations (from solgenomics.org)
GOdata <- new("topGOdata", ontology = "BP", allGenes = geneList, annot =
annFUN.gene2GO, gene2GO = gene_GO_map)
#run Fisher's exact test using "weight" algorithm
resultFisherWeight <- runTest(GOdata, algorithm = "weight", statistic = "fisher")
#run Fisher's exact test using "weight01" algorithm
resultFisherDefault <- runTest(GOdata, statistic = 'fisher')
#run Fisher's exact test using "classic" algorithm
resultFisherClassic <- runTest (GOdata, algorithm = "classic", statistic = 'fisher')
#get classic table, specify how many GO categories you want in "topNodes" (here e.g. =
#20)
classicTable <- GenTable(GOdata, classicFisher = resultFisherClassic, orderBy =
"classicFisher", topNodes = 20)
#get weight table
weightTable <- GenTable(GOdata, weightFisher = resultFisherWeight, topNodes = 20)
#get default table
defaultTable <- GenTable(GOdata, weight01Fisher = resultFisherDefault)
#make graph with network, specify number of categories you want using firstSigNodes
showSigOfNodes(GOdata, score(resultFisherWeight), firstSigNodes = 4, useInfo = 'all')
#Display results of classic table with topNodes and significance
classicTable
weightTable
#NOTE: Before the next step you should make two blank files on your non-virtual
#Desktop first and call them “Fisher_classic.txt”, and “Fisher_weighted.txt”.
#Next, write the table with the classic Fisher Exact test results to the file.
write.table(classicTable,"/Users/amadlung/Desktop/Fisher_classic.txt", sep="\t")
##Now write the table with the weighted Fisher results to the other file.
write.table(weightTable,"/Users/amadlung/Desktop/Fisher_weighted.txt", sep="\t")

##COPY ALL THE WAY DOWN TO HERE

12. Now read the script. You will have to edit the input path by taking out the path that
works on my computer and change it to the path that will work on yours.

13. Now you can run this script line by line. Read the comments starting with # (in green)
that explain each step for you. In the bottom left pane monitor the progress of the script.
If you get red text with errors you have to go back and troubleshoot. Most likely errors
will occur if the files are not in the correct place.

14.Once you get to around line 38 (showSigOfNodes…) (line numbers may have moved
depending on how you imported the script), look for a graph to appear in the bottom right
panel. This graph displays the network of categories that are overrepresented in your
dataset.

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

34	

15. Carefully read the lines that instruct you to make two blank file on your Desktop
(starting with “NOTE:…”), into which to import your two tables with the “classic” and
the “weighted” GO categories.

16. After finishing the script, open each of the two files using Excel, move the header
over one column (it imports incorrectly one column over) and look at the far right column,
which contains the p-value of the classic or weighted Fisher exact test. How many GO
categories are significantly (p<0.05) enriched in your dataset?

17. Go back to script line ~38 (showSigOfNodes…) and change the number of categories
displayed from 4 to 2. Re-run the line (you may have to clean out the bottom right panel
with the broom function first). Then re-set the value to 6 and see what changes when you
again re-run the line.

Introduction to Bioinformatics, labs 1-4
 A Madlung, 2015 University of Puget Sound

	

35	

 Postlab assignment (10 points)
(One set of answers per individual, please. Due: In lab one week after this lab.)

Produce three publication-quality figures and a table that could be used in the Results
section of a paper you might write up about the experiment. Make sure the figures
have adequate legends. Ask for help if you are unclear what should go in the legend.
Figure 1: Heatmap of all significant genes
Figure 2: Expression bar plot of significant genes (your choice if you want to show
one gene or all genes).
Figure 3: Analysis of functional groups the significant genes fall into. Create a bar
graph in Excel that shows the expected and observed GO categories of your data set
(either one or the other Fisher analysis) using paired bars of only the statistically
significantly enriched GO categories in your graph. If no categories are significant,
present the top 5 categories with the lowest p-values.
Table 1: Create a table and description (remember, table legends go on top of the
table, figure legends go below) of one of the two Fisher analyses (your choice). Make
the table as long as it makes sense from the data you present. Point out the
significantly overrepresented categories.

