Bilinear Decompositions in the LC-BML Model

We now describe the bilinear decomposition of the parameters used in the LC-BML model. In order to reduce the number of parameters in Eq. (3) from the main text, which reads

$$\eta_{ijk\,|\,r,s} = \alpha_{k\,|\,r} + \sum_{l=1}^{L} \beta'_{kl} \boldsymbol{x}_{il} + \gamma_{jk\,|\,s}, \qquad (1)$$

[1] introduce bilinear decompositions which also make it possible to display all effects in Pdimensional graphs. Let \mathbf{B}_l be the matrix with $\boldsymbol{\beta}_{1l}, \ldots, \boldsymbol{\beta}_{Kl}$ as rows, and gather the $\gamma_{jk|s}$ in the $J \times K$ matrix $\boldsymbol{\Gamma}_s$. The bilinear restrictions are imposed by requiring that

$$\mathbf{B}_{l} = \mathbf{F}\mathbf{G}_{l}^{'} \text{ and } \mathbf{\Gamma}_{s}^{'} = \mathbf{F}\mathbf{H}_{s}^{'}, \tag{2}$$

where \mathbf{F} , \mathbf{G}_l and \mathbf{H}_s has P columns. Typically, the dimensionality of the graphical representations is chosen to be P = 1, 2 or 3 so that it can be displayed easily. The matrix \mathbf{F} contains the coordinates of the K rating categories, \mathbf{G}_l the coordinates for the categories of socio-demographic variable l, and \mathbf{H}_s the coordinates of the J items in value segment s in P-dimensional space. Under these bilinear restrictions, Eq. (1) becomes

$$\eta_{ijk\,|\,r,s} = \alpha_{k\,|\,r} + \sum_{l=1}^{L} \sum_{p=1}^{P} f_{kp} \boldsymbol{g}'_{lp} \boldsymbol{x}_{il} + \sum_{p=1}^{P} f_{kp} h_{jp\,|\,s}, \tag{3}$$

with f_{kp} and $h_{tp|s}$ being the elements of **F** and **H**_s respectively, and g_{lp} the *p*th column of **G**_l. Besides these bilinear restrictions, several identifiability contraints must be imposed on the parameters in Eq. (3) – details are given in [1].

References

 Van Rosmalen, Joost, Hester Van Herk, and Patrick JF Groenen, 2010. "Identifying Response Styles: A Latent-Class Bilinear Multinomial Logit Model." *Journal of Marketing Research* 47:157–172.