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S1. Supplemental Analysis: 

S1.1: Binary Network Analysis 

We chose to utilize weighted networks for our primary analysis, as there is evidence that 

connection strength carries important information about network architecture [Bassett and 

Bullmore, 2016] and that weak connections show potential as disease biomarkers [Bassett et al., 

2012]. Though weighted networks may provide richer information, a vast amount of prior and 

current literature utilizes networks which are binarized using a fixed threshold and then analyzed 

using various graph-theoretical metrics. With that in mind, we repeated our analysis using binary 

graphs to facilitate interpretability and applicability of our findings to those of other brain 

connectivity studies. All code for this analysis is also included in our publicly available 

repository at https://github.com/shahpreya/MTLnet. 

We generated a series of binary networks by thresholding our group-level networks across a 

range of densities, in 5% increments, in order to retain 1%–50% of all possible edges in the 

network [Achard and Bullmore, 2007]. For each density, we computed network degree, 

clustering coefficient, and local efficiency using the commonly accepted binary definitions of 

these metrics [Rubinov and Sporns 2010]. We computed subregion-level asymmetry indices ([R-

L)]/[R+L]) for these metrics, as well as overall network asymmetry. Bootstrapping (sampling 

subjects with replacement) was used to assess variability of these network metrics. We 

determined the significance of network asymmetries by permuting the nodes (i.e subregions) of 

the generated networks (1000 iterations) and generating a null distribution of network 

asymmetries. Modular organization and modular significance was computed using the same 
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methods as those for the weighted networks. Finally, in order to evaluate the relationship 

between structural and functional connectivity, we computed the Dice Similarity Coefficient 

(DSC) to quantify the overlap between the structural and functional adjacency matrices for each 

density value. The significance of these DSCs was determined by generating a null distribution 

of DSCs by permuting the edges of the network (1000 iterations). 

We found that binary networks exhibited significantly strong symmetry (p<0.05) across all 

density ranges for functional networks (Supp. Figure 4.1), and for densities less than 25% for 

the structural networks (Supp. Figure 4.2). Moreover, we determined that the modular 

organization at fixed density thresholds was similar to that observed in the weighted networks, 

with a strong degree of interhemispheric connectivity and a segregation of hippocampal and 

extrahippocampal structures. Finally, the level of overlap between structural and functional 

networks was significant for most densities up to 30% (Supp. Figure 4.3). While we believe that 

binary networks are not as robust and representative of underlying physiology as weighted 

networks, it is still reassuring that our broad conclusions hold up when carrying out analysis on 

binary networks. 

 

S2: Supplementary Figures 

 

Supp. Table 1: Computed MTL volumes and correspondence with reference volumes from prior 
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histological and neuroimaging studies. *[Wisse et al., 2016], 1. [Insausti et al., 1998], 2. [Iglesias 
et al., 2015], 3. [Simic et al., 1997], 4. [Harding et al., 1998], 5. [Pruessner et al., 2002] 

 

Supp. Figure 1: Functional (A) and structural (B) local network metrics (connectivity strength, 
clustering coefficient, and local efficiency) computed on bootstrapped matrices for left and right 
hemispheres (mean +/- S.D.), as well as corresponding asymmetry indices (mean +/- S.D.). For 
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each plot, MTL subregions are rank-ordered based on network metric value for left hemisphere, 
in order to emphasize hubness of each subregion.   

 

Supp. Figure 2: Functional network findings on images with no global signal regression: (A) 
functional symmetry across node-level metrics, (B) modular organization, and (C) structure-
function correlation. We find significant functional symmetry (𝜈 = 0.029), significant modular 
organization identical to our original analysis, and significant structure function correlation 
(r=0.20), revealing that our findings are robust to the choice of global signal regression. 
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Supp. Figure 3: Structural and functional analyses replicated after replacing manual 
segmentations with corresponding automated segmentations: (A) subregion volumes, (B) 
subregional volumetric symmetry, (C) network symmetry, (D) modular organization, and (E) 
structure-function correlation. Similar to our primary analysis, we find significant volumetric 
asymmetry in DG, CA3, and hippocampus. Also, we find significant functional symmetry (𝜈 =
0.029), structural symmetry (𝜈 = 0.05), significant functional and structural modular 
organization identical to our original analysis, and significant structure function correlation 
(r=0.36), revealing that our findings are robust to the choice of segmentation approach 
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Supp. Figure 4.1: Functional binary network findings: (A) Network asymmetry across 1%-50% 
density range compared with null network asymmetry, significant across entire density range (*p 
< 0.05). (B) subregion level asymmetry indices for connectivity strength, clustering coefficient, 
and local efficiency. Envelopes represent standard deviation.  For two example densities of (C) 
25% and (D) 45%, we report (i) left-right correlation in connectivity strength and (ii) modular 
organization. We find a strong degree of functional symmetry, as well as significant modular 
organization which emphasizes strong interhemispheric connectivity and a hippocampal-
parahippocampal delineation. 
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Supp. Figure 4.2: Structural binary network findings: (A) Network asymmetry across 1%-50% 
density range compared with null network asymmetry, significant across densities less than 25% 
(*p < 0.05). (B) subregion level asymmetry indices for connectivity strength, clustering 
coefficient, and local efficiency. Envelopes represent standard deviation. For two example 
densities of (C) 25% and (D) 45%, we report (i) left-right correlation in connectivity strength and 
(ii) modular organization. We find a strong degree of structural symmetry, as well as significant 
modular organization which emphasizes strong interhemispheric connectivity and a 
hippocampal-parahippocampal delineation. 
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Supp. Figure 4.3: Dice Similarity Coefficient (DSC) between functional and structural 
networks, compared with the DSCs expected from a null distribution. Envelopes represent 
standard deviations. DSC is significantly greater than chance (*p < 0.05) for most thresholds up 
to 30%. 
 

 
 
Supp. Figure 5.1: Structural and functional analyses replicated after merging CA2/3 subregions 
with CA1: (A) network symmetry, (B) modular organization, and (C) structure-function 
correlation. We find significant functional symmetry (𝜈 = 0.025), structural symmetry (𝜈 =
0.069), significant modular organization identical to our original analysis, and significant 
structure function correlation (r=0.47), revealing that our findings are robust to CA2/3 signal. 
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Supp. Figure 5.2: Structural and functional analyses replicated after removing CA2/3 
subregions: (A) network symmetry, (B) modular organization, and (C) structure-function 
correlation. We find significant functional symmetry (𝜈 = 0.025), structural symmetry (𝜈 =
0.071), significant modular organization identical to our original analysis, and significant 
structure function correlation (r=0.46), revealing that our findings are robust to CA2/3 signal. 
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