Frequent implementation of interventions may increase HIV infections among MSM in China

Xiaodan Sun, Yanni Xiao, ¹ Zhihang peng, Ning Wang

1 Existence of the periodic disease-free equilibrium

We can show that system (2)-(3) has a disease-free periodic solution.

Lemma A.1 *System* (2)-(3) has a $T_l−periodic solution $\hat{S}(t) = (\hat{S}₁(t), 0, 0, 0, \cdots, \hat{S}_i(t), 0,$$ $0, 0, \cdots, \hat{S}_n(t), 0, 0, 0)$.

Proof To show the existence of disease-free periodic solution of system (2)-(3), we consider the following disease-free subsystem.

$$
\begin{cases}\n\frac{dS_i}{dt} &= U_i - (\mu_i + \sigma_i(t) + d)S_i, \\
\frac{d\sigma_i(t)}{dt} &= -r_i^{\sigma}\sigma_i(t), \quad t \neq kT_l, \\
\sigma_i(T_i^+) &= \sigma_i^m, \quad t = kT_l.\n\end{cases} \tag{S.1}
$$

Let $S(t) = (S_1(t), S_2(t), \dots, S_n(t)), U = (U_1, U_2, \dots, U_n), \mu = (\mu_1, \mu_2, \dots, \mu_n)$ and $\sigma(t) =$ $(\sigma_1(t), \sigma_2(t), \cdots, \sigma_n(t))$, where $\sigma_i(t) = \sigma_i^0 e^{-r_i^{\sigma}(t - kT_i)}$, $k = 1, 2, \cdots, kT_i \le t < (k+1)T_i$, we have

$$
\frac{dS(t)}{dt} = U - (\mu + \sigma(t) + d)S(t), \quad t \neq kT_l.
$$
 (S.2)

Clearly, $(S.2)$ has a unique positive T_l periodic solution

$$
\hat{S}(t) = e^{-\int_0^t (\mu + \sigma(s) + d)ds} \left(\hat{S}(0) + U \int_0^t e^{\int_0^s (\mu + \sigma(\xi) + d)d\xi} ds \right).
$$

which is globally attractive in R_+^n , where

$$
\hat{S}(0)=\frac{U\int_0^{T_l}e^{\int_0^s(\mu+\sigma(\xi)+d)d\xi}ds}{e^{\int_0^{T_l}(\mu+\sigma(s)+d)ds}-1}.
$$

Thus, system (2)-(3) has a unique disease free periodic solution $x^*(t) = (\hat{S}_1(t), 0, 0, 0, \dots, \hat{S}_i(t))$ $0, 0, 0, \cdots, \hat{S}_n(t), 0, 0, 0).$

¹Corresponding author. E-mail: yxiao@mail.xjtu.edu.cn

2 The basic reproduction number

In the following, we define the basic reproduction number of $(2)-(3)$ by using the theory proposed by Wang and Zhao.¹ System $(2)-(3)$ is equivalent to the following system

$$
\frac{d}{dt}x(t) = \mathcal{F}(t, x) - \mathcal{V}(t, x). \tag{S.3}
$$

,

where $x = (I_1, D_{I1}, D_{A1}, \cdots, I_i, D_{Ii}, D_{Ai}, \cdots, I_n, D_{In}, D_{An}, S_1, \cdots, S_i, \cdots, S_n),$

$$
\mathcal{F}(t,x) = \begin{pmatrix} B_1(t) \\ 0 \\ 0 \\ 0 \\ \vdots \\ B_n(t) \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathcal{V}(t,x) = \begin{pmatrix} (d+\delta_1)I_1 \\ -\rho\delta_1I_1 + (\xi + d + \alpha_I) \\ - (1-\rho)\delta_1I_1 - \xi D_{I1} + (d + \alpha_A)D_{A1} \\ \vdots \\ (d+\delta_n)I_n \\ -\rho\delta_nI_n + (\xi + d + \alpha_I) \\ - (1-\rho)\delta_nI_n - \xi D_{In} + (d + \alpha_A)D_{An} \\ - U_1 + B_1(t) + (\mu_1(t) + d)S_1 \\ \vdots \\ -U_n + B_n(t) + (\mu_n(t) + d)S_1 \end{pmatrix}
$$

 W ith $B_i(t) = \beta_{ii}(1 - v_{ii}(t))S_i \frac{I_i + \rho D_{Ii} + \epsilon D_{Ai}}{N_i}$ $\frac{N_{li} + \epsilon D_{Ai}}{N_i} + \sum_{j \neq i}^{n} \beta_{ij} m_{ij} v_{ij}(t) S_i \frac{I_j + \rho D_{lj} + \epsilon D_{Aj}}{N_j}$ $\frac{\nu_{Ij}+\epsilon D_{Aj}}{N_j}$.

It is obvious that conditions (A1)-(A5) in reference¹ are satisfied. Let $f(t, x(t))$ = $\mathcal{F}(t, x) - \mathcal{V}(t, x)$ and $\tilde{M}(t) = \left(\frac{\partial f_i(t, x^*(t))}{\partial x_i}\right)$ *<u>* $j(x, x^*(t))$ *</u>* $j(x,t) = (0, 0, 0, \cdots, 0, 0, 0, S^*_{1})$ $i_1^*, \cdots,$ *S* ∗ i_j^* , ···, S_n^*) is the disease-free periodic solution and x_i is the *i*−th component of $f(t, x(t))$ respectively. Then we have

$$
\tilde{M}(t) = \begin{pmatrix}\n-(\mu_1 + \sigma_1(t) + d) & 0 & \cdots & 0 \\
0 & -(\mu_2 + \sigma_2(t) + d) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -(\mu_n + \sigma_n(t) + d)\n\end{pmatrix},
$$

and it is easy to obtain that $r(\Phi_{\tilde{M}}(\omega)) < 1$, where $\Phi_M(t)$ is the mondromy matrix of the linear *T*_{*l*}− period system $\frac{dy}{dt} = \tilde{M}(t)y$ and $r(\Phi_{\tilde{M}}(\omega))$ is the spectral radius of $\Phi_{\tilde{M}}(\omega)$. Thus, the condition $(A6)$ in reference¹ also holds.

Let
$$
F(t) = \left(\frac{\partial F_i(t, x^*(t))}{\partial x_j}\right)_{1 \le i, j \le 3n}
$$
 and $V(t) = \left(\frac{\partial V_i(t, x^*(t))}{\partial x_j}\right)_{1 \le i, j \le 3n}$, where $F_i(t, x)$ and $V_i(t, x)$ are

the *i*−th component of $\mathcal{F}(t, x)$ and $\mathcal{V}(t, x)$, respectively. Then, we have

and

$$
F(t) = \begin{pmatrix} A_{11}(t) & A_{11}(t)\varrho & A_{11}(t)\epsilon & \cdots & A_{1n}(t) & A_{1n}(t)\varrho & A_{1n}(t)\epsilon \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ A_{n1}(t) & A_{n1}(t)\varrho & A_{n1}(t)\epsilon & \cdots & A_{nn}(t) & A_{nn}(t)\varrho & A_{nn}(t)\epsilon \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}
$$

$$
V = \begin{pmatrix} d+\delta_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -\rho\delta_1 & \xi + d + \alpha_1 & 0 & \cdots & 0 & 0 & 0 \\ -(1-\rho)\delta_1 & -\xi & d + \alpha_4 & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & d + \delta_n & 0 & 0 \\ 0 & 0 & 0 & \cdots & -\rho\delta_n & \xi + d + \alpha_1 & 0 \\ 0 & 0 & 0 & \cdots & -(1-\rho)\delta_n & -\xi & d + \alpha_A \end{pmatrix},
$$

where $A_{ii} = \beta_{ii}(1 - v_{ii}(t)), i = 1, \dots, n, A_{ij} = \beta_{ij}m_{ij}v_{ij}(t)\frac{\hat{N}_{i}(t)}{\hat{N}_{i}(t)}$ $\frac{\dot{N}_i(t)}{\dot{N}_j(t)}$, *i*, *j* = 1, · · · , *n*, and $\hat{N}_i(t)$ = *Ui* $\frac{U_i}{\mu_i+\sigma_i(t)+d}$.

Let $Y(t, x)$ be a $3n \times 3n$ matrix solution of the following system.

$$
\frac{dY(t,s)}{dt} = -V(t)Y(t,s), \text{ for any } t \ge s, Y(s,s) = I,
$$

where *I* is a $3n \times 3n$ identity matrix. Therefore, the condition (A7) in reference¹ holds.

Define $\psi(t)$ as the initial periodic distribution of infected individuals with periodic T_l . Then, the distribution of infected individuals infected at time *s* and are still infected individuals at time *t* can be given by $Y(t, s)F(s)\psi(t)$. Let C_{T_i} be the ordered Banach space of all T_l – periodic functions from R to R³ⁿ, which is equipped with the maximum norm $\|\cdot\|$ and the positive cone $C_{T_l}^+ := \{ \psi \in C_{T_l} : \psi(t) \geq 0, \forall t \in \mathbb{R} \}$. A linear operator $L : C_{T_l} \to C_{T_l}$ is defined as follows.

$$
(L\psi)(t) = \int\limits_0^\infty Y(t, t-a)F(t-a)\psi(t-a)da, \forall t \in \mathbb{R}, \psi \in C_{T_t}.
$$

Then, we can define the basic reproduction number as

$$
R_0 := \rho(L).
$$

From Wang and Zhao, $¹$ we have the following Lemma.</sup> **Lemma S1**(See¹) The following statements are valid:

- If $r(W(T_l, \lambda)) = 1$ has a positive solution λ_0 , then λ_0 is an eigenvalue of *L*, and hence $R_0 > 0$.
- If $R_0 > 0$, then $\lambda = R_0$ is the unique solution of $r(W(T_l, \lambda)) = 1$.
- $R_0 = 0$ if and only if $r(W(T_l, \lambda)) < 1$ for all $\lambda > 0$.

On the basis of this Lemma, we can calculate the basic reproduction number numerically by finding the positive solution λ_0 of $r(W(T_l, \lambda)) = 1$.

3 Effects of interventions on HIV infections

Figure S1: Effects of the network structures on the number of HIV/AIDS cases of each community. The number of communities is $n = 10$ and each community has a mean of $k = 2$ neighbours. The maximum within-community impacts of interventions are $v_{ii}^m = 0.5$, and the maximum between-community impacts are $v_{between}^* = 0.5$. For each network structure 100 simulations are conducted. (a) WS network with rewired probability of $p = 0.2$. (b) WS network with rewired probability of $p = 0.6$. (c) Random network. Here, $T_l = 1/2$, $\sigma_i^m = 0.02$, $r_{ii}^v = r_{ij}^v = 2$, $r_i^{\sigma} = 2$. Other parameters are described in Table 1 in the main text.

References

1. Wang, W. & Zhao, X. Q. Threshold dynamics for compartmental epidemic models in periodic environments. J. Dynam. Diff. Equ. 20, 699-717 (2008).