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1 Existence of the periodic disease-free equilibrium

We can show that system (2)-(3) has a disease-free periodic solution.

Lemma A.1 System (2)-(3) has a T)—periodic solution S (t) = (S1(7),0,0,0,- - -, S:(¢),0,
0,0, --,5,(1),0,0,0).

Proof To show the existence of disease-free periodic solution of system (2)-(3), we

consider the following disease-free subsystem.

L = U= (i + o)+ d)S,
WO = —prai(t), t# kT, (S.1)
oi(T}) =o, t = kT,.

Let S(t) = (Sl(t)’ SZ(t)a Tt aSn(t))a U= (U17 U27 Y Un)9 M= (H15N2a Tt ,/Jn) and O-(t) =
(o1(®), 02(0), - - -, 0,(1)), where o;(f) = O‘?e_r;r(t_kT’), k=12,-- kT, <t < (k+ 1)T;,, we
have

BO U —(u+ o) +d)S©), t#kT). (S.2)

dt

Clearly, (S.2) has a unique positive 7; periodic solution
t
S(t) — o o (s)+dyds (S‘ )+ U f e i wro@©+dyds d s).
0

which is globally attractive in R}, where

U foTl o o @rddé g o

$(0) =
© e Jluro(s)+dds _ 1

Thus, system (2)-(3) has a unique disease free periodic solution x*(t) = (81(1),0,0,0,---,8:(0),
0,0,0,--,8,(1),0,0,0).
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2 The basic reproduction number

In the following, we define the basic reproduction number of (2)-(3) by using the theory

proposed by Wang and Zhao.! System (2)-(3) is equivalent to the following system
d
d—tx(t) =F(t,x) -V, x). (S.3)

Wherex: (Il’leDAl’""Ii’DIhDAi,'"5In9DIn9DAn9S15'",Sh”"Sn)’

By (1) (d+onDh
0 —p6111+(§-‘+d+a/1)
0 (1 =p)o1l1 —€Dp + (d + aa)Da
B !y
F(t,x) = () V(2 x) = (@+4n)
0 _pénln + (‘f +d+ CL’[)
0 _(1 _p)énln - ‘fDln + (d + a'A)DAn
0 —U1+Bl(t)+(/11(t)+d)51
0 _Un + Bn(t) + (ﬂn(t) + d)Sl

with B(0) = Bi(1 = i) 5L & 5 (108

It is obvious that conditions (A1)-(A5) in reference' are satisfied. Let f(z, x(f)) =
F(t,x) — V(t, x) and M(r) = (%;m)3n+lsj’jg4n, where x*(¢) = (0,0,0,---,0,0,0,S87,---,
St,-+-,8,) is the disease-free perijodic solution and x; is the i—th component of f(¢, x(t))
respectively. Then we have

(i + o1 (D) + d) 0 0
- 0 (2 + o2(t) + d) 0
M) = )
0 0 o =y + (1) + d)

and it is easy to obtain that r(®y(w)) < 1, where @y, (7) is the mondromy matrix of the
linear 7;— period system % = M(t)y and r(®y(w)) is the spectral radius of @y (w). Thus,
the condition (A6) in reference! also holds.

Let F(1) = (L4, ;s and V() = (P, s, where Fi(t, x) and Vi(1, x) are

ox j ox j



the i—th component of ¥ (¢, x) and V(z, x), respectively. Then, we have

Au@® An@o Au@e --- Ap@) Ao Awm(e
0 0 0 e 0 0 0
0 0 0 e 0 0 0
F@t) = : : : ; : :
An() An@o Au@e - Ap() Amo  Am()e
0 0 0 e 0 0 0
0 0 0 0 0 0
and
d+6; 0 0 0 0
—pdy E+d+a 0
—(1-p)d —¢ d+ay
V=
0 e d+ o, 0 0
—po, E+d+a 0
0 0 o =(1=p)o, =& d+ay

where A;; = Bi(1 —vi(0),i = 1,---,n, A;; = ﬁijmijvij(t)jgi__((tt;,i’j =1, -+,n, and Ny(t) =
J

U;

pitoi(D)+d*
Let Y(z, x) be a 3n X 3n matrix solution of the following system.
day(,
c(lt 9 =-V(@®)Y(t,s),forany t>s,Y(s,s5) =1,

where 1 is a 3n X 3n identity matrix. Therefore, the condition (A7) in reference' holds.
Define y(t) as the initial periodic distribution of infected individuals with periodic 7.
Then, the distribution of infected individuals infected at time s and are still infected indi-
viduals at time 7 can be given by Y(z, s)F(s)Y(t). Let Cr, be the ordered Banach space of
all T;,— periodic functions from R to R*", which is equipped with the maximum norm || - ||
and the positive cone C}r] :={y € Cp, : Y(t) > 0,Vt € R}. A linear operator L : Cy, — Cr,

1s defined as follows.

(o)

(Ly)(t) = f Y(t,t —a)F(t — a)y(t — a)da,Vt € R,y € Cr,.
0
Then, we can define the basic reproduction number as

Ry :=p(L).

From Wang and Zhao,' we have the following Lemma.

Lemma S1(See') The following statements are valid:
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o If r(W(T,, 1)) = 1 has a positive solution Ay, then A, is an eigenvalue of L, and hence

Ry > 0.

o If Ry > 0, then A = Ry is the unique solution of r(W(T}, 1)) = 1.

e Ry =0ifand only if (W(T}, 1)) < 1 forall 4 > 0.

On the basis of this Lemma, we can calculate the basic reproduction number numerically

by finding the positive solution Ay of r(W(T}, 1)) = 1.

3 Effects of interventions on HIV infections
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Figure S1: Effects of the network structures on the number of HIV/AIDS cases of

each community. The number of communities is n

= 10 and each community has a

mean of k = 2 neighbours. The maximum within-community impacts of interventions

are v{! = 0.5, and the maximum between-community impacts are v, = = 0.5. For

each network structure 100 simulations are conducted. (a) WS network with rewired

probability of p = 0.2. (b) WS network with rewired probability of p = 0.6. (¢) Random

network. Here, T; = 1/2, 0" = 0.02, 1}, = rl.V/. = 2,r] = 2. Other parameters are described

in Table 1 in the main text.
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