Supplementary Information for Scientific Reports ## Ca²⁺-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca²⁺ increase and cold tolerance in Arabidopsis Kendo Mori^{1,§}, Na Renhu^{2,§}, Maho Naito¹, Aki Nakamura¹, Hayato Shiba², Tsuyoshi Yamamoto², Takuya Suzaki², Hidetoshi Iida^{1,*}, Kenji Miura^{2,*} ²Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan ²Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan [§]These authors contributed equally to this work. ^{*}Correspondence to email: miura.kenji.ga@u.tsukuba.ac.jp & iida@u-gakutei.ac.jp Figure S1. The levels of the MCA1 and MCA2 transcripts in the mutant and complement lines. Total RNA was purified from 8 plant grown for 14 days. Transcript levels of the MCA1 and MCA2 genes were measured by quantitative real-time PCR as described in Methods in the main text. Values represent the means \pm SD (n = 3). An asterisks indicates a significant difference from wild-type plants as determined by unpaired Student's t-tests.