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S1 Approximate decomposition of an image database into
Morlet wavelets

In this section we explain our method of calculating the average decomposition of an image database
into Morlet wavelets, which is presented in Fig. 2, and which is later used to select the Morlet
wavelets for the sampling functions. We also discuss the relation of the decomposition into Fourier
basis and Morlet wavelets.

A Morlet wavelet function gσ,np,θ(x−x0, y−y0) is defined with 5 parameters (See Equation (2)),
namely the size of Gaussian envelope σ, the number of peaks within the envelope np, orientation θ,
as well as the location of the center of the wavelet (x0, y0). Our purpose was to determine which
part of the feature space spanned by these parameters is needed to represent typical real-world
images. Assuming no preference for the spatial location of the features (x0, y0) and their possible
rotation θ, we focused only on two parameters (σ, np).

We were therefore interested in finding the most common range of values of (σ, np) appearing
in an approximate decomposition of a set of images into Morlet wavelets. Following, our sampling
functions Ψσ,np,θ(x, y) have been constructed as a convolution of white noise with Morlet wavelets
gσ,np,θ(x, y) defined by σ, and np selected randomly from the range of interest, and θ selected
randomly from the range [0, 2π[. Sampling an image with these functions is equivalent to sam-
pling the respective feature vector Xx0,y0,σ,np,θ (i.e. the representation of the image in the feature
space (x0, y0, σ, np, θ)) randomly with a uniform distribution over x0, y0, θ but with a nonuniform
distribution over σ, np. These two parameters are taken randomly from the estimated region of
interest.

S1.1 Calculation method

We should note that Morlet wavelets are in general not orthogonal, as well as that the expansion of
an image into Morlet wavelets is not unique. Finding the most efficient expansion is computationally
challenging, so we took a simplified approximate approach. Decomposition of a vector into a linear
combination of non-orthogonal vectors such as Morlet wavelets is equivalent to solving a system of
linear equations Ax = b, where columns of A are the Morlet wavelets, x are the unknown expansion
coefficients and b is the decomposed vector. When the number of linearly independent Morlet
wavelets in A equals the number of pixels in the image, the decomposition is exact and unique,
though the choice of the wavelets from the continuous parameter space itself is not unique. As the
inversion of a 5122×5122 matrix is not possible with limited computational resources, we decided to
take a different approach. For each decomposition we selected a set of 104 wavelets and calculated
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an approximate decomposition using pseudoinverse x = A+b (where the size of A is 5122×104). We
have calculated this expression 490 times (10 times with different matrix A for each of 49 images
b from the image database). The average occurrences of (σ, np) in these decompositions is plotted
in Fig. 2. In order to select the Morlet wavelets included in matrix A, we cropped the space down
to region with relatively low spatial frequencies (np < 15) and reasonable Gaussian size (no larger
Gaussian envelopes than the image were allowed). For each Morlet wavelet we selected random
location (x0, y0) and orientation angle θ, while (σ, np) took discrete values from the predetermined
region. We calculated the decomposition 10 times with different sets of (x0, y0, λ) for each image
to average over feature location and orientation angle. Finally, Fig. 2. shows the mean value of the
absolute values of the 490 decompositions projected onto (σ, np).

S1.2 Relation to the Fourier basis

Fourier basis functions are a special subset of Morlet wavelets with ωx = πnp cos(θ)/2σ, ωy =
πnp sin(θ)/2σ, and σ →∞. An expansion of an image into this orthogonal subset of Morlet wavelets
is unique, but may be less sparse than other possible expansions. Moreover, while sampling an image
with Fourier basis provides the highest possible resolution in the frequency domain, other Morlet
wavelets allow to achieve a trade-off between the sampling resolution in the frequency and spatial
domains.

Usually, the spatial spectrum of real-world images is dominated by the low-frequency content.
In the Morlet-wavelet representation this would correspond to small values of np and large values of
σ. This is not very different from what we see in the decomposition presented in Fig. 2 in the main
text, which is centered at small values of np. We have also verified that indeed, the Morlet-wavelet
representation still corresponds to low-frequency Fourier representation (images reconstructed di-
rectly from the incomplete Morlet-wavelet representation still have the spatial spectrum dominated
by low-frequency content). Though the optimal Morlet-wavelet decomposition does not have to be
similar to the Fourier decomposition, as it is also sensitive to the typical range of feature sizes in
images. The units used by us for σ roughly correspond to the percentage of the image width (we
assumed that 3σ is equal to the size of the image equal to 512 or 256 pixels). The maximal values
of σ are distributed in the range of 15%− 40% corresponding to the same range of feature sizes in
the images.
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S2 Comparison of the image reconstruction quality at vari-
ous compression rates

In this section we show additional reconstruction results to better illustrate the properties of the
proposed sampling method. Fig. 1 shows examples of numerical reconstructions obtained with the
pseudoinverse of the measurement matrix for the three sampling schemes - with randomly selected
Walsh-Hadamard and noiselet sampling as well as with the proposed Morlet-wavelet-based method.
These results have been obtained for a 512× 512 image sampled at the compression rate of 4% and
can be compared to the CS results from Fig. 3 of the main paper. Neither Walsh-Hadamard nor
noiselet functions enable clear reconstruction at this compression rate. Especially striking is the
difference between the CS-based and the pseudoinverse-based reconstructions obtained with noiselet
sampling functions. The CS-based reconstruction is very good, while the pseudoinverse-based one
visually resembles white noise. The CS-based reconstruction depends on the incoherence between
the measurement and compression matrices, and noiselets are known to have a small coherence
with compression operators based on wavelet transforms. Therefore they work well with CS-based
methods. On the other hand, the noiselet representation of typical images is usually rather uniform,
which results in a poor reconstruction quality obtained with the pseudoinverse. At the same time,
the pseudoinverse of the image sampled with Morlet-wavelet-based functions is very good.

In Fig. 2 we compare the CS and pseudoinverse based reconstructions from the optical measure-
ments conducted at various compression rates (between 3% and 15% at the resolution of 256×256).
Sampling is based on the binarized Morlet-wavelet-based random patterns. The image is clearly
visible even when the compression ratio equals 3%, however the quality of pseudoinverse-based re-
construction becomes poor at a small compression ratio. This is accordance with the PSNR results
shown in Fig. 7 of the paper.

Figure 1: Pseudoinverse-based reconstructions of the 512× 512 image measured in a simulation at
the compression rate of 4% with various sampling protocols. a) original image; b) reconstruction
from a compressive measurement, where sampling was based on randomly selected Walsh-Hadamard
functions;c) reconstruction from a compressive measurement, where sampling was based on ran-
domly selected discrete noiselet functions; d) reconstruction from a compressive measurement, where
sampling was based on the proposed binarized Morlet wavelet-based random functions.
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Figure 2: CS-based and pseudoinverse-based reconstructions obtained at the resolution of 256×256
at various compression rates from the optical measurement. Sampling was based on the proposed
Morlet wavelet-based random functions.

4


