#### New Phytologist Supporting Information

# Article title: Quantitative proteomics of a B<sub>12</sub>-dependent alga grown in co-culture with bacteria reveals metabolic trade-offs required for mutualism

Authors: Katherine E. Helliwell, Jagroop Pandhal, Matthew B. Cooper, Joseph Longworth, Ulrich Johan Kudahl, David A. Russo, Eleanor V. Tomsett, Freddy Bunbury, Deborah L. Salmon, Nicholas Smirnoff, Phillip C. Wright, Alison G. Smith

Article acceptance date: 31 August 2017

The following Supporting Information is available for this article:

Method S1: Amino acid analysis

Fig. S1 Proteomics workflow

Fig. S2 Growth curve for L. rostrata

Fig. S3 Heat map of proteins identified in different conditions

**Table S1** List of primer sequences

Table S2 Optimised values for Mass-spectroscopic analysis of amino acids

#### Methods S1

#### **QQQ LC-MS Amino Acid Analysis**

Approximately 5mg of freeze-dried sample was extracted in 400  $\mu$ l of acetonitrile (LC-MS grade, Sigma-Aldrich), vortexing to ensure the pellet was in fine suspension. Samples were sonicated for 15 minutes, vortexed, and centrifuged at 13K rpm, 4°C, for 20 min in a Beckman-Coulter benchtop centrifuge. The supernatant was filtered through a 0.2  $\mu$ M syringe tip filter (Phenomenex, UK) into clean 1.5ml centrifuge tube. This extraction process was repeated using 400ul 20% Methanol (LC-MS grade) spiked with an internal standard containing stable isotope-labelled amino acids (L-amino acid mix (Sigma-Aldrich, Co., St. Louis, MO, USA)) to give a concentration of 0.5  $\mu$ M per sample. The supernatants combined for each sample. An AccQ•Tag Ultra derivatization kit (Waters Corporation, Milford, MA, USA) was used for derivatizing 10 $\mu$ l of extracted sample. The samples were immediately vortexed followed by incubation for 15 min at 55°C prior to analysis.

HPLC-ESI-MS/MS quantitative analysis of the amino acids was performed using an Agilent 6420B triple quadrupole (QQQ) mass spectrometer (Technologies, Palo Alto, USA) hyphenated to a 1200 series Rapid Resolution HPLC system. 5  $\mu$ l of derivatised sample extract was loaded onto an Eclipse Plus C18 (3.5  $\mu$ m, 2.1 x 150 mm) reverse phase analytical column (Agilent Technologies, Palo Alto, USA) with an Eclipse Plus C18 (1.8  $\mu$ m, 2.1x5mm) guard (Agilent Technologies, Palo Alto, USA). For detection using positive ion mode, mobile phase A comprised of 95% LC-MS grade H2O, with 0.1 % formic acid and 1 mM ammonium formate, and mobile phase B was 95% acetonitrile (LC-MS grade) with 0.1 % formic acid. The following gradient was used: 0 min – 0% B; 16 min – 20% B; 20 min – 100% B; 22 min – 100% B; 23 min – 0% B followed by 3 min re-equilibration time. The flow rate was 0.25 ml min<sup>-1</sup> and the column temperature was held at 35 °C for the duration. The QQQ source conditions for electrospray ionisation were as follows: gas temperature 350 °C, drying gas flow rate of 11 l min<sup>-1</sup>, nebuliser pressure 35 psi, and capillary voltage 4 kV. All ions were scanned in positive ion mode and given a dwell time of 50 msec.

The fragmentor voltage and collision energies had previously been optimised for each compound and can be found in Supplementary Table S2. Data analysis was undertaken using Agilent Mass Hunter Quantitative analysis software for QQQ (Version B.07.01). Accurate quantification used the stable isotope labelled internal standards added during sample extraction, and data was normalised to the dry weight of the samples.



### Fig. S1 Proteomics work flow

Rationale of the iTRAQ workflow and analysis, as described in Longworth et al. 2016. Proteome response of *Phaeodactylum tricornutum*, during lipid accumulation induced by nitrogen depletion. *Algal Research* **18**: 213-224



Fig. S2. Growth over time of *L. rostrata* grown in axenic culture with B<sub>12</sub> supplementation (100 ng/l) versus in co-culture with *M. loti.* Data are the mean of 3 replicates ± SEM



**Fig. S3 Heatmap of proteins identified from iTRAQ analysis** : Shown is the observed protein abundance for the 293 proteins that were detected with >2 unique peptides, ordered by direction and significance of change observed. A total of 83 proteins showed reduced abundance in co-cultures versus monocultures with B<sub>12</sub> (*p*-value < 0.05), and 70 showed increased abundance. The clustering shows good consistency between biological replicates. Key: 113, 114, 115 and 116 are for *L. rostrata* cells grown axenically with 100 ng/L B<sub>12</sub> (monoculture); 117, 118, 119 and 121 are for cells of cocultures of *L. rostrata* cells with *M. loti*.

## Table S1 List of primers used for reverse transcriptase-quantitative polymerase chain

**reaction (RT-qPCR).** Sequences were derived from RNAseq data from *Lobomonas rostrata* (unpublished) annotated by sequence similarity to homologues from *Chlamydomonas reinhardtii.* 

| Gene encoding                              | Code  | Primer name  | Sequence             |
|--------------------------------------------|-------|--------------|----------------------|
| Ribose-5-phosphate isomerase               | RPI1  | Lros_RPI1_F  | CTGCTGCCGGATGAGACGTC |
| Ribose-5-phosphate isomerase               | RPI1  | Lros_RPI1_R  | CCCTCAGCCAGCACCACAAA |
| Sedoheptulose-1,7-bisphosphatase           | SEBP1 | Lros_SEBP1_F | TGTGCAAGTACGCCTGCTCC |
| Sedoheptulose-1,7-bisphosphatase           | SEBP1 | Lros_SEBP1_R | GGTGATGCCGGTGAGCTTGT |
| Fructose-1,6-bisphosphate aldolase         | FBA1  | Lros_FBA1_F  | AACCAGAAGCCCAACCCGTG |
| Fructose-1,6-bisphosphate aldolase         | FBA1  | Lros_FBA1_R  | GGGTCGTACTTGCCCTGCTG |
| Ribulose phosphate-3-epimerase             | RPE1  | Lros_RPE1_F  | GTCGTCCACCATCCACCTGC |
| Ribulose phosphate-3-epimerase             | RPE1  | Lros_RPE1_R  | CCGGGGTTGACGCTCATGAT |
| Glyceraldehyde-3-phosphate                 | GAP1a | Lros_GAP1A_F | CGACCTGACGCTCAACCTGG |
| dehydrogenase                              |       |              |                      |
| Glyceraldehyde-3-phosphate                 | GAP1a | Lros_GAP1A_R | CATGATGCCGGCCTTGGAGT |
| dehydrogenase                              |       |              |                      |
| Glyceraldehyde-3-phosphate                 | GAP3  | Lros_GAP3_F  | ATGCCGTTGAGCTTGCCCTT |
| dehydrogenase                              |       |              |                      |
| Glyceraldehyde-3-phosphate                 | GAP3  | Lros_GAP3_R  | ACCCACTCCTACACTGGCGA |
| dehydrogenase                              |       |              |                      |
| Phosphoglycerate kinase                    | PGK1  | Lros_PGK1_F  | AGGIGAAGAICAIGCCGCCG |
| Phosphoglycerate kinase                    | PGK1  | Lros_PGK1_R  | ACCAAGTTCCTCAAGCCCGC |
| Fructose-1,6-bisphosphatase                | FBP1  | Lros_FBP1_F  | CTTGCCACCCCACTTCTCGG |
| Fructose-1,6-bisphosphatase                | FBP1  | Lros_FBP1_R  | TGGTCGGCGAGTTTGTGCTC |
| Autophagy-related protein                  | APG8  | Lros_APG8_F  | CGTCCTCATCTCGGTGGTCC |
| Autophagy-related protein                  | APG8  | Lros_APG8_R  | GAAGAGCGACATCCCCGACA |
| Carbonic anhydrase                         | CAH1  | Lros_CAH1_F  | TGGTGTTGGTGGTGGCGC   |
| Carbonic anhydrase                         | CAH1  | Lros_CAH1_R  | TACCTACGCTGGCTCGCTCA |
| Hydroxymethylpyrimidine phosphate synthase | THICb | Lros_THICb_F | CGTGATGTCGTACTTGGCGC |
| Hydroxymethylpyrimidine phosphate          | THICb | Lros_THICb_R | CAGGGCGTCGACTACTGGAC |
| synthase                                   |       |              |                      |
| Receptor of activated protein kinase C     | RACK1 | Lros_RACK1_F | CAACACCGTCACCGTCTCCC |
| Receptor of activated protein kinase C     | RACK1 | Lros_RACK1_R | GCGGTTGGGCGAGAAGATGA |
| Eukaryotic translation initiation factor   | EIF4A | Lros_EIF4A_F | ACAGCGTGTCCACTTCCAC  |
| 4A                                         |       |              |                      |
| Eukaryotic translation initiation factor   | EIF4A | Lros_EIF4A_R | GCTGCAGGTCGGTGTGTTCT |
| 4A                                         |       |              |                      |
| Ubiquitin                                  | UBQ   | Lros_UBQ_F   | CCTCACGGGCAAGACTATCA |
| Ubiquitin                                  | UBQ   | Lros_UBQ_R   | GATGTTGTAGTCAGCCAGCG |

# Table S2 Optimised values for Mass-spectroscopic analysis of amino acids MRM - Positive Polarity

|                   |              |         |        |        |           | Cell    |
|-------------------|--------------|---------|--------|--------|-----------|---------|
|                   |              |         |        |        |           | Accel-  |
| Compound Name     | Precursor    | Product | Durall | Frag-  | Collision | erator  |
|                   | 10N<br>260.1 | 100     | Dweii  | mentor | Energy    | voitage |
| Alanine           | 260.1        | 171     | 50     | 27     | 21        | 4       |
| Alanine (L)       | 264.1        | 1/1     | 50     | 27     | 21        | 4       |
| Arginine          | 345.1        | 1/1     | 50     | 27     | 17        | 4       |
| Arginine (L)      | 355.1        | 1/1     | 50     | 27     | 1/        | 4       |
| Asparagine        | 303.1        | 1/1     | 50     | 24     | 21        | 4       |
| Asparagine (L)    | 309.1        | 1/1     | 50     | 24     | 21        | 4       |
| Aspartic Acid     | 304.1        | 1/1     | 50     | 27     | 23        | 4       |
| Aspartic Acid (L) | 309.1        | 171     | 50     | 27     | 23        | 4       |
| Cysteine          | 292          | 171     | 50     | 27     | 21        | 4       |
| Cysteine (L)      | 296          | 171     | 50     | 27     | 21        | 4       |
| Cystine (1tag)    | 411          | 171     | 50     | 20     | 18        | 4       |
| Cystine (2tags)   | 581.64       | 171     | 50     | 20     | 18        | 4       |
| Glutamic Acid     | 318.1        | 171     | 50     | 27     | 21        | 4       |
| Glutamic Acid (L) | 324.1        | 171     | 50     | 27     | 21        | 4       |
| Glutamine         | 317.1        | 171     | 50     | 22     | 24        | 4       |
| Glutamine (L)     | 324.1        | 171     | 50     | 22     | 24        | 4       |
| Glycine           | 246.1        | 171     | 50     | 27     | 21        | 4       |
| Glycine (L)       | 249.1        | 171     | 50     | 27     | 21        | 4       |
| GSH               | 478.1        | 171     | 50     | 30     | 20        | 4       |
| GSSG              | 783.2        | 171     | 50     | 30     | 20        | 4       |
| GSSG (2)          | 953.2        | 171     | 50     | 30     | 20        | 4       |
| Histidine         | 326.1        | 171     | 50     | 18     | 12        | 4       |
| Histidine (L)     | 335.1        | 171     | 50     | 18     | 12        | 4       |
| Homoserine        | 290.1        | 171     | 50     | 30     | 20        | 4       |
| Isoleucine        | 302.1        | 171     | 50     | 28     | 21        | 4       |
| Isoleucine (L)    | 309.1        | 171     | 50     | 28     | 21        | 4       |
| Leucine           | 302.1        | 171     | 50     | 27     | 20        | 4       |
| Leucine (L)       | 309.1        | 171     | 50     | 27     | 20        | 4       |
| Lysine            | 487.21       | 171     | 50     | 18     | 18        | 4       |
| Lysine (L)        | 495.58       | 171     | 50     | 18     | 18        | 4       |
| Methionine        | 320.1        | 171     | 50     | 27     | 21        | 4       |
| Methionine (L)    | 326.1        | 171     | 50     | 27     | 21        | 4       |
| Phenylalanine     | 336.1        | 171     | 50     | 29     | 21        | 4       |
| Phenylalanine (L) | 346.1        | 171     | 50     | 29     | 21        | 4       |
| Proline           | 286.1        | 171     | 50     | 23     | 21        | 4       |
| Proline (L)       | 292.1        | 171     | 50     | 23     | 21        | 4       |
| Pyroglutamate     | 300          | 171     | 50     | 30     | 20        | 4       |
| Serine            | 276.1        | 171     | 50     | 25     | 19        | 4       |
| Serine (L)        | 280.1        | 171     | 50     | 25     | 19        | 4       |

| Taurine        | 296   | 171 | 50 | 18 | 15 | 4 |
|----------------|-------|-----|----|----|----|---|
| Threonine      | 290.1 | 171 | 50 | 25 | 20 | 4 |
| Threonine (L)  | 295.1 | 171 | 50 | 25 | 20 | 4 |
| Tryptamine     | 331.1 | 171 | 50 | 30 | 20 | 4 |
| Tryptophan     | 375.1 | 171 | 50 | 30 | 25 | 4 |
| Tryptophan (L) | 388.1 | 171 | 50 | 30 | 25 | 4 |
| Tyrosine       | 352.1 | 171 | 50 | 30 | 20 | 4 |
| Tyrosine (L)   | 362.1 | 171 | 50 | 30 | 20 | 4 |
| Valine         | 288.2 | 171 | 50 | 28 | 21 | 4 |
| Valine (L)     | 294.1 | 171 | 50 | 28 | 21 | 4 |