SUPPORTING INFORMATION

Modulation of Charge Recombination in CsPbBr₃ Perovskite Films with Electrochemical Bias

Rebecca A. Scheidt,^{1,2,#} Gergely F. Samu, ^{2,3,#} Csaba Janáky^{3,4,*} and Prashant V. Kamat^{1,2,*}

¹Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana, 46556, United States

²Department of Chemistry and Biochemistry, University of Notre Dame

³Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged, H-6720, Hungary

⁴ELI-ALPS Research Institute, Szeged, Dugonics sq. 13, 6720, Hungary

[#] Contributed equally to this work

*Address correspondence to these authors: pkamat@nd.edu, janaky@chem.u-szeged.hu twitter: @kamatlabND

Experimental

Materials

The blocking TiO_2 layer was obtained by using titanium diisopropoxide bis(acetylacetonate) (Sigma-Aldrich, 75 wt. % in isopropanol) and 1-butanol (Sigma-Aldrich, 99.8%). A homemade TiO_2 paste was the basis of the mesoporous TiO_2 layer, which was treated with titanium-tetrachloride ($TiCl_4$ - Alfa Aesar, 99.6%) in a subsequent step. Details about the preparation procedure of the TiO_2 paste can be found in previously published literature¹.

CsPbBr₃ nanocrystals (NCs) were synthetized using lead (II) bromide (PbBr₂ - Alfa Aesar, 99.999%), cesium carbonate (Cs₂CO₃, Alfa Aesar, 99.9%), oleic acid (OAc, Sigma Aldrich, 90% technical grade), oleylamine (OAm - Sigma Aldrich, 70% technical grade), 1-octadecene (ODE, Sigma-Aldrich, 95%,), acetone (Fischer Scientific, HPLC grade), *n*-hexane (Sigma-Aldrich, 95% anhydrous), *n*-heptane (Sigma-Aldrich, 99% spectrophotometric grade), and ethanol (KOPTEC, 200 proof, anhydrous).

All electrochemical experiments were performed in dichloromethane (DCM – Sigma Aldrich, anhydrous, \geq 99.8%, contains 40-150 ppm amylene as stabilizer) with 0.1 M tetrabutyl ammonium-hexafluorophosphate (Bu₄NPF₆ – Sigma Aldrich, for electrochemical analysis, \geq 99.0%) as the conducting electrolyte. Bu₄NPF₆ was dried prior to use in a vacuum oven at T=180 °C for t=6 hours.

Electrode preparation methods

The FTO substrates were washed with soap, rinsed with DI water, sonicated in ethanol for 20 minutes and finally plasma-cleaned prior to use. A TiO₂ blocking layer was spin-coated onto these substrates from a 0.15 M titanium diisopropoxide bis(acetylacetonate) solution in 1-butanol. These layers were immediately transferred to a hotplate and heat treated for 5 minutes at T=125°C, under glovebox conditions (N₂ atmosphere, H₂O< 0.1 ppm, O₂< 0.1 ppm). A mesoporous TiO₂ layer was then spin-coated from an ethanol based suspension (c=0.12 g cm⁻³), and subsequently calcined for 1 hour at T=550 °C in air. This step was followed by a TiCl₄ treatment, carried out in a 20 mM TiCl₄ solution at T=90 °C for 10 minutes. A final calcination step was then performed at T=500 °C in air for 30 minutes.

The FTO/TiO₂/CsPbBr₃ electrodes were prepared with a method using subsequent cycles of NC deposition and annealing. This procedure is thoroughly detailed elsewhere². As a first step a Cs-oleate precursor (0.306 g Cs₂CO₃, 2.8 cm³ of OAc, and 3 cm³ ODE) was injected into a PbBr₂ precursor solution (0.808 g PbBr₂, 6 cm³ OAc, 6 cm³ ODE, and 6 cm³ OAm) at a 170 °C. Highly luminescent, yellow colored CsPbBr₃ NCs were formed immediately after injection. The NCs were cooled to room temperature, purified via centrifugation, carefully washed with acetone, and re-suspended in 3 cm³ of a 95/5 V/V% n-hexane/nheptane mixture. Deposition of the NCs on the substrate was followed by annealing at 250 °C for 3 minutes, and this cycle was repeated until bulk films were formed with the desired optical density of A_{518nm}~0.8. The CsPbBr₃ coated electrodes were kept under glovebox conditions (N₂ atmosphere, H₂O< 0.1 ppm, O₂< 0.1 ppm) after preparation and used immediately.

Characterization methods

Steady state UV-vis absorption spectra of the CsPbBr₃ coated electrodes were recorded with a Cary 50 Bio spectrophotometer (Varian). A Gamry potentiostat was used to perform the electrochemical measurements. These were carried out in a standard three electrode setup, where the prepared FTO/TiO₂/CsPbBr₃ electrodes functioned as the working electrode, a Pt mesh as the counterelectrode, and a Ag/AgCl wire as a pseudoreference electrode. The reference electrode was calibrated towards the ferrocene/ferrocenium (Fc/Fc⁺) redox couple (measured $E_{Fc/Fc+} = 0.45\pm0.04$ V). All cells were assembled in a glovebox (N₂ atmosphere, H₂O< 0.1 ppm, O₂< 0.1 ppm) and sealed hermetically to ensure inert conditions.

A Clark MXR-2010 laser system (775 nm fundamental, 1 mJ/pulse, FWHM=150 fs, 1 kHz repetition rate) was used to perform the ultrafast transient spectroelectrochemistry measurements. The data was collected using a Helios software from Ultrafast Systems. The fundamental was separated in an intensity ratio of 95/5, where the 95% was doubled in frequency to generate the 387 nm excitation pump. The remaining 5% was used to generate a white light continuum via a CaF₂ crystal. This light was used as the probe for all measurements. The intensity of the excitation pump was modulated so that the maximum change in absorbance remained constant in all measurements ($\Delta A_{520nm} \sim -0.25$), which corresponded to a pump excitation of about 12 µJ cm⁻². This was done to ensure that similar amounts of charge carriers were generated in each measurement. A three-armed electrochemical cell with a fused silica cuvette body was placed at the spatial overlap of the pump and the probe. The electrode was kept at a constant potential while the transient absorption spectra were recorded. The sampling spot was adjusted between every measurement to ensure the sampling of a fresh electrode area.

Supplementary Figure S1: (A) Time vs. applied potential curve recorded during electrochemical stability measurements. The potential was ramped from -0.6 V to +0.6 V and then back to -0.6 V. (B) Time vs. the normalized absorbance at 518 nm (first excitonic peak) of the FTO/TiO₂/CsPbBr₃ film used for the electrochemical stability test. An overall decrease in absorbance of about 10% occurred through the 70 minute experiment (irrespective from the applied potential). This stability allowed for further spectroelectrochemical experiments to be investigated. (C) Absorbance spectra of the FTO/TiO₂/CsPbBr₃ film before and after the cycling of applied bias. Note that there is no shift or broadening in the peak at 518 nm.

Supplementary Figure S2: Difference absorption spectra of an $FTO/TiO_2/CsPbBr_3$ film measured (A) in vacuum (without electrolyte) and (B) in dichloromethane containing 0.1 M Bu₄NPF₆ electrolyte (with electrolyte) under open circuit potential (OCP) conditions (no external bias was used). (C) Respective bleaching recovery profiles recorded in the two different media.

Transient absorption spectra recorded at different applied potentials

Supplementary Figure S3: Difference absorption spectra of an $FTO/TiO_2/CsPbBr_3$ film at different applied potentials on a forward and reverse scan. Spectra are shown for (A) -0.4 V forward; (B) 0.0 V forward; (C) 0.4 V forward; (D) -0.4 V reverse; (E) 0.0 V reverse; (F) 0.4 V reverse. The same film was used for all measurements seen here. However, the film was moved to different positions so that degradation due to the pump laser pulse would not occur.

References

- (1) Neale, N. R.; Frank, A. J. J. Mater. Chem. 2007, 17, 3216.
- (2) Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. J. Am. Chem. Soc. 2016, 138, 8603–8611.