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1. Synthesis
The syntheses of 4, 4’-0-BBV was synthesized according to previously published procedures.
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Preparation of 4,4’-0-BBV.! To a solution of 2-bromomethylphenyl boronic acid (0.77 g, 3.6 mmol) in
dry MeCN (10 mL), MeOH (0.65 mL) and 4,4’-dipyridyl (0.23 g, 1.5 mmol) was added, and the reaction
was stirred at 55 °C for 48 hours. The reaction mixture was cooled to room temperature and acetone (10
mL) was added to induce further precipitation of a pale yellow solid. The precipitate was centrifuged,
washed with acetone (2 x 10mL) and dried under a stream of argon (0.85 g, 96%yield). 'H NMR (500
MHz, D,0) 6 9.06 (d, J=10 Hz, 4H), 8.47 (d, J=5 Hz, 4H), 7.79 (d, J=10Hz, 2H), 7.56 (m, 6H), 6.11 (s,
4H); 3C NMR (126 MHz, D,0) 6 146.72, 135.51, 132.80, 130.44, 128.35, 127.85, 66.13; "B NMR (160
MHz, D,0) $ +29.83.
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2. Reaction optimization for the NaBH, reduction of aldoses

tn,,, O wOH
HO“‘EEJ\OH
OH 0.05 M sodium phosphate-HEPES
o-L-Fucose + NaBH, pH74 -
1:3  0.1mmol 0.3mmol 25°C, 1hr
1:1 0.1mmol 0.1mmol

Scheme S-1. Reaction conditions used for the reduction of aldoses used to obtain optimal conditions. To
Circumvent false positive signals each reaction was performed in 0.05 M sodium phosphate-HEPES
buffer to maintain pH of the reaction.
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Figure S-1. Reaction optimization of NaBH, reduction of fucose. Normalized Intensity for the 4,4’-o-
BBV (400 uM) and HPTS (4 puM) after each reaction condition. Control is the repeated condition in the
absence of fucose.
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Binding constant calculations:

Origin lab software was used to perform the calculation following the Benesi-Hildebrand plot where it is
assumed that a 1:1 binding stoichiometry is present.!? The following equation was used

Fmax
1+ * Kb+ A
F Fo

_1+S*K*A

: . D y=
Fo 1+KbxA and inputted as the following function in origin lab software: 1+K=+A
where S=maximum possible signal, K=binding constant, A=analyte concentration. K and S are
considered the parameter variables and A is the independent variable while y is dependent.

Table S-1. Binding constants for each aldose after NaBH4 reduction compared to untreated aldose.

4,4’-0-BBV Reduced Aldose (Binding constant M')  Aldose (Binding constant M)

Fucose 21+2.6 52+2.0

Rhamnose 67+£6.2 95+1.5

Xylose 52+£8.5 2.08+ 0.4
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Figure S2. Non-linear fitted binding isotherms to obtain binding constants for reduced fucose (a)

rhamnose (b) and xylose (c).

Table S-2. Limit of detection and quantification for reduced aldose versus unreacted aldose with 4,4’-0-
BBV.

4,4’-0-BBV  Reduced Aldose (LOD, LOQ pM) Aldose (LOD, LOQ mM)

Fucose 175,560 1.5, ND
L-rhamnose 250,550 1, ND
Xylose 260, 475 2,6

ND: not determined
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3. Fluorescence Spectra of Chemically Modified Saccharides
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Figure S-3. Recognition of xylose (A) compared to reduced xylose (B) of 4,4’-0-BBV (400uM) with
HPTS in pH 7.4 phosphate buffer, A.,=405 nm, emission scan 450-600 nm. Change in fluorescence
spectrum of HPTS (4uM) in the presence of 4,4’-0-BBV (400uM) upon addition of various
concentrations of aldose or reduced aldose.
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Figure S-4. Recognition of modified sucralose of 4,4’-0-BBV (400uM) with HPTS in pH 7.4 phosphate
buffer, A,=405 nm, emission scan 450-600 nm. Change in fluorescence spectrum of HPTS (4uM) in the
presence of 4,4’-0-BBV (400uM) upon addition of various concentrations of modified sucralose.
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Figure S-5. 'H NMR of 4,4’-0-BBV
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Figure S-6. 3C NMR of 4,4’-0-BBV
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