Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Boronic Acid Recognition of Non-interacting Carbohydrates for Biomedical Applications:

Increasing Fluorescence Signals of Minimally Interacting Aldoses and Sucralose

Angel Resendez[§], Md Abdul Halim[‡], Jasmeet Singh[§], Dominic-Luc Webb[‡], Bakthan Singaram^{§*}

§ Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064,

United States

⁺ Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, 751 85, Uppsala, Sweden

1.	Synthesis of Boronic Acid Receptors	p. S-2
2.	Reaction Optimization for the NaBH ₄ Reduction of Aldoses (Figure S-1 & S-2)	p.S-3–S-4
3.	Fluorescence Spectra of Chemically Modified Saccharides (Figure S-3- & S-4)	p. S-5
4.	¹ H and ¹³ C NMR spectra (Fig. S-5–S-6)	p.S-6–S-7
5.	References	p. S-8

1. Synthesis

The syntheses of 4, 4'-o-BBV was synthesized according to previously published procedures.

Preparation of 4,4'-*o***-BBV.¹** To a solution of 2-bromomethylphenyl boronic acid (0.77 g, 3.6 mmol) in dry MeCN (10 mL), MeOH (0.65 mL) and 4,4'-dipyridyl (0.23 g, 1.5 mmol) was added, and the reaction was stirred at 55 °C for 48 hours. The reaction mixture was cooled to room temperature and acetone (10 mL) was added to induce further precipitation of a pale yellow solid. The precipitate was centrifuged, washed with acetone (2 x 10mL) and dried under a stream of argon (0.85 g, 96%yield). ¹H NMR (500 MHz, D₂O) δ 9.06 (d, J=10 Hz, 4H), 8.47 (d, J=5 Hz, 4H), 7.79 (d, J=10Hz, 2H), 7.56 (m, 6H), 6.11 (s, 4H); ¹³C NMR (126 MHz, D₂O) δ 146.72, 135.51, 132.80, 130.44, 128.35, 127.85, 66.13; ¹¹B NMR (160 MHz, D₂O) δ +29.83.

2. Reaction optimization for the NaBH₄ reduction of aldoses

Scheme S-1. Reaction conditions used for the reduction of aldoses used to obtain optimal conditions. To Circumvent false positive signals each reaction was performed in 0.05 M sodium phosphate-HEPES buffer to maintain pH of the reaction.

Figure S-1. Reaction optimization of NaBH₄ reduction of fucose. Normalized Intensity for the 4,4'-*o*-BBV (400 μ M) and HPTS (4 μ M) after each reaction condition. Control is the repeated condition in the absence of fucose.

Binding constant calculations:

Origin lab software was used to perform the calculation following the Benesi-Hildebrand plot where it is assumed that a 1:1 binding stoichiometry is present.^{1,2} The following equation was used $\binom{1}{2} Fmax$

 $\frac{F}{Fo} = \frac{\left(1 + \frac{Fmax}{Fo}\right) * Kb * A}{1 + Kb * A}$ and inputted as the following function in origin lab software: $y = \frac{1 + S * K * A}{1 + K * A}$ where S=maximum possible signal, K=binding constant, A=analyte concentration. K and S are

where S=maximum possible signal, K=binding constant, A=analyte concentration. K and S are considered the parameter variables and A is the independent variable while y is dependent.

Table S-1. Binding constants for each aldose after NaBH4 reduction compared to untreated aldose.

4,4'- <i>o</i> -BBV	Reduced Aldose (Binding constant M ⁻¹)	Aldose (Binding constant M ⁻¹)
Fucose	21 ± 2.6	5.2 ± 2.0
Rhamnose	67 ± 6.2	9.5±1.5
Xylose	52 ± 8.5	2.08 ± 0.4

Figure S2. Non-linear fitted binding isotherms to obtain binding constants for reduced fucose (a) rhamnose (b) and xylose (c).

Table S-2. Limit of detection and quantification for reduced aldose versus unreacted aldose with 4,4'-*o*-BBV.

4,4'- <i>o</i> -BBV	Reduced Aldose (LOD, LOQ µM)	Aldose (LOD, LOQ mM)
Fucose	175,560	1.5, ND
L-rhamnose	250,550	1, ND
Xylose	260, 475	2, 6

ND: not determined

3. Fluorescence Spectra of Chemically Modified Saccharides

Figure S-3. Recognition of xylose (A) compared to reduced xylose (B) of 4,4'-o-BBV (400 μ M) with HPTS in pH 7.4 phosphate buffer, λ_{ex} =405 nm, emission scan 450-600 nm. Change in fluorescence spectrum of HPTS (4 μ M) in the presence of 4,4'-o-BBV (400 μ M) upon addition of various concentrations of aldose or reduced aldose.

Figure S-4. Recognition of modified sucralose of 4,4'-o-BBV (400 μ M) with HPTS in pH 7.4 phosphate buffer, λ_{ex} =405 nm, emission scan 450-600 nm. Change in fluorescence spectrum of HPTS (4 μ M) in the presence of 4,4'-o-BBV (400 μ M) upon addition of various concentrations of modified sucralose.

Figure S-5. ¹H NMR of 4,4'-*o*-BBV

Figure S-6. ¹³C NMR of 4,4'-*o*-BBV

4. References

- 1. Connors, K. A., *Binding Constants-The Measurement of Molecular Complex Stability*, John Wiley: New York, 1987.
- 2. S. Feryforgues, M. T. Lebris, J. P. Guette and B. Valeur, J. Phys. Chem., 1988, 92, 6233-6237.