	PDB	Lineral	Nɛ1/ Hɛ1 Chemical Shifts (ppm)						
	ID	Ligano	W29	W32	W129	W143	W246	W268	
sts	3EML	ZM241385	0.139 0.188	-0.005 -0.016	0.138 0.128	0.055 0.070	-0.713 -0.480	-0.022 -0.021	
agoni	3REY	XAC	0.275 0.327	0.019 0.010	0.118 0.112	0.130 0.156	-1.049 -0.819	-0.030 -0.024	
Anta	3RFM	Caffeine	0.233 0.233	0.001 0.008	0.105 0.107	0.093 0.130	-1.020 -0.780	-0.017 -0.017	
	2YDV	NECA	0.340 0.337	0.041 0.030	0.062 0.061	0.149 0.139	-0.506 -0.248	-0.040 -0.041	
sts	3QAK	UK432097	-0.005 -0.003	-0.155 0.026	0.100 0.084	0.110 0.114	-0.478 -0.222	-0.005 -0.003	
goni	4UHR	CGS21680	-0.014 -0.045	-0.070 -0.044	0.060 0.047	0.060 0.110	-0.352 -0.186	-0.051 -0.048	
∢									
	5G53	NECA + mini Gs	-0.053 -0.115	0.034 -0.124	0.103 0.097	0.121 0.105	-0.178 -0.024	-0.011 -0.009	

Table S1 (Related to Figures 2 to 4). Ring Current Shifts for the Tryptophan Indole

¹⁵N–¹H Signals Calculated from the Crystal Structures.

Ring current shifts were calculated with the program MOLMOL (Koradi et al., 1996) for the tryptophan N ϵ 1 and H ϵ 1 atoms in six crystal structures of A_{2A}AR complexes with ligands of different efficacies (Figures 3E and 4, A–C).

	Chemic	al Shifts of N	Numbered Si	gnals for A_2	AR Variants	(ppm) ¹	
Peak Number	A _{2A} AR	W29Y	W32Y	W129Y	W143Y	W246F	W268Y
1	6.75	6.75	6.74	6.70	6.91	6.74	6.75
L	100.97	100.99	100.85	100.87	101.18	100.97	100.94
2	7.59	7.59	7.64	7.64	7.59	7.60	7.60
	104.63	104.68	104.70	104.72	104.63	104.68	104.68
2	7.68	7.68	7.69	7.69	7.69	7.68	7.69
5	105.35	105.31	105.35	105.50	105.33	105.33	105.33
Λ	7.13	7.13	7.14		7.09	7.14	7.14
4	106.15	106.07	106.19		106.07	106.17	106.12
E	8.67	8.67	8.67	8.65	8.63	8.66	8.67
5	108.95	109.04	108.94	108.95	109.64	108.95	108.97
6	9.02	9.03	9.02	8.99	9.03	9.03	9.03
0	110.39	110.42	110.37	110.76	110.42	110.39	110.44
7	7.80	7.80	7.81	7.80	7.84	7.79	7.80
/	110.80	110.78	110.80	110.81	110.89	110.75	110.77
0	6.86	6.87	6.87	6.87	6.91	6.87	6.88
0	110.46	110.42	110.39	110.54	110.34	110.44	110.42
٥	7.91	7.94	7.91		7.93	7.79	7.92
5	111.64	112.07	111.60		111.62	110.75	111.60
10	6.33	6.32	6.32	6.33	6.31	6.32	6.32
10	111.77	111.69	111.76	111.94	111.69	111.72	111.72
11	8.79	8.80	8.80	8.78	8.79	8.85	8.80
	112.89	112.87	112.89	112.87	112.89	113.21	112.89
12	8.25	8.24	8.25		8.24	8.24	8.25
12	114.83	114.90	114.90		114.87	114.90	114.87
12	8.09	8.09	8.10	8.01	8.08	8.09	8.11
13	114.65	114.65	114.66	114.58	114.68	114.71	114.65
1.4	8.98	9.02	8.98		9.00	7.92	9.01
14	116.90	117.04	116.80		116.73	111.66	116.85
45	8.48	8.48	8.48	8.49	8.48	8.49	8.48
15	116.71	116.75	116.73	116.78	116.77	116.77	116.78
10	8.31	8.32	8.32	8.30		8.31	8.32
10	116.65	116.68	116.65	116.54		116.66	116.65
17	8.89	8.89	8.89		8.94	9.00	8.89
1/	117.81	117.81	117.81		117.69	116.88	117.84
10	8.62	8.62	8.62	8.61		8.63	8.62
18	117.50	117.50	117.50	117.58		117.59	117.57
19	9.81	9.81	9.82		9.80	9.78	9.82

¹ Chemical shifts for ¹H (top value in each entry) and ¹⁵N (bottom value in each entry).

	118.05	118.03	118.06		118.10	118.06	118.06
20	8.81	8.81	8.82	8.83	8.77	8.82	8.82
20	118.94	118.92	118.92	119.00	119.16	118.95	118.95
21	8.78	8.75	8.80	8.77	8.78	8.78	8.79
	121.50	121.41	121.67	121.90	121.53	121.47	121.48
22	8.78	8.79	8.79	8.78	8.78	8.79	8.80
22	122.90	122.88	122.90	123.02	122.99	122.94	122.92
22	8.53	8.53	8.53		8.51	8.54	8.54
25	126.70	126.70	126.76		126.90	126.83	126.78
24	7.08	7.07	7.12	7.15	7.08	7.10	7.09
24	118.85	118.85	118.73	118.51	118.88	118.83	118.85
25	6.95	6.96	6.94	6.94	6.96	6.95	6.96
23	120.17	120.23	120.20	120.04	120.22	120.18	120.22
26	7.30	7.30	7.30	7.30	7.30	7.30	7.30
20	121.35	121.40	121.33	121.05	121.40	121.41	121.40
27	6.69	6.70	6.70	6.70		6.69	6.71
27	122.30	122.32	122.29	122.37		122.37	122.34
20	7.02	7.03	7.00	7.01	7.10	7.01	7.02
20	124.70	124.68	124.66	124.82	123.82	124.66	124.66
20	6.79	6.80	6.80	6.78	6.83	6.77	6.80
29	126.71	126.70	126.71	126.72	127.02	126.44	126.68
20	9.45	9.46	9.46	9.44	9.52	9.47	9.48
30	130.83	130.83	130.85	130.85	130.90	130.85	130.87

Table S2 (Related to Figures 1 and S4 to S6). Chemical Shifts of the Signals 1 to30, which were used to Monitor the Protein Folds of $A_{2A}AR$ Variants.

¹H and ¹⁵N chemical shifts are listed for $A_{2A}AR$ and the six variants thereof which were used for the assignment of the tryptophan indole ¹⁵N–¹H signals.

Data collection	
Number of crystals used for data processing	18
Space group	$C2 \ 2 \ 2_1$
Cell dimensions	
<i>a, b, c</i> (Å)	39.84, 180.97, 140.57
Number of reflections processed	60,178
Number of unique reflections	16,063
Resolution (Å)	30.0 - 2.50
R _{sym}	19.8 (64.8)
Mean <i>I/σ(I)</i>	6.3 (1.2)
Completeness (%)	90.1 (78.7)
Redundancy	3.7 (2.3)
$CC_{1/2}$ in highest shell	0.581
Refinement	
Resolution (Å)	30.0 - 2.50
Number of reflections (test set)	797
R _{work} / R _{free}	0.219/0.259
Number of atoms	
Protein	2.956
Ligand	25
Lipids and waters	279
(A_{2})	
Overall B values (A)	
	50.2
Dfill Ligand	86.3
Ligaliu Lipids and water	40.3
Lipius and water	73.1
RMSD	
Rond lengths (Å)	
Bond angles (°)	0.010
Donu angres ()	1.06
Ramachandran plot statistics (%)*	
Favored regions	
Allowed regions	98.7
Disallowed regions	1.3
Disulto wear regions	0.0

Table S3 (Related to Figure 1).X-ray Diffraction Data Collection and RefinementStatistics.

Highest resolution shell is shown in parentheses. Ramachandran plot statistics were calculated with the program Molprobity (Chen et al., 2010).

Construct	Primer Sequence
A _{2A} AR[W29Y] Forward	ATCCTGGGCAATGTGCTGGTGTGCTACGCCGTGTGGCTCAACAGCAACCTG
A _{2A} AR[W29Y] Reverse	CAGGTTGCTGTTGAGCCACACGGCGTAGCACACCAGCACATTGCCCAGGAT
A _{2A} AR[W32Y] Forward	AATGTGCTGGTGTGCTGGGCCGTGTACCTCAACAGCAACCTGCAGAACGTC
A _{2A} AR[W32Y] Reverse	GACGTTCTGCAGGTTGCTGTTGAGGTACACGGCCCAGCACACCAGCACATT
A _{2A} AR[W129Y] Forward	GCTAAGGGCATCATTGCCATCTGCTACGTGCTGTCGTTTGCCATCGGCCTG
A _{2A} AR[W129Y] Reverse	CAGGCCGATGGCAAACGACAGCACGTAGCAGATGGCAATGATGCCCTTAGC
A _{2A} AR[W143Y] Forward	ATCGGCCTGACTCCCATGCTAGGTTACAACAACTGCGGTCAGCCAAAGGAG
A _{2A} AR[W143Y] Reverse	CTCCTTTGGCTGACCGCAGTTGTTGTAACCTAGCATGGGAGTCAGGCCGAT
A _{2A} AR[W246F] Forward	ATTGTGGGGCTCTTTGCCCTCTGCTTCCTGCCCCTACACATCATCAACTGC
A _{2A} AR[W246F] Reverse	GCAGTTGATGATGTGTAGGGGCAGGAAGCAGAGGGCAAAGAGCCCCACAAT
A _{2A} AR[W268Y] Forward	CCCGACTGCAGCCACGCCCCTCTCTACCTCATGTACCTGGCCATCGTCCTC
A _{2A} AR[W268Y] Reverse	GAGGACGATGGCCAGGTACATGAGGTAGAGAGGGGGCGTGGCTGCAGTCGGG
A _{2A} AR[D52N] Forward	TTTGTGGTGTCACTGGCGGCGGCCAACATCGCAGTGGGTGTGCTCGCCATC
A _{2A} AR[D52N] Reverse	GATGGCGAGCACACCCACTGCGATGTTGGCCGCCGCCAGTGACACCACAAA
A _{2A} AR[G5A] Forward	GATGACGATAAGATGCCCATCATGGCTTCCTCGGTGTACATCACGGTGGAG
A _{2A} AR[G5A] Reverse	CTCCACCGTGATGTACACCGAGGAAGCCATGATGGGCATCTTATCGTCATC
A _{2A} AR[G69A] Forward	CCCTTTGCCATCACCATCAGCACCGCTTTCTGCGCTGCCTGC
A _{2A} AR[G69A] Reverse	GCAGCCGTGGCAGGCAGCGCAGAAAGCGGTGCTGATGGTGATGGCAAAGGG
A _{2A} AR[G114A] Forward	ATCCGCATCCCGCTCCGGTACAATGCTTTGGTGACCGGCACGAGGGCTAAG
A _{2A} AR[G114A] Reverse	CTTAGCCCTCGTGCCGGTCACCAAAGCATTGTACCGGAGCGGGATGCGGAT
A _{2A} AR[G118A] Forward	CTCCGGTACAATGGCTTGGTGACCGCTACGAGGGCTAAGGGCATCATTGCC
A _{2A} AR[G118A] Reverse	GGCAATGATGCCCTTAGCCCTCGTAGCGGTCACCAAGCCATTGTACCGGAG
A _{2A} AR[G158A] Forward	AAGGAGGGCAAGCAACACTCCCAGGCTTGCGGGGAGGGCCAAGTGGCCTGT
A _{2A} AR[G158A] Reverse	ACAGGCCACTTGGCCCTCCCCGCAAGCCTGGGAGTGTTGCTTGC
A _{2A} AR[G160A] Forward	GGCAAGCAACACTCCCAGGGCTGCGCTGAGGGCCAAGTGGCCTGTCTCTTT
A _{2A} AR[G160A] Reverse	AAAGAGACAGGCCACTTGGCCCTCAGCGCAGCCCTGGGAGTGTTGCTTGC
A _{2A} AR[G218A] Forward	CAGATGGAGAGCCAGCCTCTGCCGGCTGAGCGGGCACGGTCCACACTGCAG
A _{2A} AR[G218A] Reverse	CTGCAGTGTGGACCGTGCCCGCTCAGCCGGCAGAGGCTGGCT

Table S4 (Related to STAR Methods section). Primers used in this study.

Plasmid: human A _{2A} AR in pPIC9K vector
Plasmid: human A _{2A} AR[W29Y]
Plasmid: human A _{2A} AR[W32Y]
Plasmid: human A _{2A} AR[W129F]
Plasmid: human A _{2A} AR[W143Y]
Plasmid: human A _{2A} AR[W246F]
Plasmid: human A _{2A} AR[W268Y]
Plasmid: human A _{2A} AR[G5A]
Plasmid: human A _{2A} AR[G69A]
Plasmid: human A _{2A} AR[G114A]
Plasmid: human A _{2A} AR[G118A]
Plasmid: human A _{2A} AR[G158A]
Plasmid: human A _{2A} AR[G160A]
Plasmid: human A _{2A} AR[G218A]
Plasmid: human A _{2A} AR[D52N]
Plasmid: human A _{2A} AR[D52N, W246F]
Plasmid: human A _{2A} AR with BRIL inserted into ICL3

 Table S5 (Related to STAR Methods section). Plasmids used in this study.