## Evidence of subtle genetic structure in the sympatric species *Mullus barbatus* and *Mullus surmuletus* (Linnaeus, 1758) in the Mediterranean Sea

Sanja Matić-Skoko<sup>1</sup>, Tanja Šegvić-Bubić<sup>1\*</sup>, Ivana Mandić<sup>1</sup>, David Izquierdo-Gomez<sup>2</sup>, Enrico Arneri<sup>3</sup>, Pierluigi Carbonara<sup>4</sup>, Fabio Grati<sup>5</sup>, Zdravko Ikica<sup>6</sup>, Jerina Kolitari<sup>7</sup>, Nicoletta Milone<sup>3</sup>, Paolo Sartor<sup>8</sup>, Giuseppe Scarcella<sup>5</sup>, Adnan Tokaç<sup>9</sup> and Evangelos Tzanatos<sup>10</sup>

<sup>1</sup> Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000, Split, Croatia

<sup>2</sup> Production Biology Department, Nofima AS, P.O. Box 6122, 9291 Tromsø, Norway

<sup>3</sup> FAO AdriaMed Project, Viale delle Terme di Caracalla, 00153 Roma, Italy

<sup>4</sup> COISPA Tecnologia & Ricerca - Stazione Sperimentale per lo Studio delle Risorse del Mare Via dei Trulli 18/20 70126 Bari, Italy

<sup>5</sup> ISMAR-CNR, Institute of Marine Sciences of the Italian National Research Council, Largo Fiera della Pesca 2, 60125, Ancona, Italy

<sup>6</sup> Institute of Marine Biology, University of Montenegro, P. Fah 69, 85330, Kotor, Montenegro

<sup>7</sup> Aquaculture and Fishery Laboratory, Agricultural University of Tirana

<sup>8</sup> CIBM Centro Interuniversitario Biologia Marina ed Ecologia Applicata "G. Bacci", Viale Nazario Sauro 4, 57128 Livorno, Italy

<sup>9</sup> Ege University, Faculty of Fisheries, 35100 Bornova, Izmir, Turkey

<sup>10</sup> Department of Biology, University of Patras, 26504, Patras, Greece

\*Corresponding author: tel: +385 21 408 000, fax: +385 21 358 650; e-mail: tsegvic@izor.hr

**Supplement Table S1.** Origin of the studied samples of *Mullus barbatus and Mullus surmuletus*, and corresponding number of specimens amplified with the microsatellites markers and included in the analyses.

| Species                       | Sea           | Region, Country (GSA)                         | Code       | N          |         |          |
|-------------------------------|---------------|-----------------------------------------------|------------|------------|---------|----------|
| M. barbatus<br>M. surmuletus  | Mediterranean | North Adriatic, Croatia<br>(GSA17)            | 44.943815° | 13.605487° | CRO_NAS | 48<br>50 |
| M. barbatus<br>M. surmuletus  | Mediterranean | Middle Adriatic, Croatia<br>(GSA17)           | 43.568418° | 15.769985° | CRO_MAS | 66<br>54 |
| M. barbatus<br>M. surmuletus  | Mediterranean | South Adriatic, Croatia<br>(GSA17)            | 42.615188° | 17.779310° | CRO_SAS | 50<br>49 |
| M. barbatus                   | Mediterranean | North Adriatic, Italy<br>(GSA17)              | 45.009044° | 13.004869° | ITA_NAS | 49       |
| M. barbatus,<br>M. surmuletus | Mediterranean | Middle Adriatic, Italy<br>(GSA17)             | 43.750132° | 13.757831° | ITA_MAS | 50<br>47 |
| M. barbatus,<br>M. surmuletus | Mediterranean | South Adriatic, Italy<br>(GSA17)              | 41.504365° | 16.810572° | ITA_SAS | 47<br>42 |
| M. barbatus,<br>M. surmuletus | Mediterranean | Tyrrhenian Sea, Italy<br>(GSA9)               | 41.503912° | 11.065175° | ITA_TS  | 49<br>45 |
| M. barbatus,<br>M. surmuletus | Mediterranean | South Adriatic,<br>Montenegro                 | 42.266861° | 18.618152° | MN_AS   | 87<br>31 |
| M. barbatus                   | Mediterranean | (GSA18)<br>South Adriatic, Albania<br>(GSA18) | 41.162552° | 19.259209° | AL_AS   | 67       |
| M. barbatus,<br>M. surmuletus | Mediterranean | Ionian Sea, Greece<br>(GSA20)                 | 38.171978° | 22.651481° | GR_IS   | 59<br>59 |
| M. barbatus,<br>M. surmuletus | Mediterranean | Aegean Sea, Turkey<br>(GSA22)                 | 37.947463° | 26.720771° | TR_AS   | 48<br>49 |
| M. barbatus,<br>M. surmuletus | Mediterranean | Levantine Sea, Israel<br>(GSA27)              | 32.335961° | 34.363010° | IS_LS   | 23<br>15 |
| M. barbatus,<br>M. surmuletus | Mediterranean | Levantine Sea, Cyprus<br>(GSA25)              | 34.429656° | 32.220743° | CP_LS   | 31<br>49 |
| M. barbatus,<br>M. surmuletus | Mediterranean | Balearic Sea, Spain<br>(GSA6)                 | 38.572230° | 0.637080°  | SP_BS   | 46<br>41 |
| M. surmuletus                 | N-E Atlantic  | Portugal                                      | 40.154904° | 9.21806°   | PT_AO   | 68       |

| M.barbatus Sampling code |     |         |          |       |       |       |         |         |       |       |       |         |            |             |         |
|--------------------------|-----|---------|----------|-------|-------|-------|---------|---------|-------|-------|-------|---------|------------|-------------|---------|
| Locus                    |     | CRO     | CRO      | CRO   | ITA   | ITA   | ITA     | ITA     | MN    | AL    | GR    | TR      | IS         | СР          | SP      |
| Locus                    |     | NAS     | MAS      | SAS   | NAS   | MAS   | SAS     | TS      | AS    | AS    | IS    | LS      | LS         | LS          | BS      |
|                          | n   | 48      | 66       | 50    | 49    | 50    | 47      | 49      | 87    | 67    | 59    | 48      | 23         | 29          | 46      |
| Mbar                     | nA  | 13      | 11       | 10    | 10    | 10    | 8       | 10      | 11    | 9     | 11    | 8       | 8          | 9           | 10      |
| 132                      | HO  | 0.771   | 0.848    | 0.720 | 0706  | 0.660 | 0.787   | 0.715   | 0.655 | 0.672 | 0.763 | 0.750   | 0.739      | 0.862       | 0.543   |
|                          | HE  | 0.734   | 0.769    | 0.710 | 0.717 | 0.632 | 0.734   | 0.733   | 0.652 | 0.711 | 0.732 | 0.746   | 0.734      | 0.769       | 0.636   |
| 14                       | n   | 47      | 66<br>22 | 50    | 49    | 50    | 45      | 48      | 87    | 65    | 59    | 48      | 22         | 20          | 46      |
| Mbar                     | nA  | 31      | 33       | 31    | 27    | 30    | 32      | 31      | 36    | 35    | 31    | 31      | 20         | 20          | 28      |
| 14                       | HO  | 0.914   | 0.924    | 0.800 | 0.857 | 0.820 | 0.807   | 0.855   | 0.851 | 0.923 | 0.804 | 0.896   | 0.772      | 0.850       | 0.804   |
|                          | пс  | 0.903   | 0.939    | 50    | 40    | 50    | 0.908   | 40      | 0.937 | 67    | 50    | 1949    | 0.946      | 21          | 0.938   |
| Mhar                     | n A | 40<br>6 | 6        | 50    | 49    | 50    | 47<br>6 | 49<br>6 | 6     | 6     | 59    | 40<br>6 | 23<br>6    | 7           | 40<br>5 |
| 064                      | HO  | 0 562   | 0 500    | 0 500 | 4     | 0 540 | 0 532   | 0 530   | 0 506 | 0 657 | 0 542 | 0 688   | 0 565      | /<br>0.5/18 | 0521    |
| 004                      | HE  | 0.521   | 0.511    | 0.502 | 0.531 | 0.544 | 0.589   | 0.576   | 0.558 | 0.559 | 0.558 | 0.614   | 0.581      | 0.540       | 0.490   |
|                          | n   | 48      | 66       | 50    | 49    | 50    | 47      | 49      | 87    | 67    | 59    | 48      | 23         | 31          | 46      |
| Mbar                     | nA  | 10      | 8        | 8     | 9     | 7     | 9       | 7       | 9     | 11    | 10    | 9       | 9          | 7           | 10      |
| 051                      | НО  | 0.625   | 0.606    | 0.640 | 0.673 | 0.620 | 0.787   | 0.694   | 0.724 | 0.657 | 0.661 | 0.625   | 0.609      | 0.580       | 0.696   |
|                          | HE  | 0.656   | 0.602    | 0.611 | 0.703 | 0.599 | 0.787   | 0.665   | 0.688 | 0.666 | 0.631 | 0.675   | 0.726      | 0.652       | 0.688   |
|                          | n   | 48      | 66       | 50    | 49    | 50    | 47      | 49      | 87    | 67    | 59    | 48      | 23         | 31          | 46      |
| Mbar                     | nA  | 8       | 9        | 8     | 10    | 9     | 9       | 7       | 9     | 9     | 10    | 8       | 7          | 9           | 11      |
| 002                      | HO  | 0.708   | 0.666    | 0.700 | 0.877 | 0.660 | 0.829   | 0.633   | 0.701 | 0.701 | 0.627 | 0.729   | 0.696      | 0.742       | 0.696   |
|                          | HE  | 0.724   | 0.730    | 0.690 | 0.771 | 0.714 | 0.725   | 0.702   | 0.708 | 0.712 | 0.761 | 0.673   | 0.723      | 0.816       | 0.739   |
|                          | n   | 48      | 64       | 50    | 49    | 49    | 45      | 47      | 85    | 66    | 59    | 47      | 20         | 21          | 45      |
| Mbar                     | nA  | 16      | 15       | 14    | 15    | 12    | 12      | 12      | 14    | 14    | 10    | 16      | 10         | 9           | 14      |
| 63*                      | HO  | 0.687   | 0.609    | 0.690 | 0.796 | 0.571 | 0.800   | 0.638   | 0.718 | 0.591 | 0.610 | 0.681   | 0.650      | 0.571       | 0.666   |
|                          | HE  | 0.852   | 0.851    | 0.857 | 0.859 | 0.830 | 0.858   | 0.853   | 0.843 | 0.842 | 0.841 | 0.889   | 0.877      | 0.872       | 0.891   |
|                          | n   | 48      | 65       | 50    | 49    | 50    | 47      | 49      | 87    | 67    | 59    | 48      | 23         | 31          | 46      |
| Mbar                     | nA  | 2       | 2        | 2     | 2     | 2     | 2       | 2       | 3     | 3     | 2     | 2       | 3          | 3           | 1       |
| 101*                     | HO  | 0.000   | 0.000    | 0.000 | 0.000 | 0.000 | 0.000   | 0.000   | 0.012 | 0.015 | 0.017 | 0.000   | 0.000      | 0.032       | 0.783   |
|                          | HE  | 0.491   | 0.143    | 0.424 | 0.247 | 0.298 | 0.384   | 0.679   | 0.034 | 0.044 | 0.017 | 0.041   | 0.166      | 0.206       | 0.878   |
| 14                       | n   | 48      | 65       | 50    | 49    | 50    | 45      | 47      | 87    | 67    | 58    | 48      | 23         | 27          | 46      |
| Mbar                     | nA  | 16      | 1/       | 1/    | 1/    | 1/    | 1/      | 18      | 19    | 19    | 14    | 13      | 13         | 14          | 13      |
| 55                       | но  | 0.708   | 0.800    | 0.850 | 0.755 | 0.840 | 0.80/   | 0.851   | 0.839 | 0.851 | 0.741 | 0.792   | 0.090      | 0.778       | 0.782   |
|                          | n   | 40      | 55       | 44    | 41    | /3    | 37      | 46      | 73    | 61    | 50    | 0.879   | 18         | 21          | 36      |
| Mhar                     | n A | 40      | 13       | 11    | 13    | 12    | 17      | 10      | 11    | 8     | 11    | 12      | 7          | 9           | 10      |
| 130*                     | НО  | 0.250   | 0 345    | 0 254 | 0.293 | 0.302 | 0 479   | 0 174   | 0 164 | 0 229 | 0.100 | 0.227   | ,<br>0.056 | 0 142       | 0 305   |
| 150                      | HE  | 0.836   | 0.829    | 0.782 | 0.788 | 0.796 | 0.868   | 0.737   | 0.699 | 0.789 | 0.819 | 0.837   | 0.678      | 0.829       | 0.825   |
| Mbar                     | n   | 48      | 66       | 50    | 49    | 50    | 46      | 49      | 87    | 66    | 58    | 48      | 22         | 23          | 46      |
| 56                       | nA  | 9       | 8        | 8     | 7     | 8     | 8       | 8       | 8     | 11    | 9     | 9       | 6          | 6           | 7       |
|                          | НО  | 0.645   | 0.636    | 0.740 | 0.735 | 0.660 | 0.674   | 0.673   | 0.829 | 0.621 | 0.689 | 0.688   | 0.773      | 0.435       | 0.609   |
|                          | HE  | 0.692   | 0.663    | 0.745 | 0.712 | 0.664 | 0.671   | 0.670   | 0.696 | 0.700 | 0.718 | 0.737   | 0.683      | 0.669       | 0.682   |
|                          | n   | 32      | 41       | 33    | 35    | 36    | 30      | 30      | 74    | 56    | 43    | 47      | 20         | 20          | 35      |
| Mbar                     | nA  | 19      | 20       | 16    | 18    | 18    | 17      | 19      | 28    | 23    | 14    | 21      | 14         | 13          | 21      |
| 3*                       | HO  | 0.281   | 0.341    | 0.424 | 0.171 | 0.222 | 0.233   | 0.200   | 0.338 | 0.500 | 0.256 | 0.298   | 0.250      | 0.250       | 0.257   |
|                          | HE  | 0.946   | 0.933    | 0.919 | 0.927 | 0.926 | 0.902   | 0.939   | 0.942 | 0.944 | 0.894 | 0.928   | 0.919      | 0.892       | 0.942   |
|                          | n   | 48      | 65       | 50    | 49    | 50    | 46      | 49      | 87    | 67    | 59    | 48      | 22         | 26          | 46      |
| Mbar                     | nA  | 13      | 13       | 13    | 12    | 16    | 12      | 9       | 13    | 12    | 12    | 11      | 9          | 11          | 12      |
| 11                       | HO  | 0.666   | 0.575    | 0.600 | 0.653 | 0.640 | 0.652   | 0.551   | 0.609 | 0.955 | 0.695 | 0.583   | 0.682      | 0.692       | 0.608   |
|                          | HE  | 0.670   | 0.652    | 0.668 | 0.626 | 0.688 | 0.716   | 0.618   | 0.622 | 0.553 | 0.702 | 0.660   | 0.682      | 0.674       | 0.650   |
| 16                       | n   | 47      | 65       | 50    | 49    | 50    | 45      | 49      | 84    | 64    | 59    | 48      | 22         | 19          | 45      |
| Mbar                     | nA  | 18      | 18       | 19    | 14    | 15    | 14      | 19      | 18    | 16    | 17    | 19      | 12         | 7           | 18      |
| 133                      | HO  | 0.766   | 0.677    | 0.740 | 0.639 | 0.720 | 0.622   | 0.735   | 0.667 | 0.625 | 0.729 | 0.813   | 0.591      | 0.5/9       | 0.777   |
|                          | HE  | 0.890   | 0.825    | 0.852 | 0.882 | 0.851 | 0.806   | 0.837   | 0.859 | 0.829 | 0.856 | 0.859   | 0.845      | 0.065       | 0.842   |

**Supplement Table S2**. Summery statistics of 13 microsatellite loci among samples of *Mullus barbatus* and *Mullus surmuletus*.

| М.,         | surmule | etus  | Sampling code |       |            |            |         |       |       |       |            |       |         |       |
|-------------|---------|-------|---------------|-------|------------|------------|---------|-------|-------|-------|------------|-------|---------|-------|
| Loons       | Indiana | CRO   | CRO           | CRO   | ITA        | ITA        | ITA     | MN    | GR    | TR    | IS         | СР    | SP      | РТ    |
| Locus       | maices  | NAS   | MAS           | SAS   | MAS        | SAS        | TS      | AS    | IS    | LS    | LS         | LS    | BS      | AO    |
|             | n       | 50    | 54            | 49    | 47         | 42         | 45      | 31    | 59    | 49    | 15         | 49    | 41      | 68    |
| Mbar        | nA      | 14    | 12            | 14    | 11         | 12         | 13      | 13    | 13    | 15    | 7          | 14    | 13      | 16    |
| 132         | HO      | 0.800 | 0.722         | 0.816 | 0.872      | 0.928      | 0.822   | 0.806 | 0.673 | 0.816 | 0.800      | 0.796 | 0.805   | 0.779 |
|             | HE      | 0.841 | 0.818         | 0.973 | 0.833      | 0.835      | 0.856   | 0.852 | 0.825 | 0.814 | 0.752      | 0.875 | 0.853   | 0.855 |
|             | n       | 50    | 54            | 48    | 47         | 42         | 45      | 31    | 59    | 49    | 15         | 49    | 41      | 68    |
| Mbar        | nA      | 22    | 23            | 22    | 20         | 21         | 25      | 22    | 22    | 20    | 10         | 22    | 21      | 26    |
| 14          | HO      | 0.880 | 0.888         | 0.937 | 0.936      | 0.871      | 0.977   | 1.000 | 0.763 | 0.939 | 0.933      | 0.877 | 0.951   | 0.897 |
|             | HE      | 0.939 | 0.919         | 0.941 | 0.936      | 0.917      | 0.944   | 0.950 | 0.917 | 0.934 | 0.816      | 0.911 | 0.932   | 0.926 |
|             | n       | 50    | 54            | 49    | 47         | 42         | 45      | 31    | 59    | 49    | 15         | 49    | 41      | 68    |
| Mbar        | nA      | 5     | 4             | 3     | 2          | 2          | 4       | 5     | 6     | 2     | 2          | 5     | 2       | 4     |
| 064         | HO      | 0.200 | 0.148         | 0.265 | 0.128      | 0.357      | 0.244   | 0.226 | 0.288 | 0.184 | 0.133      | 0.347 | 0.097   | 0.162 |
|             | HE      | 0.302 | 0.173         | 0.282 | 0.121      | 0.297      | 0.223   | 0.343 | 0.312 | 0.201 | 0.129      | 0.371 | 0.178   | 0.255 |
|             | n       | 50    | 53            | 49    | 47         | 42         | 45      | 31    | 59    | 47    | 15         | 49    | 41      | 68    |
| Mbar        | nA      | 16    | 17            | 18    | 16         | 14         | 16      | 12    | 17    | 17    | 9          | 13    | 17      | 16    |
| 051         | HO      | 0.660 | 0.830         | 0.755 | 0.745      | 0.715      | 0.777   | 0.645 | 0.831 | 0.875 | 0.667      | 0.633 | 0.732   | 0.618 |
|             | HE      | 0.899 | 0.909         | 0.894 | 0.895      | 0.870      | 0.909   | 0.899 | 0.883 | 0.912 | 0.696      | 0.876 | 0.906   | 0.876 |
|             | n       | 50    | 54            | 49    | 47         | 42         | 45      | 31    | 59    | 49    | 15         | 49    | 41      | 68    |
| Mbar        | nA      | 10    | 9             | 9     | 8          | 7          | 9       | 8     | 9     | 7     | 6          | 10    | 8       | 9     |
| 002         | НО      | 0.660 | 0.648         | 0.775 | 0.766      | 0.786      | 0.777   | 0.742 | 0.746 | 0.714 | 0.600      | 0.775 | 0.658   | 0.750 |
|             | HE      | 0./12 | 0.772         | 0./8/ | 0.772      | 0.691      | 0.757   | 0.827 | 0./6/ | 0.779 | 0.825      | 0.750 | 0.776   | 0.756 |
|             | n       | 50    | 54            | 49    | 47         | 42         | 45      | 31    | 59    | 49    | 15         | 49    | 41      | 68    |
| Mbar        | nA      | 16    | 18            | 19    | 15         | 18         | 16      | 12    | 18    | 17    | 9          | 15    | 15      | 17    |
| 63          | НО      | 0.700 | 0.833         | 0.837 | 0.808      | 0.833      | 0.689   | 0.6// | 0.798 | 0.796 | 0.533      | 0.551 | 0.805   | 0.823 |
|             | HE      | 0.893 | 0.873         | 0.889 | 0.886      | 0.888      | 0.868   | 0.8// | 0.879 | 0.879 | 0.887      | 0.874 | 0.874   | 0.861 |
| 2.0         | n       | 48    | 51            | 49    | 4/         | 42         | 45      | 30    | 59    | 49    | 15         | 49    | 41      | 6/    |
| Mbar<br>101 | nA      | /     | 1             | 0     | 0          | 0 796      | 8       | 1     | 8     | 0 502 | 4          | 0     | 9       | /     |
| 101         | НО      | 0579  | 0.720         | 0.055 | 0.617      | 0.780      | 0.644   | 0.567 | 0.695 | 0.592 | 0.467      | 0.715 | 0.085   | 0.522 |
|             | nL      | 50    | 54            | 40    | 0.080      | 42         | 0.092   | 21    | 50    | 40    | 15         | 40    | 0.714   | 68    |
| Mhor        | n A     | 12    | 54<br>7       | 49    | 40         | 42         | 45<br>7 | 12    | 10    | 49    | 3          | 49    | 41<br>6 | 00    |
| 55          | HO      | 0780  | 0.685         | 0 633 | 2<br>0 730 | 2<br>0.857 | 0.644   | 0.742 | 0.644 | 0.755 | J<br>0.667 | 0775  | 0 658   | 0 521 |
| 55          | HE      | 0759  | 0.688         | 0.055 | 0.750      | 0.718      | 0.730   | 0.742 | 0.708 | 0.735 | 0.536      | 0.738 | 0.050   | 0.703 |
|             | n       | 45    | 37            | 41    | 37         | 42         | 37      | 30    | 52    | 45    | 15         | 40    | 36      | 51    |
| Mhar        | n A     | 16    | 9             | 12    | 13         | 10         | 9       | 10    | 14    | 10    | 15<br>7    | 15    | 13      | 17    |
| 130*        | HO      | 0 244 | 0.063         | 0 171 | 0 270      | 0 214      | 0 270   | 0.300 | 0.288 | 0.133 | ,<br>0.267 | 0.125 | 0.139   | 0.216 |
| 150         | HE      | 0.873 | 0.744         | 0.825 | 0.783      | 0.766      | 0.624   | 0.814 | 0.821 | 0.692 | 0.827      | 0.863 | 0.809   | 0.856 |
|             | n       | 47    | 54            | 49    | 47         | 42         | 45      | 31    | 59    | 49    | 14         | 47    | 41      | 68    |
| Mbar        | nA      | 7     | 2.<br>7       | 7     | 7          | 7          | 7       | 8     | 7     | 7     | 6          | 7     | 6       | 7     |
| 56          | HO      | 0.851 | 0.833         | 0.673 | 0.787      | 0.833      | 0.889   | 0.839 | 0.831 | 0.837 | 0.643      | 0.766 | 0.756   | 0.809 |
|             | HE      | 0.806 | 0.814         | 0.777 | 0.761      | 0.763      | 0.798   | 0.800 | 0.779 | 0.806 | 0.754      | 0.817 | 0.757   | 0.766 |
|             | n       | 33    | 48            | 46    | 47         | 42         | 44      | 30    | 58    | 48    | 10         | 37    | 33      | 64    |
| Mbar        | nA      | 8     | 9             | 7     | 8          | 7          | 8       | 9     | 8     | 5     | 3          | 7     | 6       | 5     |
| 3           | НО      | 0.333 | 0.500         | 0.500 | 0.638      | 0.595      | 0.341   | 0.367 | 0.431 | 0.431 | 0.500      | 0.297 | 0.424   | 0.312 |
|             | HE      | 0.415 | 0.523         | 0.508 | 0.550      | 0.545      | 0.372   | 0.481 | 0.423 | 0.402 | 0.426      | 0.371 | 0.394   | 0.302 |
|             | n       | 42    | 50            | 47    | 47         | 42         | 45      | 29    | 58    | 48    | 10         | 19    | 31      | 55    |
| Mbar        | nA      | 9     | 7             | 9     | 8          | 7          | 8       | 12    | 11    | 9     | 7          | 14    | 7       | 7     |
| 11          | HO      | 0.381 | 0.600         | 0.808 | 0.638      | 0.762      | 0.711   | 0.586 | 0.741 | 0.687 | 0.700      | 0.526 | 0.581   | 0.545 |
|             | HE      | 0.759 | 0.730         | 0.785 | 0.777      | 0.684      | 0.744   | 0.821 | 0.768 | 0.783 | 0.863      | 0.824 | 0.743   | 0.699 |
|             | n       | 45    | 49            | 49    | 45         | 41         | 43      | 29    | 57    | 48    | 14         | 40    | 39      | 64    |
| Mbar        | nA      | 11    | 14            | 13    | 10         | 13         | 13      | 13    | 16    | 12    | 7          | 12    | 12      | 12    |
| 133*        | HO      | 0.111 | 0.224         | 0.143 | 0.311      | 0.439      | 0.302   | 0.448 | 0.281 | 0.229 | 0.428      | 0.325 | 0.231   | 0.172 |
|             | HE      | 0.866 | 0.907         | 0.874 | 0.874      | 0.884      | 0.907   | 0.892 | 0.900 | 0.884 | 0.873      | 0.877 | 0.868   | 0.882 |

**Supplement Table S3.** Bottleneck results of one-tail Wilcoxon test for heterozygote excess and observed values of the *M*-ratio averaged over the number of polymorphic microsatellite loci for each *Mullus barbatus* (a) and *Mullus surmuletus* (b) contemporary sample considered in this study. For different ancestral theta (0.5, 1, 10), the *p*-value at which a bottleneck occurred is presented. NS = not significant.

| a) Mullus barbatus   | Bottleneck |         | М     | M ratio (P-value) |              |               |
|----------------------|------------|---------|-------|-------------------|--------------|---------------|
|                      | IAM        | TPM(90) |       | $\Theta = 0.5$    | $\Theta = 1$ | $\Theta = 10$ |
| CRO_NAS              | Ns         | ns      | 0.754 | ns                | ns           | ns            |
| CRO_MAS              | Ns         | ns      | 0.763 | ns                | ns           | ns            |
| CRO_SAS              | Ns         | ns      | 0.796 | ns                | ns           | ns            |
| ITA_NAS              | Ns         | ns      | 0.792 | ns                | ns           | ns            |
| ITA_MAS              | Ns         | ns      | 0.73  | < 0.05            | ns           | ns            |
| ITA_SAS              | Ns         | ns      | 0.78  | ns                | ns           | ns            |
| ITA_TS               | Ns         | ns      | 0.806 | ns                | ns           | ns            |
| MN_AS                | Ns         | ns      | 0.806 | ns                | ns           | ns            |
| AL_AS                | Ns         | ns      | 0.77  | ns                | ns           | ns            |
| GR_IS                | < 0.05     | ns      | 0.741 | < 0.001           | < 0.001      | < 0.001       |
| TR_AS                | < 0.05     | ns      | 0.729 | < 0.001           | < 0.001      | < 0.001       |
| SP_BS                | Ns         | ns      | 0.773 | ns                | ns           | ns            |
|                      |            |         |       |                   |              |               |
| b) Mullus surmuletus | Bottleneck |         | M     | M ratio (P-value) |              |               |
|                      | IAM        | TPM(90) |       | $\Theta = 0.5$    | $\Theta = 1$ | $\Theta = 10$ |

|         | IAM    | TPM(90) |       | $\Theta = 0.5$ | $\Theta = 1$ | $\Theta = 10$ |
|---------|--------|---------|-------|----------------|--------------|---------------|
| CRO_NAS | Ns     | ns      | 0.723 | < 0.03         | ns           | ns            |
| CRO_MAS | Ns     | ns      | 0.768 | ns             | ns           | ns            |
| CRO_SAS | Ns     | ns      | 0.76  | ns             | ns           | ns            |
| ITA_MAS | Ns     | ns      | 0.806 | ns             | ns           | ns            |
| ITA_SAS | Ns     | ns      | 0.8   | ns             | ns           | ns            |
| ITA_TS  | Ns     | ns      | 0.765 | ns             | ns           | ns            |
| MN_AS   | Ns     | ns      | 0.695 | < 0.02         | ns           | ns            |
| GR_IS   | Ns     | ns      | 0.732 | ns             | ns           | ns            |
| TR_AS   | < 0.01 | ns      | 0.688 | < 0.001        | < 0.01       | ns            |
| CP_LS   | Ns     | ns      | 0.764 | ns             | ns           | ns            |
| SP_BS   | Ns     | ns      | 0.76  | ns             | ns           | ns            |
| PT_AO   | Ns     | ns      | 0.703 | < 0.02         | ns           | ns            |

**Supplement Table S4.** GFCM stock assessment outcomes for *Mullus barbatus* in 2016<sup>45</sup> in relation with observed heterozygosity and M ratio values

| GSA                                              | F <sub>cur</sub>                                    | State                    | Observed                                                | M-ratio                                     |  |
|--------------------------------------------------|-----------------------------------------------------|--------------------------|---------------------------------------------------------|---------------------------------------------|--|
|                                                  |                                                     |                          | Heterozygosity                                          |                                             |  |
| GSA 6 (Northern Spain)                           | $\begin{array}{c} F_{cur} > \\ F_{0.1} \end{array}$ | Overexploitation         | $0.67 \pm 0.1$                                          | 0.773                                       |  |
| GSA 9 (Ligurian Sea and Northern Tyrrhenian Sea) | $\begin{array}{c} F_{cur} > \\ F_{0.1} \end{array}$ | High overfishing         | 0.68±0.1                                                | 0.806                                       |  |
| GSA 17 (Northern Adriatic<br>Sea)                | $\begin{array}{c} F_{cur} > \\ F_{0.1} \end{array}$ | High overfishing         | 0.68±0.1<br>0.70±0.9(CRO)<br>0.67±0.1<br>0.73±0.1 (ITA) | 0.754-0.763<br>(CRO)<br>0.73-0.792<br>(ITA) |  |
| GSA 18 (Southern Adriatic Sea)                   | $\begin{array}{c} F_{cur} < \\ F_{0.1} \end{array}$ | Sustainable exploitation | 0.70±0.1(CRO)<br>0.74±0.1 (ITA)                         | 0.796 (CRO)<br>0.78 (ITA)                   |  |
| GSA 20 (Eastern Ionian Sea)                      |                                                     | n.a.                     | $0.69 \pm 0.1$                                          | 0.741                                       |  |
| GSA 22 (Aegean Sea)                              |                                                     | n.a.                     | $0.72 \pm 0.1$                                          | 0.729                                       |  |
| GSA 25 (Cyprus)                                  | $\begin{array}{c} F_{cur} < \\ F_{0.1} \end{array}$ | Sustainable exploitation | 0.66±0.1                                                | -                                           |  |
| GSA 27 (Eastern Levant Sea)                      |                                                     | n.a.                     | $0.67 \pm 0.1$                                          | -                                           |  |

 $F_{cur}$  – current fishing mortality;  $F_{0.1}$  – the fishing mortality rate at which the slope of the yieldper-recruit curve is only one-tenth the slope of the curve at its origin

## **Supplement Figures**



**Suppl. Figure S1.** Inference of the number of clusters in *Mullus barbatus* (a) and *Mullus surmuletus* (b) populations data. The first plot represents the values for the mean likelihood of each genetic cluster (K), where the error bar represents one standard deviation, while the second plot represents values of Delta K calculated as the mean of the second-order rate of change in the likelihood of K divided by the standard deviation of the likelihood of K.



**Suppl. Figure S2.** STRUCTURE *Q* scores of *Mullus barbatus* (a) and *Mullus surmuletus* (b) individuals from Adriatic Sea displayed spatially by universal kriging. *Q* scores were represented on the ETOPO1 map (produced by NOAA and freely available as indicated here: https://www.ngdc.noaa.gov/mgg/global/dem\_faq.html#sec- $2.4^{82}$ ) using the maps function from the POPSutilities.R<sup>79</sup> in R 3.3.3 software and by using the *max* option where only the cluster with the maximal local contribution to ancestry is represented at each geographic point of the map.