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Triangular	smoothing	algorithm		

The	triangular	smoothing	algorithm	was	used	to	filter	out	external	noise	in	the	velocity	profiles	by	using	the	following	
moving	triangular	window	(as	shown	in	Fig.	S1(A)):		
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Here,	 ( )v i 	is	the	ith	element	of	the	original	speed	velocity	profile	 '( )v i 	is	the	ith	element	of	the	smoothed	profile,	and	k	
is	the	summation	index,	going	from	–d	to	+d.	In	this	paper,	the	number	of	elements	in	the	sliding	window	was	chosen	as	
25	with	d	=	12	and	k	running	from	k	=	-12	to	k	=	12.	This	process	builds	up	a	symmetric	weighted	sum	around	the	central	
point.		We	will	illustrate	below	that	this	algorithm	is	sufficient	to	filter	out	external	electromagnetic	noise	as	well	as	
preserving	temporal	information	of	the	local	fluctuations	in	the	velocity	profiles.	We	will	also	provide	justification	for	our	
smoothing	parameter	selection	as	well	as	support	for	the	robustness	of	our	results.		

1. The	smoothing	algorithm	preserves	local	peaks	temporal	information	

As	shown	in	Fig.	S1(B),	the	advantage	of	using	the	triangular	smoothing	algorithm	is	its	preservation	of	the	local	peaks’	
temporal	positions.		We	provided	more	evidence	in	Fig.	S2,	where	we	compared	results	from	applying	a	tiangular	
smoothing	algorithm	(smoothing	window	width=104ms,	25	frames),	a	rectangular	smoothing	algorithm	(smoothing	
window	width=104ms,	25	frames)	and	a	Butterworth	Low	Pass	filter	(6th	order,	cutoff	frequency=10Hz)	on	a	simulated	
signal	(sampling	rate=240Hz).		The	signal	was	simulated	as	 sin(2 / 500)s t whitenoisep= + .	As	shown	in	the	Fig.	S2,	
compared	to	rectangular	smoothing	algorithm,	the	triangular	smoothing	algorithm	captures	the	appearance	of	the	low	
frequency	fluctuations.	Compared	to	the	Butterworth	Lowpass	filter,	the	triangular	smoothing	algorithm	keeps	better	
the	temporal	position	of	the	fluctuations.	The	plot	in	Fig.	S1(C)	provides	an	example	of	the	filtering	effect	on	the	
experimental	data.	The	filtered	data	captures	well	the	temporal	information	of	the	original	velocity	profiles.	Fig.	S1(D)	
shows	the	corresponding	speed	profiles	calculated	from	the	filtered	velocity	profiles	in	all	three	directions.		
	
2. The	smoothing	algorithm	is	sufficient	to	filter	the	external	electromagnetic	noise	

The	triangular	smoothing	algorithm	is	applied	in	the	temporal	domain.	Its	frequency	response	is	illustrated	in	Fig.	S1(E-F)	
with	both	theoretical	and	experimental	data.	In	the	frequency	domain,	it	is	a	low	pass	filter.In	the	Method	section	of	the	
main	paper,	we	have	showed	theoretically	the	selected	smoothing	parameter	is	sufficient	to	eliminate	the	high	
frequency	electromagnetic	noise	in	the	data	collected.	Below	we	provide	numerical	simulation	and	experimental	
evidence	supporting	this	statement.		

Numerical	analysis:		To	further	test	our	approach	we	generated	a	signal	with	constant	power	between	-120	to	120	Hz:	

using	
sin( )sin ( ) ty c t
t
pp
p

= = 	,	with	sampling	at	240Hz.	We	applied	our	triangular	filtering	algorithm	to	the	numerically	

generated	data,	calculating	the	power	spectral	ratio	between	the	filtered	and	original	signals	(the	frequency	response).	
As	shown	in	FigS.1(C),	this	curve	ratios	agrees	very	well	when	compared	to	the	theoretical	result.	

Experimental	data:	Next	we	analyzed	frequency	response	of	our	filtering	approach	by	testing	it	on	data	collected	
during	experiments.	FigS.	1(D)	plots	the	power	spectra	density	of	the	collected	raw	data	(1min	in	one	case	of	ASD)	as	
well	as	the	filtered	data.	The	noise	above	20Hz	was	clearly	filtered	out	after	using	the	triangular	filtering	algorithm.	

	

3. No	differences	found	in	the	external	electromagnetic	noise		



	 3	

No	filter	could	guarantee	perfectly	filtering	out	all	possible	external	noises	while	keeping	the	‘real’	signal.	Even	if	there	
might	be	noise	leftover	in	the	filtered	data,	we	will	show	below	that	the	extrenous	external	noise	did	not	contribute	to	
significant	changes	in	the	ASD	group	separations	discussed	in	the	paper.	We	tested	this	by	quantifying	the	noise	levels	in	
the	velocity	profile	in	the	direction	perpendicular	to	the	screen.	The	noise	levels	were	calculated	for	each	subject	with	
data	collected	in	the	first	second	(resting	phase).	Squared	root	average	of	the	differences	between	raw	velocity	and	
filtered	velocity	data	was	calculated.		As	shown	in	FigS.	1(G),	there	is	no	significant	difference	between	the	ASD	group		
and	typical	control	adults	(T-test	p	value	equals	0.42).	There	is	one	case	with	significant	higher	noise	levels.	The	
experimental	conditions	might	not	be	well	controlled	during	this	experiment.	This	subject	is	considered	as	an	outlier	and	
excluded	from	the	discussion.	FigS.	1(H)	further	illustrates	that	there	is	no	correlation	between		external	noise	power	
and	the	calculated	R	value	(correlation	p	value	equals	0.19,	excluding	the	outlier).	Hence,	there	is	no	significant	external	
electromagnetic	noise	contribution	in	the	group	clusters	distinctions	in	our	results.		

All	in	all,	our	triangular	smoothing	algorithm	is	sufficient	to	filter	out	the	external	electromagnetic	noise	as	well	as	to	
preserve	the	local	peaks	temporal	information	and	structure	in	the	velocity	signals.		

	

Theortical	R-parameter	analysis	
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	,	xi	are	the	intervals	falling	into	the	exponential	distribution,	and	ri	are	the	

intervals	falling	outside		of	the	exponential	distribution.	Take	a 	as	the	non-exponential	distribution	ratio,	i.e.	
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	.	Assuming	ri		is	gaussian	distributed	with	average	equals	m 		and	variance	equals	

2s .		
2 2mR m
m

sa a+
= µ .	Therefore,	R	is	propotional	to	the	non-exponential	distribution	ratio,	and	the	mean	value	

of	the	non-exponential	distribution.		

	

Robustness	of	R-classification	to	changes	in	the	smoothing	parameter	selection		

Identification	of	the	s-Peaks	depends	on	the	value	of	the	smoothing	parameter	selected.	We	found,	however,	that	the	
distinction	in	s-IPI	statistics	between	ASD	and	TD	groups	remains	robust	for	a	broad	range	of	smoothing	parameter	
selections.	FigS.	3C	shows	that,	when	the	smoothing	window	width	is	minuscule,	the	present	fluctuations	are	mainly	
from	external	electromagnetic	noise.	The	temporal	dynamics	(R-value)	for	such	external	noise	are	not	separable	
between	individuals.	As	the	smoothing	power	(smoothing	window	width)	increases,	the	external	electromagnetic	noise	
was	gradually	filtered	out,	and	the	distinction	in	the	signals	started	to	become	evident.	We	chose	the	smoothing	window	
width	at	25	frames	(104ms)	to	guarantee	that	the	separation	among	subgroups	was	clear	and	that	the	R-parameter	
values	had	not	yet	saturated.		

To	further	illustrate	the	robustness	of	the	main	results	of	the	paper	about	ASD	subjects’	distinctions,	we	doubled	the	
smoothing	window	width	(to	49	frames	instead	of	25).	FigS.	3	(A-B)	compare	the	filtered	velocity	profiles	together	with	
the	corresponding	speed	profiles	under	the	two	smoothing	windows	width	selections.	By	comparison,	the	doubled	
smoothing	window	width	selection	(49	frames)	possibly	missed	some	local	peaks	in	the	speed	profile.	However,	the	
group	distinction	between	ASD	group	and	Control	group	is	still	significant	(FigS.	3D).	
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R-value	roboustness	to	variations	in	experimental	design	

1).	The	subjects’	cluster	R-value	classifications	is	independent	of	motion	trajectories/arm	configurations.	We	did	not	

impose	any	restrictions	during	the	experiments	on	how	the	subjects	moved:	subjects	reached	and	retracted	their	arms	

as	they	wish.	There	might	be,	however,	arm	configuration/motion	trajectory	differences	across	subjects.	We	tested	the	

possible	effects	of	the	arm	configuration/motion	trajectory	on	the	R-value	on	7	out	of	the	15	typical	control	adults.	We	

used	a	different	experimental	set	up.		

	As	shown	in	Fig.	S3(A-B),	in	the	default	experimental	setting	(condition	1),	subjects	were	totally	free	to	move	their	arms	

and	hands.	Their	hands	rested	on	their	laps	or	on	the	arm	of	the	chair	during	the	resting	period.	When	touching	the	

screen,	their	arms	did	not	necessarily	have	to	be	fully	stretched.	In	condition	2	(Fig.	S3(C-D),	the	screen	was	moved	

farther	away	from	the	subject.	The	subjects	were	then	asked	to	keep	their	arm	above	the	table	coming	back	to	a	fixed	

resting	position	on	the	table	after	reaching	(the	yellow	dot).	Under	the	latter	condition,	most	subjects	needed	to	fully	

stretch	their	arm	to	reach	to	the	target	point.	In	Fig.	S3(E-H)	we	show	a	corresponding	arm	avatar	for	motions	during	the	

reaching	and	retracting	cycle	in	two	conditions	(view	from	side(E,G)	and	view	from	above	(F,H)).	Blue	dot	is	the	position	

of	sensor	put	in	the	upper	arm,	as	an	estimation	of	the	position	of	elbow.	By	comparison	of	E	and	G,	1)	there	is	more	

change	in	the	elbow	angle	(angle	between	upper	arm	and	lower	arm)	in	condition	2	than	condition	1;	2)	the	arm	is	fully	

stretched	in	condition	2,	not	in	condition	1.		Comparison	of	the	horizontal	plane	trajectory	(view	from	above,	F	and	H)	

shows	the	difference	of	arm	configuration	under	the	two	conditions.	In	Condition	1,	the	elbow	is	to	the	right	of	the	right	

shoulder,	i.e.	to	the	outer	space	of	the	body.	In	condition	2	the	elbow	is	to	the	left	of	the	right	shoulder,	i.e.	to	the	inner	

space	of	the	body.	Overall,	arm	motion	under	condition	1	is	more	relaxed,	while	arm	motion	under	condition	2	is	more	

restricted.	Despite	the	changes	introduced	in	the	arm	configurations,	the	R	values	are	not	separable	under	the	two	

conditions	(F).	

	This	suggests	that	the	R-biomarker	is	independent	of	the	specific	motion	trajectory	followed	during	the	reaching-and-

retracting	task.	Possible	variations	present	in	the	motion	trajectories,	if	any,	across	subjects	did	not	contribute	to	R	

cluster	distinctions.	

	

2).	The	subjects’	R-value	cluster	classification	is	independent	of	the	task	difficulty	level.	A	given	task	may	have	

different	difficulty	levels	for	different	individuals.	We	questioned	whether	such	difference	across	individuals	may	

contribute	to	the	subjects’	R-value	distinctions.	To	answer	such	concern,	we	increased	the	degree	of	task	difficulty	by	

decreasing	the	size	of	the	target	(diameter	changed	from	5cm	to	1cm)	testing	TD	adults	under	such	change.	As	shown	in	

Fig.	6B,	all	TD	subjects	remained	in	the	same	cluster	region	as	in	the	default	condition.	We	found	no	task	difficulty	

changes	in	the	R-values.	The	distinction	between	subjects	still	held,	even	as	the	task	difficulty	increased:	the	TD	adults’	

R-	values	doing	a	harder	task	remained	separated	from	those	ASD	subjects’	R-values	while	doing	an	easier	task.		
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3).	The	R-cluster	classification	is	independent	on	the	potential	differences	in	motion	proficiency	level	across	subjects.	

One	could	argue	that	typical	control	adults	have	smoother	speed	profiles	simply	because	they	have	practiced	more	

similar	motions	than	others	may	in	their	lifetimes.	One	important	fact	answering	this	concern	is	our	finding	of	the	lack	of	

age	related	R-value	differentiation	in	ASD:	just	practicing	more	cannot	explain	the	R-value	differences.	We	further	tested	

left-hand	motions	in	TD	control	adults,	which	provids	extra	support.	All	subjects	in	the	cohort	studied	are	right	handed.	

Their	left-hand	motions	are	supposed	to	be	less	proficient	than	their	right-hand	motions.	As	shown	in	Fig.6B,	however,	

we	did	not	find	any	consistent	differences	in	the	R-values	from	having	left	or	right	hand	motions:	Therefore,	this	

supports	the	fact	that	R	captures	inherent	individualized	physiological	features	independent	of	left	or	right	hand	

motions.	Moreover,	the	R-value	distinctions	we	found	here	are	not	simply	a	matter	of	proficiency,	but	they	are	

fundamentally	intrinsic	to	everyone’s	nervous	system	development.		

	

Supplementary	Figures	

	

Fig.	S1.	Triangular	smoothing	algorithm	with	validation	(A)	The	triangular	smoothing	algorithm	was	applied	to	the	

experimental	data	using	a	sliding	window	of	width	2d+1.	Weights	were	distributed	using	a	symmetrical	triangle	as	

shown	in	the	figure.		(B)	Triangular	smoothing	applied	to	a	simulated	periodic	data	set	( sin( / 5) 0.1y t tp= + 	).	The	

smoothing	window	size	varied	from	0-30	(red	to	yellow).	The	triangular	smoothing	preserves	the	location	of	the	s-Peaks.	

(C)	Smoothing	effects	in	experimental	data:	one	velocity	profile	example	in	one	cycle	in	the	direction	perpendicular	to	



	 6	

the	screen.	Green	line:	velocity	profile	calculated	from	raw	positional	data;	black	line:	filtered	velocity	profile	after	

applying	the	triangular	smoothing	algorithm	(25	frames	smoothing	window	width).		(D)	Filtered	velocities	along	the	

three	orthogonal	directions	(blue,	green,	red)	.	The	corresponding	speed	profiles	were	calculated	from	the	velocities	

(black).	(E)	Smoothing	algorithm	frequency	response	compared	to	traditional	low	pass	Butterworth	filter1:	The	figure	

shows	the	power	spectrum	ratios	between	the	filtered	signal	spectral	power	density	(triangular	filtering	with	window	

width	of	25	frames)	and	the	original	data	power	spectral	density	as	a	function	of	frequency f 	.	Blue	denotes	the	

theoretical	curve;	Red	circles	the	numerical	simulation	results:	The	Green	curve	was	obtained	from	a	6th	order	

Butterworth	filter	with	cutoff	frequency	at	20Hz.	(F)	Power	spectral	data	density	(filtered	and	unfiltered)	from	

experiments	(velocity	in	the	direction	perpendicular	to	the	screen;	duration:	1min;	subject	group:	ASD):	green	line:	

before	filtering;	blue	line:	after	filtering	(triangular	smoothing	with	25	frames	smoothing	window).	(G)	Comparison	of	

external	noise	power	level	across	groups:	No	significant	separation	between	ASD	and	TD	groups	(T	test	p	value	equals	

0.42).	The	one	subject	with	significant	higher	external	noise	level	than	the	others	is	considered	as	an	outlier	because	of	

possible	special	experiment	condition	differences.	Noise	was	calculated	as	the	squared	difference	between	the	raw	

velocity	and	filtered	velocity	in	the	direction	perpendicular	to	the	screen	in	the	first	second	of	data	collected.	(H)	There	is	

no	experimental	correlation	between	the	mean	s-IPI	parameter	and	the	external	noise	power	during	the	experiment	

(correlation	p	value	equals	0.19,	excluding	the	outlier).	
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Fig.	S2.	Advantages	of	using	Triangular	Smoothing	Algorithm	Results	from	applying	smoothing	algorithm	to	a	simulated	

signal:	(A)	Triangular	Smoothing	Algorithm	(smoothing	window	width	equals	25	frames,	104ms)	(B)	Rectangular	

Smoothing	Algorithm	(smoothing	window	width	equals	25	frames,	104ms)	(C)	Butterworth	Lowpass	filter	(6th	order,	

cutoff	frequency	equals	10Hz).	The	simulated	signal	is	 sin(2 / 500)s tp= 	(t	is	time	in	sampling	frame)	plus	white	noise.	

Blue	lines	denote	the	raw	signal,	and	the	thick	purple	lines	denote	the	filterd	signals.		

	

	

Fig.	S3.	Smoothing	parameter	selection	shows	robustness	of	the	clustering	results	(A-B)	Speed	profile	examples,	with	
their	corresponding	filtered	velocities	for	window	widths	(A)	25	frames;	(B)	49	frames.	The	blue	dots	mark	the	
corresponding	local	maxima	in	the	speed	profiles	for	each	case.	Some	speed	maxima	(s-Peaks)	in	case	(A)	are	missing	in	
(B)	when	the	smoothing	window	width	is	doubled.	(C)	Plot	the	R	values	for	all	subjects	as	a	function	of	the	smoothing	
window	width.	The	distinction	between	groups	is	valid	for	a	wide	region	of	window	width	parameter	selection,	
validating	strongly	the	robustness	of	our	results.	The	smoothing	window	width	used	in	this	paper	was	chosen	as	25	
frames	(104	ms).	This	parameter	was	selected	to	have	the	two	groups	well	separated	before	the	R-values	saturate.	The	
results	obtained	when	doubling	the	smoothing	window	width	(to	49	frames)	are	provided	in	the	plot	(D).	(D)	Same	
parameter	plot	as	Fig.	5A	in	the	main	body	of	the	paper	for	results	when	we	double	the	smoothing	width	to	49	frames.	
Note	that	the	R-parameter	values	between	ASD	and	TD	adults	are	still	clearly	separable:	the	p	value	(t-test)	is	below	

610- 	.		
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Fig.	S4.	Two	experimental	conditions	(A)	the	cartoons	illustrate	the	two	experimental	conditions.	The	subjects	sat	in	
front	of	the	screen	(black).	In	Experimental	condition-1	(first	row),	the	screen	was	placed	at	the	edge	of	the	table	(grey).	
In	experiment	condition-2(second	row),	the	screen	was	moved	further	to	the	middle	of	the	table.	Under	condition-1,	the	
subjects	were	totally	free	to	move	their	arms	and	hands	back	and	forward.	They	normally	rested	their	hands	on	their	lap	
or	the	chair	arm	(upper	left	panel).		When	they	reached		the	target,	they	did	not	necessarily	have	to	all	stretch	their	
arms	(upper	right	panel).	The	full	motion	was	not	restricted.		Under	condition-2,	the	subjects	were	restricted	to	move	
their	arm	above	the	table.	They	had	to	retract	their	hands	back	to	a	fix	resting	point	(yellow	point)	(bottom	left	panel).	
When	they	reached	the	target	(bottom	right	panel),	they	often	had	to	stretch	their	arm	at	almost	full	length.	(B-E)	plots	
the	arm	avartar	for	one	reaching	and	retracting	cycle	for	each	condition.	The	red	dot	is	the	position	of	the	shoulder.	The	
blue	dots	in	between	blue	and	red	lines	are	the	positions	of	the	sensors	placed	in	the	upper	arm	(just	above	the	elbow)	
providing	an	estimation	of	elbow	positions.	The	blue	lines	and	the	red	lines	estimate	the	position	and	direction	of	the	
upper	arms	and	lower	arms,	accordingly.	The	green	dot	indicates	the	target	and	the	black	line	the	hand	motion	
trajectory.	(B)	and	(D)	are	the	trajectories	viewed	from	the	right	side	(in	the	vertical	plane).	A	comparison	between	the	
two	conditions	shows	that	the	elbow	angle	changed	in	a	wider	range	of	values	and	the	arm	is	more	stretched	under	
condition-2.	(C)	and	(E)	are	the	trajectories	viewed	from	above	(in	the	horizontal	plane).	Under	condition	-1,	the	elbow	is	
to	the	right	of	the	shoulder	(away	from	the	body)	during	the	motion.	In	contrast,	under	condition-2,	the	elbow	is	in	the	
opposite	direction.	The	arm	configurations	are	different	under	the	two	different	conditions.	However,	the	R	values	are	
not,	as	shown	in	Fig.	7(C)	in	the	main	paper.		

	

	

Supplementary	Tables	

Table	S1.	Scores	from	clinical	assessments	and	R-parameter	results	of	ASD	participants		
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ain	

Socialization	Dom
ain	

M
otor	Skill	Dom

an	

Adaptive	Behavior	Com
posite	

1	 F	 22	 NA	 NA	 -	 -	 -	 2	 1	 6	 14	 4	 2	 20	 25	 45	 27	 -	 19	 24.9	

2	 M	 12	 95	 3-Leiter-R	 23	 16	(V)	 7	 5	 1	 5	 8	 2	 2	 13	 55	 49	 50	 87	 58	 25.9	

3	 M	 30	 36	 3-Leiter-R	 29	 14(V)	 10	 5	 2	 8	 14	 2	 2	 22	 19	 19	 19	 -	 19	 33.2	

4	 M	 15	 56	 3-Leiter-R	 28	 14(NV)	 4	 4	 1	 4	 10	 2	 3	 14	 40	 26	 52	 -	 36	 33.4	

5	 F	 15	 71	 3-Leiter-R	 20	 13(V)	 8	 4	 2	 5	 7	 0	 6	 12	 39	 19	 52	 -	 34	 33.5	

6	 F	 15	 52	 3-Leiter-R	 22	 22(V)	 5	 2	 3	 6	 11	 1	 2	 17	 84	 46	 73	 29	 -	 35.9	

7	 M	 13	 89	 3-Leiter-R	 26	 24(V)	 5	 5	 2	 3	 7	 1	 2	 10	 50	 32	 50	 -	 41	 39.9	

8	 M	 18	 76	 3-Leiter-R	 30	 18(V)	 7	 5	 2	 5	 7	 2	 1	 12	 56	 19	 45	 -	 37	 41.8	

9	 M	 18	 101	 1-Wisc-III	 28	 19(V)	 4	 5	 3	 4	 6	 1	 2	 10	 52	 48	 50	 -	 46	 46.5	

10	 M	 12	 67	 3-Leiter-R	 21	 14(NV)	 10	 3	 1	 5	 13	 4	 4	 18	 75	 72	 74	 69	 67	 47.3	

11	 M	 10	 107	 3-Leiter-R	 12	 7(NV)	 5	 5	 1	 3	 9	 4	 3	 12	 57	 61	 72	 97	 66	 48.4	

12	 F	 16	 81	 1-Wisc-III	 23	 18(V)	 6	 5	 3	 7	 9	 1	 2	 16	 58	 50	 66	 -	 53	 50.8	

13	 F	 12	 NA	 NA	 21	 14(NV)	 9	 5	 1	 8	 10	 4	 4	 18	 55	 60	 53	 73	 55	 51.9	

14	 F	 15	 77	 3-Leiter-R	 27	 21(V)	 8	 4	 2	 7	 11	 8	 4	 18	 79	 69	 42	 56	 39	 52.2	

15	 M	 18	 96	 1-Wisc-III	 23	 13(V)	 6	 5	 3	 4	 8	 0	 4	 12	 66	 60	 53	 -	 55	 55.4	

16	 M	 14	 74	 3-Leiter-R	 20	 10(NV)	 10	 5	 1	 9	 10	 4	 3	 19	 47	 38	 53	 76	 49	 57.7	

17	 M	 25	 99	 5-wais-III	 24	 8(V)	 8	 3	 4	 3	 7	 1	 3	 10	 109	 121	 85	 -	 107	 58.0	

18	 M	 12	 95	 3-Leiter-R	 11	 13(V)	 7	 3	 2	 5	 7	 1	 1	 12	 73	 58	 76	 102	 71	 71.4	
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The	1-WISC-III(Weschsler	Intelligence	Scale	for	Children-III)	
2
,	the	5-WAIS-III	(Weschsler	Adult	Intelligence	Scale-III)

3
	and	

the	3-Leiter-R	(Leiter	International	Performance	Scale)
4
	were	used	to	assess	the	intelligence	of	the	participants	with	ASD.	

IQ	score	is	a	standized	score	(M	=	100,	SD	=	15)	for	intelligence	level.	The	ADI-R	(Autism	Diagnostic	Interview-Revised)	
5
	

and the ADOS	(Autism	Diagnostic	Observational	Scale)	
6,7	are	standard	assessment	tools	used	by	clinicians	as	a	basis	for	

the	ASD	diagnosis.	Vineland	Adaptive	Behavior	scale
8
	is	a	standardized	measure	of	adaptive	behavior	(M	=	100,	SD	=	15).		

	

Table	S2.	ASD	participants	with	high/low	functioning	labels	
	

Index	 Gender	 Age	
(yrs)	

category	 R	
(frames)	

1	 M	 13.8	 High	 68.3	

2	 M	 11.5	 High	 58.9	

3	 M	 11.7	 High	 60.2	

4	 F	 14.3	 High	 51.1	

5	 M	 7.6	 High	 52.7	

6	 M	 9.9	 High	 61.1	

7	 M	 11.7	 Low	 11.7	

8	 F	 7.8	 Low	 37.1	

9	 F	 >14	 Low	 13.7	

10	 F	 >14	 Low	 27.5	

11	 M	 >14	 Low	 20.2	

	

Subjects	9-11	are	teenagers	with	ages	older	than	14.	Their	precise	ages	were	missing	from	the	records.		

Table	S3.	Parent’s	Information	
	

ASD	

Subject		

Index	

	 Mother	

Age	

	 Father	

Age	

2	 Mother	 35	 Father	 35	

3	 Mother	 58	 Father	 58	

5	 Mother	 44	 	 	

7	 Mother*	 36	 	 	

8	 Mother	 55	 Father	 52	

9	 Mother	 49	 	 	

10	 Mother	 40	 Father*	 54	

11	 Mother	 38	 Father	 38	

12	 Mother	 52	 	 	

13	 Mother	 44	 Father	 50	

15	 Mother*	 37	 	 	

17	 Mother	 58	 	 	

18	 Mother	 38	 Father*	 39	
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*Father	of		#10	subject	was	a	late	talker.	Father	of	#18	subject	reported	eye	and	motor	coordination	problems,	ADHD	

and	delayed	reading.	Mother	of	#15	subject	had	dyslexic	problem.	Mother	of	#7	subject	reported	slower	reading	

problems.	Father	of	#7	subject	(data	not	collected)	had	record	of	biopolar	and	borderline	personality.	The	other	parents	

had	no	noted	problems.		The	three	parents	falling	into	the	TD	region	in	the	R-space	were	gray	shaded.	The	other	parents	

all	fell	into	the	ASD	region.		

Table	S4.	Information	from	TD	participants	
	

Participant	 Gender	 Age	

1	 M	 3	

2	 M	 4.3	

3	 F	 4.3	

4	 F	 4.8	

5	 M	 4.8	

6	 M	 5.1	

7	 F	 19	

8	 F	 20	

9	 F	 21	

10	 F	 21	

11	 M	 22	

12	 M	 22	

13	 M	 24	

14	 F	 24	

15	 F	 24	

16	 M	 24	

17	 F	 25	

18	 F	 27	

19	 M	 27	

20	 M	 31	

21	 M	 31	

	

Typically	developing	children	(1-6)	and	typical	controls	(shaded	in	gray).		
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Caption	of	Supplementary	Movie		

SI	movie	1	

Animations	of	hand	movement	for	(A)	Case	1	ASD	(B)	Case	3	ASD	and	(C)	a	typical	developing	adult	and	their	

corresponding	speed	profiles	(D-F)	in	the	pointing	task.	The	animation	was	sampled	at	24Hz	and	played	at	half	of	the	

actual	speed	(12Hz).	Time	stamp	of	each	frame	was	indicated	at	the	top	right	corner.		In	(A-C),	the	black	triangles	

represent	the	pointing	hands’	positions	and	the	green	dots	represents	the	targets.	There	is	no	significant	visual	

differences	among	the	subjects	when	they	are	completing	reaching	forward	and	retracting	backward	cycles.	Smoothness	

differences	appear	in	their	speed	profiles	in	(D-F).	Only	the	motion	profiles	inside	motion	cycles	(colored	as	blue,	purple	

and	red,	same	code	as	the	figures	in	the	text)	are	included	in	the	analyses	of	this	paper.	
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