Supplementary Dataset for

Development of versatile non-homologous end joining-based knock-in module for genome editing

Shun Sawatsubashi^{1*}, Yudai Joko¹, Seiji Fukumoto¹, Toshio Matsumoto¹, Shigeo S. Sugano^{2,3*}

- ¹ Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- ² Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
- ³ PRESTO, Japan Science and Technology Agency, Japan

* Corresponding authors

This PDF files includes : Supplementary Figs. S1 to S5 Supplementary Tables S1 to S5 Supplementary Information (including the uncropped gel and blot source data)

Supplementary Fig. S1 Knock-in efficiency using a pre-linearized donor vector.

(a) Schematic representation of knock-in strategy mediated a pre-linearized donor vector. The *PURO*-cassette vector was digested with ApaI enzyme. (b) The efficiency of knock-in events using linearized or circular donor vector with the condition optimized in Fig. 2.

Supplementary Fig. S2 Detailed sequence of the knock-in junctions.

(Upper) The target sequence for cleaving pVKG1-PURO vector (the donor vector) and that for cleaving the *VDR* in the genome. The exact target sites of gRNA were underlined. The PAM sequences were colored in red and shown in bold. (Lower) The predicted sequence of knock-in products, in which the cleaved donor vector was precisely integrated into the target site. The two possible directions of insertion (forward and reverse) were shown. The cleavage site by Cas9 were shown in slash.

Supplementary Fig. S3 Southern blot analyses of the genomes of clones which are described in Fig. 3a.

(a) Schematic image of the experimental design of southern blotting. The specific probe for a donor vector pVKG1-Puro was shown as "Probe." Expected sizes of the genome fragment digested by three restriction enzymes were shown. (b-d) Southern blot analysis of the genome of knock-in clones digested by NcoI (b), BsrGI (c), and PstI (d). #6, #18 were clones categorized as "random integrations" (Amplicon 6 positive). #1 and #29, which were red-colored, were clones categorized as "no random integrations" (Amplicon 6 negative). WT shows the analysis of the HaCaT cells without transfection. Clone numbers are corresponding to those in Figure 3.

Supplementary Fig. S4 Simultaneous knock-in of two donor vectors using VIKING method.

(a-c) Simultaneous knock-in of two different vectors. The pVKG1-PURO and pVKG1-BSD were used as donor vectors. (a) Confirmation of directions of integrated donor vectors by PCR analysis. Schematic PCR products were written (Amplicon 1-6). Schematic PCR products are written (Amplicon 1-6). If Amplicon 1 and Amplicon 2 were amplified, the insertion of the donor vector is defined as "the forward direction." On the other hand, if Amplicon 3 and Amplicon 4 were amplified, it is defined as "the reverse direction." (b) Direct sequencing analysis of the junctions of the knock-in sites. (c) Immunoblot analyses of isolated clones. α Hsp90 and $\alpha\beta$ -ACT were used as loading controls.

Supplementary Fig. S5 Isolation of knock-in/knock-out clones in *HR* locus using HaCaT cells.

(a) Confirmation of directions of integrated donor vectors in *HR* locus by PCR analysis. Schematic PCR products were written (Amplicon 1-6). (b) (Upper) Sequences for cleaving pVKG1-PURO vector (the donor vector) and *HR* locus in the genome. The exact target sites of gRNA were underlined. The PAM sequences were colored in red and shown in bold. (Lower) The predicted sequence of knock-in products, in which the cleaved donor vector was precisely integrated into the target site. The two possible directions of insertion (forward and reverse) were shown. The cleavage site by Cas9 wasshown in slash. (c) The summary of direct sequencing analyses of knock-in clones. The junction sites of the knock-in clones were shown. (d) Sequences of the *HR* locus in the genome of knock-in cell lines analyzed by direct sequencing of PCR product. (e) Immunoblot analyses of isolated clones. Immunoprecipitated products using α HR (abcam) antibody (Upper) and cell lysates (Lower) were analyzed using α HR (R&D), α Hsp90 and $\alpha\beta$ -ACT antibodies.

Supplementary Table S1 Design of VKG1 sequence using CRISPRdirect

Using Homo sapiens genome data (hg19), potential off targets of all the gRNA target sequences in the pUC19 vector were analyzed by CRISPRdirect³⁵. Column1-2: the position of nucleotide and direction of the strand in pUC19. The sequence of pUC19 was obtained from Addgene Plasmid #50005. Column4: the target sequences of gRNA with PAM. Column5-7: Number of off targets which match the gRNA target sequence of PAM proximal 20 mer (hit_20mer), 12mer (hit_12 mer), and 8mer (hit_8mer). The gRNA target with fewest off target was shown in yellow and its 18 nt trancated version was defined as VKG1.

Ref 35. Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120-1123 (2015).

# start	end	strand	sequence	hit_20mer	hit_12mer	hit_8mer	[
2642	2664	-	ccgaacgaccgagcgcagcgagt	0	2	82	VKG1 18nt
1287	1309	+	ttacttctgacaacgatcggagg	0	0	83	ŀ
1398	1420	-	ccaaacgacgagcgtgacaccac	0	0	108	
672	694	-	ccgaaacgcgcgagacgaaaggg	0	1	100	ĺ
1651	1673	+	tcgtagttatctacacgacgggg	0	1	194	, İ
568	590	-	ccgctgacgcgccctgacgggct	0	3	195	
2195	2217	+	aagacgatagttaccggataagg	0	2	228	
2372	2394	+	cggaacaggagagcgcacgaggg	0	3	232	
27	49	-	ccgcgcgttggccgattcattaa	0	0	250	L.
2509	2531	-	ccagcaacgcggcctttttacgg	0	1	258	•
327	349	-	cctggcgttacccaacttaatcg	0	2	272	
1124	1146	-	ccggcicglalgliglglggdal	0	0	280	ſ
1645	1667	-	cccgtatcgtagttatctacacg	0	1	282	İ
2358	2380	+	gtaagcggcagggtcggaacagg	0	0	287	
1646	1668	-	ccgtatcgtagttatctacacga	0	2	295	
1650	1672	+	atcgtagttatctacacgacggg	0	2	295	ļ.
15	37	+	aaccgcctctccccgcgcgttgg	0	2	299	Ļ
1004	1026	+	acgagtgggttacatcgaactgg	0	2	302	ŀ
2600	2622	-	ccgtattaccgcctttgagtgag	0	1	307	
26	1130	+	glallalcccglallgacgccgg	0	0	303	i i
481	40 503	-	gragtatttranarrgratatgg	0	0	323	ſ
5	27	-	ccaatacgcaaaccgcctctccc	0	0	331	İ
2064	2086	+	cttctagtgtagccgtagttagg	0	1	341	
2168	2190	+	taagtcgtgtcttaccgggttgg	0	0	351	
735	757	+	ataatggtttcttagacgtcagg	0	3	356	
298	320	+	tcgttttacaacgtcgtgactgg	0	0	361	
467	489	-	ccttacgcatctgtgcggtattt	0	0	369	L.
2371	2393	+	tcggaacaggagagcgcacgagg	0	7	401	ŀ
269	291	-	ccgggtaccgagctcgaattcac	0	4	402	ł
1298	420	-	ccgcaccgatcgcccttcccaac	0	2	417	
326	348	-		0	2	443	ĺ
2571	2593	-	cctgcgttatcccctgattctgt	0	2	450	İ
1352	1374	+	tgtaactcgccttgatcgttggg	0	2	457	
1351	1373	+	atgtaactcgccttgatcgttgg	0	1	461	
268	290	-	cccgggtaccgagctcgaattca	0	5	469	
2430	2452	-	cctgtcgggtttcgccacctctg	0	0	486	ļ.
2158	2180	-	ccagtggcgataagtcgtgtctt	0	0	491	ŀ
45	67	+	attaatgcagctggcacgacagg	0	3	496	ł
374	1383	+		0	3	497	ſ
990	1012	-	gatcagttgggtgcaccggdgc	0	2	512	ſ
220	242	-	ccatgattacgccaagcttgcat	0	1	527	İ
2464	2486	+	gatttttgtgatgctcgtcaggg	0	4	528	
397	419	-	cccgcaccgatcgcccttcccaa	0	1	542	
431	453	-	cctgaatggcgaatggcgcctga	0	2	552	
4	26	-	cccaatacgcaaaccgcctctcc	0	4	554	Ļ
1203	1225	+	acagaaaagcatcttacggatgg	0	2	555	ŀ
1649	16/1	+	tatcgtagttatctacacgacgg	0	4	561	
2275	2297	-	cclacaccgaaclgagalaccla	0	7	566	i i
1642	1664	-		0	0	569	Í
1117	1139	+	tattatcccgtattgacgccggg	0	0	575	İ
57	79	+	ggcacgacaggtttcccgactgg	0	3	575	
276	298	-	ccgagctcgaattcactggccgt	0	2	587	
2465	2487	+	atttttgtgatgctcgtcagggg	0	2	587	ļ
1641	1663	-	ccctcccgtatcgtagttatcta	0	0	592	Ļ
1854	1876	-	ccttaacgtgagttttcgttcca	0	4	594	ŀ
2347	2369	+	acaggtatccggtaagcggcagg	0	4	597	ŀ
919	941	-	ccttttttgcggcattttgcctt	0	1	618	
299	2488	+	cglillacaacglcglgaclggg	0	2	651	i i
2343	2365	+	gcggacaggtatccggtaagcgg	0	1	659	Í
363	385	-	ccccctttcgccagctggcgtaa	0	3	665	İ
2220	2242	+	cagcggtcgggctgaacgggggg	0	6	688	
2463	2485	+	cgatttttgtgatgctcgtcagg	0	1	696	[
267	289	-	ccccgggtaccgagctcgaattc	0	2	701	l
989	1011	+	agatcagttgggtgcacgagtgg	0	6	703	ļ
1588	1610	-	ccggtgagcgtgggtctcgcggt	0	4	710	Ļ
365	387	-	ccctttcgccagctggcgtaata	0	7	722	ŀ
762	784	+	acttttcggggaaatgtgcgcgg	0	5	735	t
1061	1083	-	ccctgacggacggettgtccaatga	0	0	710	ſ
519	602	-		0	1	756	ſ
366	388	-	cctttcgccagctggcgtaatag	0	9	757	Í
1853	1875	-	cccttaacgtgagttttcgttcc	0	2	769	

Supplementary Table S2 Direct sequencing analysis of Knock-in cell lines

The sequences of PCR amplicon 1 - 4 in Fig.3B, which were analyzed by direct sequencing, were shown. The predicted sequences with forward and reverse direction were shown in colored sequences. PAM sequences were shown with red and bold. The indel were colored with red. The predicted sequeces show the sequences with precise knocked-in (see also Supplementary Fig. S2).

Clone	Direction (Forward, Reverse)	Upstream (VDR genomic DNA)	Upstream (Plasmid DNA)	indel size	Downstream (VDR genomic DNA)	Downstream (Plasmid DNA)	indel size	Amplicon 6
Predic	ted sequence (Forward)	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG		GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTT CGG CTGCGGCGAGCGGTATCAGCTCACTCAAAG		
Predic	<u>ted sequence (Reverse)</u>	CATGAAGCGGAAGGCACTATTCACCTGCCCCTCA/	/GTT CGG CTGCGGCGAGCGGTAT		GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG		
#1	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#5	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#9	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#12	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGC/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	-12/0	negative
#14	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#15	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#16	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCC/	/GACCGAGCGCAGCGAGTCAGTG	-2/0	negative
#17	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCC/	/AGCGAGTCAGTG	-4/-10	negative
#21	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#26	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#29	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#30	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#33	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTC/	/AGCTCACTCAAAG	-23/-23	negative
#35	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGG/	/GGTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	-10/+1	negative
#38	Reverse	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/A	/GTTCGGCTGCGGCGAGCGGTAT	+1/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#40	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCC/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	-2/0	negative
#41	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	-27/0	negative
#44	Forward	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative

Supplementary Table S3 Direct sequencing of additional knock-in clones

The sequences of knock-in clones in addition to the supplementary fig.2, which were analyzed by direct sequencing, were shown. The predicted sequences with forward and reverse direction were shown in colored sequences. PAM sequences were shown with red and bold. The indel were colored with red. The predicted sequences show the sequences with precise knocked-in (see also Supplementary Fig. S2).

Clone	Upstream (VDR genomeDNA)	Upstream (Plasmid DNA)	indel size	Downstream (VDR genomeDNA)	Downstream (Plasmid DNA)	indel size	Amplicon 6
Predicted sequence (Forward)	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG		GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAG		
Predicted sequence(Reverse)	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTT CGG CTGCGGCGAGCGGTAT		GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG		
#2	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#3	n. d.	n. d.		n. d.	n. d.		positive
#4	n. d.	n. d.		n. d.	n. d.		negative
#6	n. d.	n. d.		n. d.	n. d.		positive
#7	n. d.	n. d.		n. d.	n. d.		positive
#8	n. d.	n. d.		n. d.	n. d.		negative
#10	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#11	n. d.	n. d.		n. d.	n. d.		positive
#13	n. d.	n. d.		n. d.	n. d.		positive
#18	n. d.	n. d.		n. d.	n. d.		positive
#19	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#20	n. d.	n. d.		n. d.	n. d.		positive
#22	n. d.	n. d.		n. d.	n. d.		negative
#23	n. d.	n. d.		n. d.	n. d.		negative
#24	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#25	n. d.	n. d.		n. d.	n. d.		positive
#27	n. d.	n. d.		n. d.	n. d.		positive
#28	n. d.	n. d.		n. d.	n. d.		negative
#31	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/A	/GTTCGGCTGCGGCGAGCGGTAT	+1/0	GTCGG/	/CAAAG	-42/-46	negative
#32	n. d.	n. d.		n. d.	n. d.		positive
#34	n. d.	n. d.		n. d.	n. d.		negative
#36	n. d.	n. d.		n. d.	n. d.		negative
#37	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/A	/GTTCGGCTGCGGCGAGCGGTAT	+1/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#39	n. d.	n. d.		n. d.	n. d.		positive
#42	n. d.	n. d.		n. d.	n. d.		negative
#43	n. d.	n. d.		n. d.	n. d.		positive
#45	CATGAAGCGGAAGGCACT/	/(412bp)CTCGCGTTAACGCTAGGATGGATGTTTT	-17/-412	n. d.	n. d.		negative
#46	n. d.	n. d.		n. d.	n. d.		negative
#47	n. d.	n. d.		n. d.	n. d.		negative
#48	n. d.	n. d.		n. d.	n. d.		negative
#49	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/A	/GTTCGGCTGCGGCGAGCGGTAT	+1/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#50	n. d.	n. d.		n. d.	n. d.		positive
#51	n. d.	n. d.		n. d.	n. d.		positive
#52	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/Cas9 sequence (AAGCACGAGCGGCACCCCATCTT···)	0/Cas9	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#53	n. d.	n. d.		n. d.	n. d.		positive
#54	n. d.	n. d.		n. d.	n. d.		positive
#55	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	n. d.	n. d.		negative
#56	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#57	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#58	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/A	/GTTCGGCTGCGGCGAGCGGTAT	+1/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#59	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#60	n. d.	n. d.		n. d.	n. d.		positive
#61	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#62	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#63	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#64	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#65	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	-17/0 (1nt overlapped)	negative
#66	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative
#67	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#68	CATGA/	/GTTCGGCTGCGGCGAGCGGTAT	-30/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCC/	/GACCGAGCGCAGCGAGTCAGTG	-2/0 (1nt overlapped)	negative
#69	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GTTCGGCTGCGGCGAGCGGTAT	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GACCGAGCGCAGCGAGTCAGTG	0/0	negative
#70	CATGAAGCGGAAGGCACTATTCACCTGCCCCTTCA/	/GACCGAGCGCAGCGAGTCAGTG	0/0	GTCGGTTGTCCTTGGTGATGCGGCAGTCCCCGT/	/GTTCGGCTGCGGCGAGGAGTATCAGCTCACTCAAAG	0/0	negative

Supplmentary Table S4 Summary of sequencing analysis of VDR alleles and functional assays of the VDR gene

Column1: clone number in which knock-in event was confirmed. Column2: the sequence detected by direct sequencing analysis of *VDR* gene in the knock-in clones Column3-5: Summary of the results shown in Fig. 4

Clone	Indel mutations	VDR protein expression	CYP24A1 induction	Reporter responsivility
#1	delta 2bp	undetectable	no induction	nonresponsive
#5	delta 2bp, +1bp	undetectable	no induction	nonresponsive
#9	delta 1bp, +1bp			
#12	delta 2bp, delta 3bp			
#14	delta 1bp, delta 2bp			
#15	delta 1bp			
#16	delta 2 bp, Wild-type			
#17	+1bp			
#21	delta 1bp, +1bp			
#26	delta 13bp, delta 10bp, +4bp			
#29	delta 1bp, +1bp	undetectable	no induction	nonresponsive
#30	delta 1bp, delta 2bp			
#33	delta 120bp, delta 1bp, +1bp	undetectable	no induction	nonresponsive
#35	delta 1bp, delta 10bp	undetectable	no induction	
#38	delta 4bp			
#40	delta 1bp, delta 2bp	undetectable	no induction	
#41	delta 3bp			
#44	delta 1bp, delta 3bp			

Supplmentary Table S5 Primers used in this study

Name	Sequence	Construct name	Backbone plasmid
Puro	5'-GTGGCGCGCCGGCGCGAAGGATCTG-3'	pVKG1-Puro	pENTR
	5'-ACTTAATTAAATAAGATACATTGATGAG-3'		
EGFP_pA	5'-ATTCTAGAGCTAGCGATGGTGAGCAAGGGCGAGG-3'	pGFP-RFPuro	pCDH
	5'-ATTTAAATTCGAATT ATAAGATACATTGATGAGTT-3'		
SV40promoter_BSD_pA	5'-CACCGGATCCGGCTGTGGAATGTG-3'	pVKG1-BSD	pENTR
	5'-CCAGACATGATAAGATACATTGATG-3'		
human_CYP24A1_PromoterS	5'-AAACTCGAGATTGTGCAAGCGCCGGCGGC-3'	pVDRE-Luc	pGL4.27
	5'-AAAGATATCATGTTCCTATGCCCAGGGAC-3'		
human_VDR	5'-AAAGAATTCATGGAGGCAATGGCGGCCAG-3'	hVDR expression vector	pcDNA3FLAG
	5'-AAACTCGAGTCAGGAGATCTCATTGCCAAAC-3'		

Name	Sequence	Primer name
Amplicon_1_for_VDR (Fig. 1d)	5'-TTCCTGTCTAGCGGTACGCG-3'	VKG1_250R
	5'-GGTGGGCCTCATGTCTTCTG-3'	VDRgenome_del3F
Amplicon_2_for_VDR (Fig. 1d)	5'-GCCTATGGAAAAACGCCAGC-3'	VKG1_4561F
	5'-CCTTCATCATGCCGATGTCC-3'	VDRgenome_del1R
Amplicon_3_for_VDR (Fig. 1d)	5'-GCCTATGGAAAAACGCCAGC-3'	VKG1_4561F
	5'-GGTGGGCCTCATGTCTTCTG-3'	VDRgenome_del3F
Amplicon_4_for_VDR (Fig. 1d)	5'-TTCCTGTCTAGCGGTACGCG-3'	VKG1_250R
	5'-TGCCCAAACTTGCAGGAGAG-3'	VDRgenome_del3R
Amplicon_5_for_VDR (Fig. 1d)	5'-ATGGCCGAGTTGAGCGGTTC-3'	PuroF
	5'-AGACCCTTGCCCTGGTGGTC-3'	PuroR
Amplicon_6_for_VDR (Fig. 1d)	5'-GCCTATGGAAAAACGCCAGC-3'	VKG1_4561F
	5'-TTCCTGTCTAGCGGTACGCG-3'	VKG1_250R
Amplicon_1_for_AAVS1 (Fig. 2d)	5'-GGAAATGGGGGTGTGTCACC-3'	AAVS_F5
	5'-GGGTCTTGTAGTTGCCGTCG-3'	EGFP_R2
Amplicon_2_for_AAVS1 (Fig. 2d)	5'-CCCTACCCCCCTTACCTCTC-3'	AAVS_R6
	5'-GCAGAGCTCGTTTAGTGAACCG-3'	EGFP_F4
Amplicon_3_for_AAVS1 (Fig. 2d)	5'-GGAAATGGGGGTGTGTCACC-3'	AAVS_F5
	5'-AACCGTCAGATCGCCTGGAG-3'	EGFP_F2
Amplicon_4_for_AAVS1 (Fig. 2d)	5'-ACCTCTCTAGTCTGTGCTAGC-3'	AAVS_R5
	5'-GGGTCTTGTAGTTGCCGTCG-3'	EGFP_R2
Amplicon_5_for_AAVS1 (Fig. 2d)	5'-AACCGTCAGATCGCCTGGAG-3'	EGFP_F2
	5'-GGGTCTTGTAGTTGCCGTCG-3'	EGFP_R2
Amplicon_Puro (Fig. 2d)	5'-ATGGCCGAGTTGAGCGGTTC-3'	PuroF
	5'-AGACCCTTGCCCTGGTGGTC-3'	PuroR
VDR cleaving site (Fig. 3d)	5'-GGTGGGCCTCATGTCTTCTG-3'	VDRgenome_del3F
	5'-TGCCCAAACTTGCAGGAGAG-3'	VDRgenome_del3R
hCYP24A1_qPCR (Fig. 4b)	5'-CAGCGAACTGAACAAATGGTCG-3'	hCYP24A1_qPCR_For
	5'-GCTCGACTGGAGTGACCATC-3'	hCYP24A1_qPCR_Rev
hACTB_qPCR (Fig. 4b)	5'-ATTGGCAATGAGCGGTTC-3'	hACTB_qPCR_For
	5'-CGTGGATGCCACAGGACT-3'	hACTB_qPCR_Rev
Amplicon_BSD (Fig. S4a)	5'-CTGAAGACTACAGCGTCGCCC-3'	BSD_F
	5'-TTCTCATTTCCGATCGCGACG-3'	BSD_R
Amplicon_1_for_HR (Fig. S5a)	5'-TTCCTGTCTAGCGGTACGCG-3'	VKG1_250R
	5'-TGCACCAGAGGGATGGAGAG-3'	HRgenome_F2
Amplicon_2_for_HR (Fig. S5a)	5'-GCCTATGGAAAAACGCCAGC-3'	VKG1_4561F
	5'-TCATGCTGTCCCGAGTCCAC-3'	HRgenome_R1
Amplicon_3_for_HR (Fig. S5a)	5'-GCCTATGGAAAAACGCCAGC-3'	VKG1_4561F
	5'-GCGATGGGAACCTTGGGTAC-3'	HRgenome_F1
Amplicon_4_for_HR (Fig. S5a)	5'-TTCCTGTCTAGCGGTACGCG-3'	VKG1_250R
	5'-TCATGCTGTCCCGAGTCCAC-3'	HRgenome_R1
Amplicon_5_for_HR (Fig. S5a)	5'-ATGGCCGAGTTGAGCGGTTC-3'	PuroF
	5'-AGACCCTTGCCCTGGTGGTC-3'	PuroR
Amplicon_6_for_HR (Fig. S5a)	5'-GCCTATGGAAAAACGCCAGC-3'	VKG1_4561F
	5'-TTCCTGTCTAGCGGTACGCG-3'	VKG1_250R

Figure 1d

Figure 2d

Figure 3a

Figure 3b

Figure 4a

$\alpha \textbf{VDR}$

anti-VDR (CST, Rabbit monoclonal, 1:1000)

anti-VDR (CST, Rabbit monoclonal, 1:1000)

αHsp90 / Ladder marker

 $\alpha\beta$ -ACT

$\alpha\beta$ -ACT / Ladder marker

Supplymental information Supplymentary Figure S4a

M : 100bp ladder marker

Supplymental information Supplymentary Figure S4c

 α VDR

lphaVDR / Ladder marker

α Hsp90

αβ-ΑСΤ

α Hsp90 / Ladder marker

$\alpha\beta\text{-ACT}$ / Ladder marker

Supplymental information Supplymentary Figure S5a

M : 100bp ladder marker

Amplicon 5

Amplicon 6

Supplymentary Figure S5e

α**HR**

αβ-**ACT**

3: IP:anti-HR (ab37540, rabbit) IB:anti-HR (R&D AF5704, goat 1:1000 2:anti-Hsp70/Hsc70 (sc-33575, rabbit, 1:000)

HR KO HaCaT 1:anti-Hsp90 (sc-7947, rabbit 1:1000) 2:anti-bActin (sc47778, mouse, 1:000)

HR KO HaCaT 1:anti-Hsp90 (sc-7947, rabbit 1:1000) 2:anti-bActin (sc47778, mouse, 1:000)