1 Supplementary Information

\sim	
• •	
1	
_	

3	Title: Drinking by amphibious fish: convergent evolution of thirst mechanisms during vertebrate
4	terrestrialization
5	Author affiliation: Yukitoshi Katayama ^{1,*} , Tatsuya Sakamoto ² , Kazuhiro Saito ² , Hirotsugu
6	Tsuchimochi ³ , Hiroyuki Kaiya ⁴ , Taro Watanabe ¹ , James T. Pearson ³ , Yoshio Takei ¹
7	¹ Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5
8	Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
9	² Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Setouchi,
10	Okayama 701-4303, Japan
11	³ Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute,
12	5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
13	⁴ Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1
14	Fujishirodai, Suita, Osaka 565-8565, Japan
15	*Corresponding author: Yukitoshi Katayama, Laboratory of Physiology, Atmosphere and Ocean
16	Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
17	E-mail address: katayama3g@aori.u-tokyo.ac.jp
18	Tel: +81-4-7136-6204, Fax: +81-4-7136-6206

20 Supplementary Methods

22	<i>In situ</i> hybridization of AT1. The brains were fixed in 4% paraformaldehyde in phosphate buffer
23	(PB) and embedded in Palaplast (McCormick Scientific, Richmond, IL, USA). Serial sections were
24	cut at 7 μ m to obtain cross sections and mounted onto MAS-coated slides (Matsunami Glass, Osaka,
25	Japan). The cDNA fragment (1095 bp) specific to atl was amplified using gene-specific primers
26	(ATGAAGAACATAACCTCAGGAGCAG, TCATTTAATGTCAGAGGAAGACTTG) and used to
27	synthesize digoxigenin-labeled antisense and sense cRNA probes (DIG RNA Labeling Kit; Roche
28	Applied Science, Mannheim, Germany) according to the manufacturer's protocols. The rehydrated,
29	rinsed sections were treated with 5 mg/ml proteinase K (Sigma-Aldorich, MO, USA) in Tris-EDTA
30	buffer [100 mM tris (hydroxymethyl) aminomethane and 50 mM ethylenediaminetetraacetic acid, pH
31	7.5] and then hybridized with 1 μ g/ml DIG-labeled cRNA probes in hybridization buffer [50%
32	formamide, 5 × Saline Sodium Citrate Buffer (5 × SSC, 750 mM NaCl and 75 mM sodium citrate,
33	pH 7.0), 40 μ g/ml bovine calf thymus DNA] at 58°C for 40 h. After hybridization, sections were
34	washed in 2 \times SSC for 30 min at room temperature, followed by 1 \times SSC for 1 h at 65°C, and finally
35	in 0.1 \times SSC for 1 h at 65°C. Following immunohistochemical reaction with alkaline phosphatase-
36	conjugated anti-DIG antibody (Roche Applied Science, Upper Bavaria, Germany), hybridization
37	signals were visualized with 4-nitro blue tetrazolium chloride (450 mg/ml) and X-phosphate/5-
38	bromo-4-chloro-3-indolyl-phosphate (175 mg/ml) after 1 week at room temperature. Stained sections

were dehydrated with ethanol, cleared with xylene, coverslipped, and observed under a microscope
with image sensor (FSX100, Olympus, Tokyo, Japan).

42	c-Fos immunohistochemistry. The brains were dissected out 1 h after ICV injection of AngII or
43	vehicle and fixed in 4% paraformal dehyde in PB. The fixed brains were cut at 7 μ m. The sections
44	were immersed in methanol containing 0.3% H ₂ O ₂ for 30 min at room temperature. After rinsing in
45	phosphate buffered saline (PBS), the sections were incubated with proteinase K (10 mg/ml in PBS)
46	for 10 min at room temperature. The sections rinsed thoroughly in PBS were pretreated with a
47	blocking solution (2% normal goat serum, 0.01% NaN3 in PBS) for 1 h at room temperature and
48	incubated with a polyclonal antibody raised against human c-Fos (1:200, sc-253, SantaCruz, Dallas,
49	TX, USA) for 12 h at 4°C. Specificity of the antibody against c-Fos protein of the mudskipper was
50	checked by Western blotting analysis ²⁵ . After rinsing in PBS, the sections were treated with ABC
51	Elite kit (PK-6101, Vector, Burlingame, CA, USA) according to the manufacturer's instruction. The
52	sections rinsed in 0.1 M PB were immersed in 0.01% 3, 3' -diaminobenzidine tetrahydrochloride
53	(DAB) in PB for 3 min to intensify colourization and then incubated in 0.01% DAB solution
54	containing 0.01% H ₂ O ₂ for 3 min in dark. Finally, the sections were rinsed in PB and distilled water,
55	and immunoreactive c-Fos was examined. The photomicrographs were binarized by graphic software
56	Image J (<u>https://imagej.nih.gov/ij/</u>) and the number of c-Fos positive neurons was counted manually
57	and compared between the cohorts. The parvocellular preoptic area anterior part (PPa) was defined

58 from the rostral tip of the anteroventral region of the third ventricle up to the level where the corpus

59 callosum emerged caudally. Every third sections was analyzed in order not to count positive cells

60 twice.

62 Supplementary Figures

63

(a)

Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	 NQHHKNLTIVKMKRFTLVLLLCSCIFCGSSANRVYVHPFNLFAAE MQRLQAPLLVVLLCC-CLSRANRVYVHPFYLFAAE MKMFLAFLFLSCFAMARTNRVYVHPFNLFSSE MKWALCFLCLGMAALCSPCVGEEDYDDRPYMQPFHLIPPF WKLFILLLLAFCAALCSPCVGEEDYDDRPYMQPFHLIPPF 	ENVSCE 50 ENVSCE 39 ENISCE 37 VNK 34 PLSVQ 44
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	TLQTQTKSLE-TISMVPLDMNVLTPDIRNM TLHNQISKPLETLPVSPLDSEVLTPDNRDF VIQSEEHKPLETVHPLPPLPGSTDPDPRTA sh TQSDDQVNNKTFLPPLAEFLKLQARMVPDSGS y ATEQPLASNE-TWDYPEPLAPGQSPAASSEEGSSEEKGDERESHF	MSQV–DIQRQNIRETT 93 PSKV–NPQNITER––T 81 ASAAESLKNLTQR––T 80 SSDDEDQAHPKTKQIW 81 RGEGRRGRKDKYKSKT 103
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	AVLAKLLNSVGLRM-YQALS-GKQQSSNTLLSPVNT- AVLAGLLNPLGLRM-YVALS-RKQRSENTLLSPVNT- AVLAELQNSLGLRM-YQTLS-RTQKHTNTLLSPLNA- sh LKERNTKLQAVAISQTENTVVLLNHAFPPNRCADL y QRIASAVNGLGFRLYKQVLGGAGPADNIFFSPLSIASALGVVAA-	YGSLVTFY 135 CGSLFSFY 123 FGALVTLY 122 -VLSPLQIYSSLAALS 131 GANGS 152
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	L GAAKKTARSYQLLLGLSSDT - DREDCVSLVDGHRVLRTLQSINS LGASKTTASYFLRLLGLSDTD - REE - CLSIVDGHKVLGTLQNIHS LGASKKTAISYQQLLGLNLES - EQTDCAYFVDGHTVLRTLQAIS - sh LGAANATAQIFHDILGFTSSSQVTTANLREKDASVRQLN DF Y TRAELDTALGFKELLHGKKKAKSMKYFARLNSALYRRSAGFELMO * ** *	S L V D D G P K D E I – S T Q V 193 S L V D D G P K E K I – T T Q V 180 - A H V D E S R K E L R T L V 179 - L L S W L P G R Y L – S T – R 185 G K N V V F S K K G L – – W L Y 210
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	 WAFTPTHTQL - SVDFVHGTQDF - SDSSFIRSVDFSNTQETEQQVN WAFARKGAQL - SRDFIQGTQDF - SDSSYIRGVDFSNPQETEKLLN WTFVNSDADL - SKEFLRGTQDF - SDDSFVRSVDFSQAKDAEVEVN sh NWIFVQRDIK - VLESFAVNAKEFYNVNLLAIDFTHTPLAEQLINF y RQFTRTVAHLFKSNVRSVDFGESKEAVELMNAYIEKVT SK 	NSFVEKTSGGKVKNIF 251 NSFVEKTSNGSLRNVF 238 NFIQKTSDNKVKSMF 237 RY-MHNASGGRVKDP 243 KFTDVISDVDTATSL 265
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	 T - ELNTSSNLXFLSSF NFQGNWKTVFQAEKTSEQEFYVDETTT A - DLNSSSNILFLSSF NFQGKWKTAFQPEKTSLQEFYVNPTTT K - GVTPKTDLLFASSV HFKGNWKTAFQPEATSD QDFWTQKN sh VIGLSPTATMMSASYM EFKGKWKKAF ESHTTELQDFFIEED yMIVNVIYFKGSWANKFEPDLTKNVRFW VNSS YSMMVPT 	「IMTPVMMHTGP 304 「VMSPMMTRTGH 291 NSSVQVPFMMHTGD- 290 DRRIRVPTMSQAGWFQ 299 「MHQRAKLSYAQDR 316
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	 - Y HYL NDKVRRCTVVKLSLSKRSYMLLVLPHEGTSLGEIE - Y HYL NDKLRRCTVLKLSLSKQAYMMLVLPHEGVNLSDIETEA - - Y KYLDDAGRKCSIVRLGLSKRTFMLLVLPHEGASLQDIEKPLL sh GIVAHEYTAIKLPMAGSTS - MTIVQPVKVDLMQKIHRKLPIRTIF y KLRSTVIKLPYEGGASMLVIVPHRTEELPKVEESVSQEQLEE 	- SKLLTVI SYWNENLQ 358 - NLHTNVFSAWHQNLQ 348 - TVI PTWLRHLKEKYL 348 - EQLQSRFVKVSLP - 356 - WLSLLGPSNHYVQL - 372
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	F EGLLELSLPKFSMSAVNNLHDLLANMDPEIEAKLLGAQAEFSQLS EGPLELSLPKLSTSSVNDLNELLTNMNPEIEAKLLGSEAEFSQLS ELSLPKFSLTAVTDLRSVLSEMAVEKYLMG-SD-ASFRRMS shKFKLDTTYNIKDIFLRMKGPDAFSSEADFSRLS ySLPKFKISVSYDLKAYLSAMGMPSMFSYGADLSRIT *	S N T K P F T V Y K A L N K V T 418 S N I T L F S I D K A V N T V R 408 S S K E N F T V D K V L N K V V 402 S N D G R L K P D K V T N N I 404 I G M Q K L H V D K I T H K S V 423 *
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	 FEMSEEGTDAQTKTQDGGIPLKLSINRPFFFS-IIEEDSGA FDMSEEGAEPQDKKEAAGVPLRLSFNRPFFFS-VIEGYNNA FEMTEGGSEVQNRTDDGRAPHKVTFNRPFFFA-VVEGNSNA sh FELTE-DWEEPVAQGNVQFNNATEIKINRPFLFH-VYDDVSNT Y LHVNEEGTEAKAETVVGIMPISMPPTVTVDRPFVVLIYDEKTRAV * ** 	AILMLGKIINPAL 470 AILLLGKITNPLL 460 AILMLGKIINPTA 454 FLLFVGRVKNLTEYDQ 460 VIFMGRVA-DPKQ 479
Mudskipper Medaka Zebrafish Elephant_fish Sea lamprey	r _ _ _ sh N	461

Mudskipper_AT1	MKNI TSGAESDGI NLTCGMSGNHDFI FTLXPI VYGCNX	38
Medaka_AT1	MQNQT - AWA TKEINLTCGMSGSHK FIFTLVPIVYSFNF	37
Zebrafish AT1a	MENQT-SAMSEDLHVNCSMSGRHGFIFTFIPVVYGCNF	37
Japanese eel AT1	MENLT-VGRTEGIHITCNTSGRHSYIYTLIPVVYGCNF	37
Zebrafish AT1b	M D N V T - S D S N T G L A L A C N M T G H H S F I F T F I P V V Y S F N F	37
River lamprev AT1	MSGVD-VANESLAALHNGTALKNLASERCPAAFTNPTTLTAVPVMYGLLF	49
	* * * *	
Mudskipper AT1	ΙΙ ΟΙ Υ ΟΝ SM/ Υ Α ΥΙ Υ ΟΥ ΜΚΙ ΚΤΥ Α ΗΙ ΕΥΙ ΝΙ ΑΙ SDΙ ΤΕΙ ΙΤΙ ΡΜWΑΤΜΤΑ	88
Medaka AT1		87
Zobrofich AT10		97
	VI GI V GNSMVVAVI FRIMKLKIVANI EVINI AVSDITELI I LEVATETA	97
Zebrafish AT1h	I GI I GNSM VVAVI VECIKI KTVANI EVENI AVSDETTETTE MWATTTA	87
River lamprey AT1		07
Triver lampley_ATT	* ** **** ** ** *** *** *** *** *	00
Mudskipper AT1	T CY HWPE CCEL CKATAALASENI YTSI EELTALSI DRYLALVHPVSSRRE	138
Medaka AT1		130
Zebrafish AT1a		137
		137
Zobrofich AT1h		137
Pivor Jamprov AT1		1/0
River lamprey_ATT	* * * * * * * * * * * * * * * * * * *	145
Mudskipper AT1	RTVI YARI TCVI I WI FALLI SVPLALTRDI HNI NNRNI TVCALI HPTKDN	188
Medaka AT1	RTVVYARI TCVVI WI FAFVI SVPTAL TRDVHDI KNPOTTVCGI I HPKAFN	187
Zebrafish AT1a	RTI FYANI TCVI I WI FALLI SAPTAL SRDVYDI GNI TI CAV WHSS	182
Japanese eel AT1	RTVVYARITCVII WAFAFLLSLPTALSRDVFTINHPNTVCGTLD	182
Zebrafish AT1b	RTVI YARVTCVLVWVVSFGLSLPTALI RGTHFI ODNNVTVC AI HH	182
River lamprev AT1	RTRRARAACVVVWVTAVLLSVPVAVFRVTFVHGGRTVCALR	191
	•• • •• • •• •	
Mudskipper_AT1	V Q S L E Q V L L A I S L M K S L L G F L L P F I I I I T C Y C L I G R A L L G A R H I Q K S S Q S	238
Medaka_AT1	SERLKELLLAI GVLKSLLGFLVPFIIIIITCYCLI GRALLRVKHI QKNSRS	237
Zebrafish_AT1a	KQI HFLVTLSVLKSVLGFI VPFLI I FTCYCLI GRALLGSRGLLRKSVR	230
Japanese eel_AT1	KNELSHVLVAI GLMKSVLGFLI PFVI I VTCYCLI GRALLEARRVQSSRSR	232
Zebrafish_AT1b	KEDI RNVLAALSLMKSVFGFLLPI TVI LTCYCLI GRALPKARDI QRNARS	232
River lamprey_AT1	Y P S A R T WF L A M N V T R N V A G F L V P F L V I V T C Y S L I G R T L L R R G G D V V R D K	241
Mudskipper_AT1	RD-DEVLRMLAAAVLAXFVCWVPHQIFHFMQLLTQLS-KTDNCRLLEIID	286
Medaka_AT1	R D - D E V L H M L A A A V L A F F L C WA P H Q V F H F M Q L L T Q Q I L V E N C T M L E I I - D	285
Zebrafish_AT1a	SREDETLRMIAATVLAFFVCWAPHQAFHFMELLATLG-VVENCQTLDVID	279
Japanese eel_AT1	GDEVLQ MLAAVVLAFFLCWVPHQIFHFMHVLALLK- VIENCPTLDIID	279
Zebrafish_AT1b	N G- D E V L N M L A A A A L S F F L C WA P H Q I F N F M E M L L L K - V I T S C D V V D I I D	280
River lamprey_AT1	VLPA - VLAVVLAFLLCWLPYHVLTLLDTLVRLRVLRGCGVTAAVDAAMPV * *	290
Mudskipper_AT1	T V M P F T I C I A Y F N S C V N P I V Y G F V G R N F R K N L V R L H C A P A S V R G A H P S I	336
Medaka_AI1	TAMPFTI CIAYFNSCMNPI VYGFVGRNFRKNLLRLLCSPGRPAGPHQSI	335
Zebrafish_AT1a	TAMPFTI CI SYLNSCVNPI LYGFVGHNFRKNLLRLLSCG- SGEASNRFSI	328
Japanese eel_AT1	SALPFIICIAYFNSCMNPILYGFVGRNFRRNLLRLRCG-PGSAPRHSHP	328
Zebrafish_AI1b	IGMPFIICTAFFNSCMNPILYSFVGKNFRRNLLKLLKCSSISVASHP	327
River lamprey_AT1	A V V V A Y T N S C L N P L L Y S F V G K G F R Q G F G R L R L S A Y V P *** ** * * * *** **	328
Mudekinner AT1	SSKMSAL - SEPASEALSLTVKNKSSSDLV	364
Medaka AT1	SSKMSAL - SFRASFALSLTVKSNVSTDVK	362
Zebrafish AT1a		350
	SI TTKMSTI SVRASETI RI TSGKAASSODAK	350
Zebrafish ΔT1h	AL STKMSSI SYRTSFI SHI SVI KTPSI PRAT	358
River lamprev AT1	RPLASSETRSSSLRSRVVEMENIR	352
	ALL THE TRANSPORT	002

(b)

66

67 Supplementary Figure 1. Amino acid sequences of angiotensinogen and angiotensin receptor

68 type 1 (AT1). (a) Alignments of angiotensinogens of different fish species. Shaded regions indicate

69 conserved amino acids between the mudskipper and other fish in the sequence converted to

angiotensin II (AngII). (b) Alignments of several AT1s of different fish. (c) The phylogenetic tree

including AT1, angiotensin receptor type 2 (AT2), apelin receptors, and bradykinin receptors.

- 72 Numbers represent bootstrap values.
- 73
- 74

77 Supplementary Figure 2. Effects of environment salinities on amphibious behaviour.

78 Mudskippers were transferred from the tank for acclimation (10-ppt seawater) to tanks containing

freshwater (\bigcirc , n = 6), 10-ppt seawater (\bigcirc , n = 6) and 30-ppt full-strength seawater (\bigcirc , n = 6). *P < 6

- 80 0.05 with two-way repeated measures ANOVA and Dunnett's post-hoc test.
- 81

84 Supplementary Figure 3. Dose-dependent effects of angiotensin II (AngII) and vasotocin on

drinking rate. Fish were put in a columnar tank (diameter-65 mm, height-92 mm) containing phenol red in 10-ppt seawater after intracerebroventricular injection with 0.1 μ l/g of 3×10⁻⁶ M (n=5), 3×10⁻⁸ M (n=5), and vehicle (n = 8) of AngII (a) or vasotocin (b). Mudskippers were held in water for 1 h. One-way repeated measures ANOVA and Tukey's post-hoc test were used for statistical analysis.

B9 Data are shown as mean \pm s.e.m. **P* < 0.05, ***P* < 0.01 versus controls.

90

91 Supplementary Movie Legends

92

93	Supplementary Movie 1. Visualization of swallowing of buccal/opercular water on land by X-
94	ray. In X-ray movies, concentration of shadow indicates the radiopacity of contrast medium. The
95	medium was stored in the esophagus to some extent and immediately flowed to the intestine. The
96	mudskipper does not have a stomach and the esophagus is connected directly to the proximal
97	intestinal swelling. This movie is $5 \times$ faster than actual recording speed.
98	
99	Supplementary Movie 2. Visualization of the migration to water followed by the capture of
100	water in the buccal/opercular cavity. The contrast medium that the mudskipper acquired in the 96-
101	well microplate hole was held in the buccal/opercular cavity on land (on top of the microplate). This

102 movie is played at actual recorded frame rates.