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Supplementary Methods  

 

The rePrime algorithm workflow 

The rePrime algorithm is used to generate molecular signatures and derive reaction rules from a 

database of known reactions (i.e. MetRxn database
1
). A molecular signature is a vector that 

concatenates into a single value the number of attributes for each moiety in a molecule, described 

as a collection of prime numbers (see Fig. 2). A reaction rule is thus defined as the vector that 

captures the changes in all moieties of participating metabolites upon reaction. A reaction rule 

uniquely captures the eliminated and newly formed moieties around the reaction center. rePrime 

involves three major steps that are iteratively applied for an increasing moiety size ( ) (i.e., 

distance in graph) centered at node n. At the beginning      , the moiety is simply the atom at 

node  , whereas after one iteration (   ) the moiety is composed of all the atoms bonded to 

the atom at location  . At    , the moiety encompasses all atoms connected by at most two 

bonds with node  . Typically, we terminate for     as this yields reaction rules that most 

economically capture the diversity of available reactions in the database (see Fig. 2a). A detailed 

description of using rePrime to generate molecular signatures and reaction rules is provided in 

the following sections. A toy example demonstrates the rePrime algorithm using a set of two 

decarboxylase reactions i.e., 2-hydroxyisophthalate decarboxylase (2HIPD) and salicylate 

decarboxylase (SLD) (see Supplementary Fig. 1). 

 

Step 1: Identification of moieties for all metabolites in the MetRxn database  

rePrime is applied to the MetRxn database that is comprised of a set             of 

metabolites and a set             of reactions. For each metabolite, a node set    
          denotes the list of atoms (see Supplementary Fig. 1). To capture the context-specific 

nature of each atom   in a metabolite  , atom-feature (     is defined as a string that encodes 

information about the atom and bonding environment. For example, the atom feature “3-4-06-0” 

for the carbon atom at location     of 2-hydroxyisophthalate (see Fig. 2b) encodes the 

presence of 3 non-hydrogen connections, 4 non-hydrogen bonds, the atomic number of carbon 

(i.e., 6), and 0 hydrogen bond, respectively. Since no reactions involved stereochemistry changes 

in our case studies, we chose here to use a simplified atom feature string for the simplicity of 

illustration. Note that the atom-feature is an option in rePrime that can be extended to include 

more descriptors depending on the goal of the users. For example, to discover pathways that 

account for stereochemical changes, the atom feature string can be extended to include the stereo 

descriptor as described in the CLCA
2
 algorithm. At moiety size    , the rePrime procedure 

initiates by identifying the unique moieties in all metabolites, and assigning a prime number 

label uniquely representing a particular moiety in an ascending order of the lexical order of the 

string    . 

 

In detail, the first (   ) assignment of prime numbers is performed as followed: 

   
                     ,            

where    
  is the prime number assigned for atom   in metabolite   and moiety size  ,     is the 

atom-feature for atom   of metabolite  , and   is an injective function that maps     to a unique 

prime number based on the lexical ordering in an ascending order of the atom-features    . 

Consequently, function   assigns a unique prime number in a rank-ordered manner. Thus, nodes 

3, 4, 8, 9 and 12 in molecule 2-hydroxyisophthalate sharing the same atom-feature “3-4-06-0” 
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are assigned the same 5
th

 prime number ‘11’ in accordance with the lexical ordering in the 

column of atom-features (see Fig. 2b and Supplementary Table 1). Supplementary Table 1 shows 

the atom features and their corresponding moieties at     (i.e.    
 ) for all the nodes of 

metabolites 2-hydroxyisophthalate (2hipa), salicylate (sal), phenol (phnl) and carbon dioxide 

(co2). 

 

rePrime next expands the range to    , and recalculates the unique label of each atom and the 

corresponding prime number assignments (i.e.    
 ). As described in CLCA algorithm

2
, the 

procedure first applies prime-factorization to generate a unique canonical label for each atom and 

then maps it with a unique prime number. Note that rePrime does not involve atom mapping but 

applies the atom-feature string described in the atom mapping algorithm CLCA
2
 to extract the 

number of moieties and combined them into a molecular signature representing each metabolite. 

The unique canonical label is the product of prime numbers assigned to the adjacent atoms in the 

previous iteration and is generated as follows: 

   
       

    ∏     
  

      

            ,            

where    
  stores the prime-product for each node   of metabolite   at moiety size  , and     is 

the set of adjacent nodes of atom   in metabolite  . The prime-product is composed of the primes 

assigned to atom   and all the atoms connected with   (i.e.,   ). Therefore, it is informed by the 

properties of all the atoms connected to the atom at location  . Figure 2c depicts the prime-

product calculated for each node in the metabolite 2hipa. The adjacent nodes            of 

node     are assigned the prime numbers 3, 2 and 11, and hence         
  calculated in step 

(1.2) is equal to ‘7986’. Note that the same prime-product ‘7986’ is obtained for atom      of 

hipa and      of sal (see Supplementary Table 1) indicating the presence of a carboxyl group 

(-COOH) at those locations on both the molecules 2hipa and sal. The proposed labeling scheme 

recognizes common moieties within a moiety size of   and assigns to them the same prime-

product canonical label designation.  

 

Next, we map a unique prime number to each canonical label    
  by the injective function  : 

   
         

            ,           

Similar to equation (1.1), function   maps prime numbers based on the lexical ordering in an 

ascending order of canonical label    
 . For example,         

          
             

  are assigned 

the same 8
th

 prime number ‘19’ based on the    
  value of ‘7986’ (see Fig. 2c and Supplementary 

Table 1). In the next iteration, (i.e., moiety size    ) equations (1.2) and (1.3) are applied 

again to calculate    
 . Similarly,    

  captures the moieties that encompasses all atom connected 

by at most two bonds with atom  . This step recognizes the presence of the larger common 

groups between molecules 2hipa and sal. Supplementary Table 1 shows the values for    
  and 

   
  for each            and for every atom of each metabolite involves in reactions 2HIPD and 

SLD. All prime numbers (   
 ) are ordered into the set                    to index each 

moiety   (see Supplementary Table 2). 

 

Step 2: Determination of the molecular signature of each metabolite. 
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The molecular signatures are assembled by counting the number of each moiety   in each 

metabolite   (see Fig. 2b and Fig. 2c):  

   
  ∑  

    
    

    

                             

where the Kronecker delta enables making the appropriate matches 

 
    

    
 {

         
   

            
 

and    
  is the molecular signature that encodes the number of moieties   of a moiety size   in 

each metabolite  . For the moieties   indexed over the domain of prime numbers   , a value of 

1 is returned for each node      when    
   . Supplementary Table 2 shows the molecular 

signature of each metabolite in reactions 2HIPD and SLD. Moieties at different moiety size   are 

stored in our database separately. 

 

Step 3: Inference of the associated reaction rule for each reaction in MetRxn. 

Upon a biochemical transformation, moieties present in a reactant(s) that are part of the reaction 

center undergo changes while the remaining moieties are left unchanged. To derive the reaction 

rules, we calculate the changes in the number of moieties between the reactants and the products 

for all reactions:  

   
  ∑   

   

   
                              

where each   represents a moiety and    
  is the reaction rule that encodes the change in the 

number of moieties   upon reaction  , and     is the stoichiometric coefficient of metabolite   in 

reaction  . In equation (1.5), moieties that participate in the reaction center do not cancel out (see 

Fig. 2d).  

 

Upon generating all the reaction rules, repetitive reaction rules are removed to form a unique set 

for the final database as follows: 

    
       

                              

where function   removes repeated entries in    
  and assigns a new index   to each unique 

reaction rule. A new set                of reaction rules is defined to index every unique 

reaction rule. For example, the reaction rules for reactions 2HIPD and SLD are identical and thus 

only one of them should remain in the database (i.e.,         
  and       

  are now stored as     
 ). 

Supplementary Table 3 shows the reaction rules for reaction 2HIPD and SLD at different moiety 

size  . The algorithmic description of rePrime (equation 1.1 to 1.6) is summarized in 

Supplementary Table 4. Every rule is assumed to be reversible in the current study by 

hypothesizing that de novo enzymes can catalyze the opposite direction by creating the 

appropriate metabolite concentration imbalance. However, as a target of future work, a pre-

processing group contribution approach that was employed in the optStoic
3
 framework can be 

introduced into rePrime workflow to determine a priori the reaction reversibility. 

 

Note that rePrime generated reaction rules also include the information of the moiety changes 

between cofactor pairs. For example, rePrime can distinguish reaction rules with or without ATP 
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(see Supplementary Table 5 and 6) because ATP and ADP are also considered as reactants and 

products in step 1 and step 2, and the moiety change between ATP and ADP is included in the 

reaction rule generated in step 3. However, in most cases, different cofactor pairs which 

exchange the same chemical groups (e.g., both NADH/NAD
+
 and NADPH/NADP

+
 transfer 

electrons) undergo the same change in moiety balance. As a result, the same rule can be 

associated with different cofactor pairs. Therefore, unless we impose a constraint on specific 

cofactor type that can be utilized in the pathway (e.g. the cofactors utilization constraints 

imposed in the BDO synthesis example), rePrime/novoStoic will not be able to differentiate 

between them. In such a case, we usually report the cofactor pair as NAD(P)H. 

 

Upon the termination of the rePrime procedure, 50 unique moieties and 826 reaction rules at 

moiety size one, 298 unique moieties and 1,929 reactions rules at moiety size two, and 1,110 

unique moieties and 6,043 reactions rules at moiety size three are calculated and stored in the 

database.    
  and    

  are parameters used as input data for the novoStoic optimization 

formulation for novel pathway design discussed in the next section. 
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The novoStoic algorithm: Definition of sets, parameters, variables and optimization 

formulation 

novoStoic uses an MILP representation to pose the task of identifying a biochemical pathway 

that converts a source metabolite to a target as an optimization problem. The objective function 

involves the maximization of a profit function (e.g., the cost difference between substrate and 

product) to prioritize biosynthesis routes from inexpensive substrates to a high-value product. 

Additional requirements on the maximum number of reaction rules or reaction steps can be 

imposed as constraints. The identified pathways are by design component and moiety balanced. 

novoStoic can incorporate any combination of the following five design rules: 
i) combine both known and hypothetical reactions within a component balanced and moiety 

balanced reaction network,  

ii) customize the network size (i.e., the number of known and hypothetical reactions), 

iii) select a host organism such that the least number of heterologous reactions are identified (the 

organism is suggested if one is not provided a priori), 

iv) ensure that the reactions and rules belong to common categories (i.e., the same pathway or 

subsystem annotations in databases), and 

v) ensure negative overall standard Gibbs free energy change. 

The novoStoic draws from the definition of the following sets, parameters and variables.  

 

Sets 

                   set of moieties (prime numbers) 

                 set of reaction rules calculated at moiety size     

                 set of reaction rules calculated at moiety size     

                 set of reaction rules calculated at moiety size     

              set of all metabolites in MetRxn 

                           set of reactions in MetRxn excluding exchange reactions 

                  set of organisms in MetRxn 

                  set of pathway/subsystem annotations in KEGG, MetaCyc, and       

BRENDA 

        subset of reactions in pathway/subsystem   

         subset of reactions in organism   

                   set of target metabolites  

           set of predetermined precursors that can be used to produce target 

metabolites 

               set of co-substrates/co-products allowed in the pathway design 

                              set of all exchange metabolites 

 

Parameters 

    moiety size, and           
     stoichiometric coefficient of metabolite   in reaction   

   
    molecular signature of metabolite   encoding the number of moieties   at moiety 

size   

   
   reaction rule   that captures the change in the number of moieties   at moiety 

size   

       cost per mole of metabolite   
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 free energy of formation of metabolite   at typical cellular conditions (i.e. pH 7.0 

and ionic strength of 0.1M), identified using eQuilibrator
4
 

       : the maximum number (cutoff) of heterologous reactions in the designed 

network;  

    : the maximum number of hypothetical reactions in the designed network;  

    : the maximum number of known reactions in the designed network;  

       the maximum number of rules not associated with pathway   that can be 

active in the designed network 

      the maximum allowed value of free energy change under typical cellular 

conditions for the network (at pH 7.0 and ionic strength of 0.1M)  

   big M (large positive constant) 

      upper bound for the summation of stoichiometric coefficient of source metabolites  

 

Continuous variables  

    flux of reaction   

 

Binary variables 

  
     {

                                                    
           

  

  
      {

                                                         
           

  

  
   

 {
                                       
                                                            

 

  
    

 {
                                                                            
                                                                                                                                                 

 

 

Integer variables 

  
    flux of the exchange reaction of metabolite  . A negative and positive value 

indicates the active uptake and export of metabolite  , respectively 

   flux of a hypothetical reaction guided by reaction rule  , and a non-zero value 

indicates that this hypothetical reaction participates in the designed pathway 

  
     surplus or deficit of metabolite   in the known metabolic network. A positive 

value indicates that metabolite i is exported from the known metabolic network to 

the hypothetical (i.e. reaction rules) network, whereas a negative value indicates 

that metabolite   is imported from the hypothetical network into the known 

metabolic network (see Fig. 3a) 

 

novoStoic (MILP formulation for biosynthesis network design) 

The novoStoic formulation maximizes the profit margin of the overall conversion while 

imposing the five design rules described earlier. Note that moiety size   is specified for each 

novoStoic simulation such that reaction rules and molecular signatures derived at different 

moiety sizes are not mixed.  

         ∑         
  

     

 

subject to: 
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novoStoic maximizes the difference in prices between the substrates and targets scaled by the 

corresponding stoichiometric coefficients in the overall conversion. Constraint (1.1) defines the 

target metabolite(s), which are part of the input. Constraint (1.2) ensures that novoStoic selects 

only substrate molecule(s) from a list of predetermined precursors to design pathways to the 

targets (see Supplementary Fig. 2 for toy example). Assume that the overall conversion is 

               

where  ,  ,  ,  , and   are the stoichiometric coefficient of metabolites A, B, C, D, and E, 

respectively. These coefficients are defined as integers. Note that the exact stoichiometric 

coefficients do not need to be determined a priori as an input for novoStoic. It is only required to 
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specify that   is a positive integer value if D is the target metabolite, and that the summation of   

and   is a negative integer if A and B are within a list of source metabolite candidates (see 

constraint 1.2). In the latter case, novoStoic will select A or/and B to be the source metabolite(s) 

(e.g.,        and       if A is identified as the only source metabolite). The value of   and   

can be either positive or negative depending on whether they are co-substrates or co-products 

identified by novoStoic. novoStoic optimizes an overall stoichiometry for the most cost-effective 

design. The exchange flux of the source and target metabolites of the designed pathway must 

conform to the overall stoichiometry as followed: 

  
        

        
        

       
     

 

Constraints (2) and (3) are central for combining both known reactions and reaction rules within 

a single component-balanced and moiety-balanced framework. Constraint (2) enforces a 

stoichiometric balance in the known reaction network for each metabolite  . Any deficit or 

surplus of a metabolite   generated from the known reaction network is characterized by the 

variable   
   . Therefore,   

    links the known reaction network and the hypothetical reaction 

network (see Fig. 3). A positive value for   
    indicates that the designed pathway carries flux 

from a known reaction to a hypothetical reaction at metabolite  . Likewise, a negative value for 

  
    indicates that a hypothetical reaction passes flux back to a known reaction at metabolite  . 

All the reactions    in constraint (2) are internal, and thus the metabolites in the known reaction 

network can only be exchanged through   
   . Constraint (3) enforces a moiety balance in the 

designed network for each moiety   on all      
     and   

   (see Fig. 3). novoStoic searches 

from both known reactions and reaction rules to balance the number of moieties. The right hand 

side of constraint (3) (∑    
   

  
     ) represents the overall moiety change of the designed 

pathway for each moiety  . The first term on the left hand side (∑    
       ) indicates the total 

moiety changes in all the hypothetical reactions for each moiety  , whereas the second term 

( ∑    
   

   
   ) depicts the total moiety changes in all the known reactions for each moiety  . 

Thus, the overall moiety change equals the summation of moiety changes in both the 

hypothetical and known reactions. When ∑    
   

    ∑    
   

  
         , the term ∑    

        

must be active thus implying that certain reaction rules are selected into the designed pathway. 

As shown in the toy example (see Supplementary Fig. 2), using the component/moiety balance 

constraints, the solution (i) selects two known reactions (2HIPD and SLD) to produce phnl and 

no hypothetical reactions are involved (     ), whereas solution (iv) selects only reaction 

rules and no known reactions are involved (     ). Constraints (4) and (5) control the number 

of known reactions allowed into the designed network, whereas constraints (6) and (7) control 

the number of reaction rules allowed into the designed network. In the toy example, we define 

that the maximum number of known reactions        and the maximum number of 

hypothetical reactions        to control the network size. Constraint (8) forces the overall 

conversion to have a negative standard free energy change. The parameters needed for this 

constraint (   
 
) were calculated using eQuilibrator

5
.   

 

More constraints are active when we design more complex pathways to reduce the search space. 

With these additional constraints, novoStoic identifies the suitable chassis organism for 

engineering and simultaneously selects reactions predominantly from a particular reaction 

category (i.e., pathway/subsystem). Constraints (8) and these additional constraints are not active 

for the toy example. 
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In detail, constraints (9) and (10) cause the selection of the maximum number of reactions from 

organism   and minimize the number of heterologous reactions (i.e. reactions not from organism 

  are controlled by     ). Constraints (11) and (12) ensure the reactions and rules belong to 

common categories. The categories defined by pathway and subsystem annotations in databases 

such as KEGG
6
, MetaCyc

7
 and BRENDA

8
 are manually curated by experts and built on the 

observation that certain sequence of chemical transformations is conserved across various 

species and taxa. Genetic loci (gene clusters) and genetic controls related to expression and 

regulation have also been factored into the pathway and subsystem annotators
9
.  

 

In addition to prospecting for biosynthetic pathways, novoStoic can be applied to identify 

degradation pathways for a molecule. In this case, we set the objective function to identify the 

minimal set of reactions and reaction rules needed to degrade a source molecule to a target 

molecule as followed:  

         ∑  
    ∑  

    

      

 

To design a biodegradation pathway, both the source metabolite(s) and target metabolite(s) are 

predetermined. Thus, constraint (1.2) is changed accordingly: 

  
                         

The other constraints (1.1, 2 to 12) are also applied in the formulation for the degradation studies. 

Similar to the biosynthesis formulation, non-zero values of    and    indicates the participation 

of reaction   and rule   in the designed pathway. Other than the exchange reactions for the 

predetermined source metabolite(s) (       
  ) and target metabolite(s) (       

  ), a positive value 

of   
   indicates that metabolite   is the co-product to the target, and a negative value of   

   

indicates metabolite   is the co-substrate. The oxidative degradation of benzo[a]pyrene to 

catechol in the result section provides a detailed implementation of using novoStoic to develop 

degradation pathways. 

 

rePrime/novoStoic avoids the pre-generation of extremely large metabolic networks and requires 

the use of a MILP solver, which is currently made available freely (by Gurobi, Inc and IBM) for 

academic use. The largest pathway size that we have attempted so far using rePrime/novoStoic is 

21 steps as described in the case study of benzo[a]pyrene degradation. However, the 
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computational time is not determined solely by the pathway length. Multiple factors could also 

contribute to the complexity of a pathway design, such as (i) moiety size, (ii) whether the desired 

pathway involves hub molecules (e.g., pyruvate or succinate) that are associated with many 

reaction rules, and (iii) the number of isomorphic regions in the starting substrates (a rule can act 

on multiple regions and produce different compounds).  
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Supplementary Figure 1: Graph representation of reaction 2-hydroxyisopthalate 

decarboxylase (2HIPD) and salicylate decarboxylase (SLD). Each graph has a node set 

          that denotes the list of atoms composing the metabolites. Each unique metabolite 

within the MetRxn database has the same node set regardless of the reactions in which it 

participates. For example, the metabolite salicylate has the same node set {14, 15, …, 23} in 

both reactions 2HIPD and SLD. 
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Supplementary Figure 2: Expanded constraints and solutions of novoStoic for the toy 

example of phenol synthesis. Constraint 1 defines the source molecule and products. 

Constraints 2 and 3 describe the component and moiety balances using the reactions rule 

generated at moiety size    . Constraint 4 to 7 control the number of known reactions (i.e., 

2HIPD and SLD) and reaction rules (i.e. R1 represented by     
 ). The MILP formulation designs 

four alternative pathways including only known reactions (solution i) and invoking one (solution 

ii and iii) or two novel steps (solution iv). 
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Supplementary Table 1: The values of parameters    
  and    

  assigned in the first step of rePrime to 

identify moieties, which are represented by prime numbers, for all metabolites in reactions 2HIPD and 

SLD. 

       
Atom 

features 
   

     
     

     
     

  

2hipa 

1 1-2-08-0 3 99 5 475 17 

2 1-1-08-1 2 44 2 76 5 

3 3-4-06-0 11 7986 19 111910 47 

4 3-4-06-0 11 73205 31 6883643 67 

5 2-3-06-1 5 1375 13 57629 41 

6 2-3-06-1 5 625 11 20449 29 

7 2-3-06-1 5 1375 13 57629 71 

8 3-4-06-0 11 73205 31 6883643 67 

9 3-4-06-0 11 7986 19 111910 47 

10 1-1-08-1 2 44 2 76 5 

11 1-2-08-0 3 99 5 475 17 

12 3-4-06-0 11 29282 29 1616402 59 

13 1-1-08-1 2 44 2 116 11 

sal 

14 1-1-08-1 2 44 2 76 5 

15 1-2-08-0 3 99 5 475 17 

16 3-4-06-0 11 7986 19 111910 47 

17 3-4-06-0 11 73205 31 5459441 61 

18 2-3-06-1 5 1375 13 57629 41 

19 2-3-06-1 5 625 11 17303 23 

20 2-3-06-1 5 625 11 17303 23 

21 2-3-06-1 5 1375 13 42757 37 

22 3-4-06-0 11 13310 23 426374 53 

23 1-1-08-1 2 44 2 92 7 

co2 

24 1-2-08-0 3 63 3 63 2 

25 2-4-06-0 7 441 7 441 13 

26 1-2-08-0 3 63 3 63 2 

phnl 

27 1-1-08-1 2 44 2 68 3 

28 3-4-06-0 11 6050 17 97682 43 

29 2-3-06-1 5 1375 13 31603 31 

30 2-3-06-1 5 625 11 17303 23 

31 2-3-06-1 5 625 11 14641 19 

32 2-3-06-1 5 625 11 17303 23 

33 2-3-06-1 5 1375 13 31603 31 
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Supplementary Table 2: The values of parameter    
  assigned in the second step of rePrime to generate 

molecular signatures for metabolites 2hipa, sal, co2, and phnl. 

                            

      
      

      
      

      
      

      
      

      
      

      
      

  

2 3 3 0 2 2 0 0 0 2 1 1 0 

3 2 0 0 1 0 0 2 2 0 0 0 1 

5 3 2 2 4 1 1 0 0 0 5 0 0 

7 0 0 0 0 0 1 1 1 0 0 0 0 

11 5 1 1 3 2 0 0 0 0 1 3 0 

13 0 2 0 0 2 0 0 0 1 0 2 0 

17 0 0 2 0 0 1 0 0 0 0 1 0 

19 0 2 0 0 1 0 0 0 0 0 0 1 

23 0 0 0 0 1 2 0 0 0 0 0 2 

29 0 1 1 0 0 0 0 0 0 0 0 0 

31 0 2 0 0 1 0 0 0 0 0 0 2 

37 0 0 0 0 0 1 0 0 0 0 0 0 

41 0 0 2 0 0 1 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 0 0 0 0 1 

47 0 0 2 0 0 1 0 0 0 0 0 0 

53 0 0 0 0 0 1 0 0 0 0 0 0 

59 0 0 1 0 0 0 0 0 0 0 0 0 

61 0 0 0 0 0 1 0 0 0 0 0 0 

67 0 0 2 0 0 0 0 0 0 0 0 0 
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Supplementary Table 3: The values of parameter    
  derived in the third step of rePrime to identify 

reaction rules of reactions 2HIPD and SLD. 

               

     
     

     
     

     
     

  

2 -1 -1 2 -1 -1 2 

3 1 2 0 1 2 1 

5 1 -1 -1 1 -1 -1 

7 1 1 1 1 1 -1 

11 -2 1 -1 -2 1 0 

13 0 0 1 0 0 1 

17 0 0 -1 0 1 -1 

19 0 -1 0 0 -1 1 

23 0 1 2 0 -1 0 

29 0 -1 -1 0 0 0 

31 0 -1 0 0 -1 2 

37 0 0 1 0 0 -1 

41 0 0 -1 0 0 -1 

43 0 0 0 0 0 1 

47 0 0 -1 0 0 -1 

53 0 0 1 0 0 -1 

59 0 0 -1 0 0 0 

61 0 0 1 0 0 -1 

67 0 0 -2 0 0 0 
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Supplementary Table 4: Pseudo code description for rePrime algorithm output and workflow 

 

Algorithm: rePrime 

rePrime output:  

molecular signature (   
 ) captures moiety m in metabolite   at moiety size   

reaction rule (   
 ) captures the change of moiety m in each unique reaction rule   at moiety size   

   
                           

while       do   

            
       

    ∏     
        

              

            
         

              

                 

End  

   
  ∑  

    
    

  

   

                        

   
  ∑   
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Supplementary Table 5: Reaction rule for succinate semialdehyde dehydrogenase (the forward 

reaction does not use ATP as a cofactor) 
 Succinate semialdehyde + H2O +NADP+ => Succinate + NADPH 

Moiety (m) Succinate 

semialdehyde 

H2O NADP+ Succinate NADPH Reaction rule 

41 0 1 0 0 0 -1 

83 0 0 2 0 2 0 

97 1 0 7 2 7 1 

127 2 0 4 2 4 0 

173 2 0 2 2 3 1 

181 0 0 6 0 6 0 

191 1 0 6 0 5 -2 

193 0 0 3 0 3 0 

229 0 0 1 0 2 1 

241 1 0 13 2 13 1 

251 0 0 1 0 0 -1 

271 0 0 3 0 3 0 
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Supplementary Table 6: Reaction rule for the reverse reaction of succinate semialdehyde 

dehydrogenase (the reverse reaction requires ATP as a cofactor) 

 
 Succinate + NADPH + ATP => Succinate semialdehyde + NADP+ + ADP + Pi 

Moiety (m) Succinate NADPH ATP Succinate 

semialdehyde 

NADPH ADP Pi Reaction 

Rule 

41 0 0 0 0 0 0 0 0 

83 0 2 1 0 2 1 0 0 

97 2 7 6 1 7 0 0 1 

127 2 4 3 2 4 5 3 0 

173 2 3 1 2 3 2 1 0 

181 0 6 4 0 6 1 0 -1 

191 0 5 2 1 5 3 0 1 

193 0 3 3 0 3 2 0 0 

229 0 2 1 0 2 3 0 0 

241 2 13 7 1 13 1 0 -1 

251 0 0 0 0 0 7 0 0 

271 0 3 3 0 3 0 0 0 
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