Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells

Abdullah Jawad Alshawaf^{1, 2, 3}, Serena Viventi^{1, 4}, Wanzhi Qiu^{1, 5}, Giovanna D'Abaco^{1, 4}, Bryony Nayagam⁶, Michael Erlichster^{1, 7}, Gursharan Chana^{1, 2, 7}, Ian Everall^{1, 2}, Jason Ivanusic⁸, Efstratios Skafidas^{1, 2} and <u>Mirella Dottori</u>^{1, 4, 8, 9 *}

¹Centre for Neural Engineering, The University of Melbourne, Australia.

² Department of Psychiatry, The University of Melbourne, Australia.

³ Department of Physiological Sciences, College of Medicine, Alfaisal University, Saudi Arabia.

⁴ Department of Biomedical Engineering, The University of Melbourne, Australia

⁵ Department of Electrical and Electronic Engineering, The University of Melbourne, Australia

⁶ Departments of Audiology and Speech Pathology and Ophthalmology, The University of Melbourne, Australia

⁷ Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Australia

⁸ Department of Anatomy and Neuroscience, The University of Melbourne, Australia
⁹ Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Australia

*Corresponding Author Mirella Dottori Illawarra Health and Medical Research Institute Building 32, University of Wollongong, NSW 2522 Australia Email: mdottori@uow.edu.au

Supplementary Figure S1. Gene expression data of sensory neurons plated on MEAs.

Q-PCR was performed on each MEA for each condition; non-stimulated sensory MEAs (S1, S2 and S3), and stimulated sensory MEAs (S4, S5, and S6). The heatmap shows log10 mRNA fold change values relative to 1-week-old neurosphere samples (n=3, > 3 neurospheres per sample); upregulated and downregulated genes are coloured green and red, respectively. Statistical significance was assessed using Twoway ANOVA with a post-hoc Bonferroni multiple comparison, comparing nonstimulated with stimulated sensory MEAs. ***P< 0.001. UD, undetected.

Supplementary Figure S2. Evolution of spiking activity of sensory MEAs over 8 weeks *in vitro*.

(a) MEA layout coloured-coded showing spike frequency for each channel in S1 MEA culture at week 2, 4, 6 and 8 post differentiation. (b) MEA layout coloured-coded showing spike frequency for each channel in S6 MEA culture at week 2, 4, 6 and 8 post differentiation. Highest and lowest spike frequencies are coloured red and blue, respectively. Scale bars are in Hz with maximum value of 33 Hz in (a) and 48 Hz in (b).

Supplementary Figure S3. Sample electrode recordings before and after application of capsaicin in MEAs.

(a) Snapshot images of a raw data recording before (3 minutes duration) and after (5 minutes duration) application of capsaicin (2 μ M). In this example bursting activity is observed in response to application of capsaicin. (b) Snapshot images of a raw data recording before (3 minutes duration) and after (5 minutes duration) application of capsaicin (2 μ M). In this example, no change in activity was observed.

Supplementary Figure S4. Expression of sensory neuronal markers in adult rat DRG tissue.

Immunostaining images of adult rat DRG tissue showing DRG neurons expressing TrkA (a, d, red), TrKB (b, e, red), TrkC (c, f, green), parvalbumin (g, green) and osteopointin (h, red). Dapi stains of nuclei are shown in blue. Scale bars = $50 \mu m$ (a-c), $10 \mu m$ (d-h). Abbreviations: PV, parvalbumin; SPP1, osteopontin (secreted phosphoprotein 1).

	S1	S2	S3	Mean ± SEM
Time when > 1 active channel (Days post-differentiation)	10	7	10	9.0 ± 1
Maximum spike rate (Spikes/sec)	276.2	241.0	70.1	195.8 ± 63.7
Maximum no. of bursts	1620	1073	371	1021.3 ± 361.5
Maximum % of active channels	54.2	40.7	44.1	46.3 ± 4.1

Supplementary Table S1. Data of non-stimulated MEAs; S1, S2 and S3. Mean and standard error of the mean (SEM) of S1-S3 are also shown.

	S4	S5	S6	Mean ± SEM
Time when > 1 active channel	7	31	7	15 ± 8
(Days post-differentiation)				
Maximum spike rate	721.8	5.7	234.8	320.6 ± 211.1
(Spikes/sec)				
Maximum no. of bursts	4220	4	736	1653.3 ±
				1300.6
Maximum % of active channels	76.3	13.6	33.9	41.2 ± 18.5

Supplementary Table S2. Data of stimulated MEAs: S4, S5 and S6. Mean and standard error of the mean (SEM) of S4-S6 are also shown.

Target	Assay ID			
BRN3A	Hs00366711_m1			
CASP3	Hs00234387_m1			
GAP43	Hs00967138_m1			
K167	Hs01032443_m1			
MAP2AB	Hs00258900 m1			
NTRKA	Hs01021011_m1			
NTRKB	Hs00178811_m1			
NTRKC	Hs00176797_m1			
PAX6	Hs00240871_m1			
PRPH	Hs00986946_g1			
RET	Hs01120030_m1			
RUNX1	Hs01021970_m1			
RUNX3	Hs00231709_m1			
S100β	Hs00902901_m1			
SOX10	Hs00366918_m1			
SOX2	Hs01053049_s1			
SYN1	Hs00199577_m1			
TAC1	Hs00243225_m1			
House Keeping Genes				
ELF1	Hs00152844_m1			
GAPDH	Hs02758991 g1			
HMBS	 Hs00609296 g1			
ТВР	Hs00427620 m1			

Supplementary Table S3. List of TaqMan probes used in Q-PCR analyses.