Supplemental Data

Figure S1. Prenylation of resveratrol by AhR4DT-1.

Prenylation activity of AhR4DT-1 in microsomal fraction of *Nicotiana benthamiana* leaf after vacuum infiltration with *Agrobacterium tumefaciens* LBA4404 harboring pBIB-Kan-AhR4DT-1.

(A) Chemical structures of resveratrol and its prenylated product, arachidin-2.

(B) HPLC chromatograms (UV 320 nm) of ethyl acetate extraction of reaction mixtures contained 100 μ M resveratrol, 300 μ M DMAPP, 10 mM MgCl₂, 5 mM DTT and 30 μ g microsomal fraction in a pH 9.0 Tris-HCl buffer for 40 min.

(C) HPLC-PAD-ESI-MS³ analysis of prenylated product, arachidin-2.

Figure S2. Comparison of AhR4DT-1 and AhRPT-9i2.

(A) Alignment of AhR4DT-1 with AhRPT-9i2 was performed using ClustalX.

(B) Potential transmembrane domains of AhR4DT-1 and AhRPT-9i2 were predicted by TMHMM.

(C) Resveratrol prenylation activity of AhR4DT-1 and AhRPT-9i2 were analyzed by using HPLC.

Figure S3. Comparison of AhR3'DT-1, AhRPT-10a4 and AhRPT-10d4.

(A) Alignment of AhR3'DT-1, AhRPT-10a4 and AhRPT-10d4 was performed using ClustalX.
(B) Potential transmembrane domains of AhR3'DT-1, AhRPT-10a4 and AhRPT-10d4 were predicted by TMHMM.

(C) Resveratrol prenylation activity of AhR3'DT-1, AhRPT-10a4 and AhRPT-10d4 were analyzed by using HPLC.

Figure S4. Comparison of AhR3'DT-2 and AhR3'DT-3.

outside

inside

50

transmembrane

(A) Alignment of AhR3'DT-2 with AhR3'DT-3 was performed using ClustalX.

-10

0.0

(B) Potential transmembrane domains of AhR3'DT-2 and AhR3'DT-3 were predicted by TMHMM.

10.0

20.0

30.0

(C) Resveratrol prenylation activity of AhR3'DT-2 and AhR3'DT-3 were analyzed by using HPLC.

Figure S5. Structural analysis of AhR3'DT-4.

(A) Primary structure of AhR3'DT-4.

(B) Potential transmembrane domains of AhR3'DT-4 was predicted by TMHMM.

(C) Resveratrol prenylation activity of AhR3'DT-4 was analyzed by using HPLC.

Figure S6. Temperature dependency of AhR4DT-1 and AhR3'DT-1 activity. AhR4DT-1 (A) and AhR3'DT-1 (B) activities were measured at various temperature (20, 25, 28, 30, 37, 40 and 50 °C) in 100 mM Tris-HCl buffer (pH 9.0) for 40 mins.

Figure S7. Resveratrol prenylation activity of AhR4DT-1 and AhR3'DT-1.

(A) Concentrations of generated prenylated resveratrol from AhR4DT-1 and AhR3'DT-1 reaction mixtures with varying incubation times (30, 60, 90 and 120 min) were quantified by HPLC.

(B) Concentrations of generated prenylated resveratrol from AhR4DT-1 and AhR3'DT-1 reaction mixtures with varying amounts of microsomal fraction (25, 50, 75 and 100 μ g) were quantified by HPLC.

A

Figure S8. Divalent cation dependency of AhR4DT-1 and AhR3'DT-1 activity.

AhR4DT-1 (A) and AhR3'DT-1 (B) activity with various divalent cation were measured with 10 mM MnCl₂, FeCl₂, CaCl₂, CoCl₂, ZnCl₂, NiCl₂, or CuCl₂ and the enzyme activity was compared with the reaction of 10 mM MgCl₂. Reactions without divalent cation and 10 mM EDTA instead of MgCl₂ were used as controls. All the reactions were performed in 100 mM Tris-HCl buffer (pH 9.0) at 28 °C for 40 min. (t.a., trace amount (<0.5%), n.d., Not detected.). Means and the standard deviation (error bars) were calculated from three replicates.

AhR4DT-1

AhR3'DT-1

Dependency of AhR4DT-1 (left) and AhR3'DT-1 (right) on the concentration of resveratrol (A&D), piceatannol (B&E) and DMAPP (C&F) measured with a microsomal fraction from leaves of *Nicotiana benthamiana*. The apparent K_m and V_{max} values for resveratrol and piceatannol were determined with varying concentrations (10~640 µM) using 640 µM DMAPP as prenyl donor, while that for DMAPP were determined with varying concentrations (10~640 µM) using 640 µM DMAPP were determined with varying concentrations (10~640 µM) using 640 µM resveratrol as prenyl acceptor. All the values were calculated from nonlinear regression analysis with Michaelis-Menten equation by Graphpad Prism 6 software. Means and the standard deviation (error bars) were calculated from three replicates.

Figure S10. Prenylation of piceatannol by AhR4DT-1.

Substrate specificity of AhR4DT-1 in microsomal fraction of *Nicotiana benthamiana* leaf after vacuum infiltration with *Agrobacterium tumefaciens* LBA4404 harboring pBIB-Kan-AhR4DT-1.

(A) Chemical structures of piceatannol and its prenylated product.

(B) HPLC chromatograms (UV 320 nm) of ethyl acetate extraction of reaction mixtures contained 100 μ M piceatannol, 300 μ M DMAPP, 10 mM MgCl₂, 5 mM DTT and 30 μ g microsomal fraction in a pH 9.0 Tris-HCl buffer for 40 min.

(C) HPLC-PAD-ESI-MS³ analysis of prenylated product, arachidin-5.

Figure S11. Prenylation of pinosylvin by AhR4DT-1.

Substrate specificity of AhR4DT-1 in microsomal fraction of *Nicotiana benthamiana* leaf after vacuum infiltration with *Agrobacterium tumefaciens* LBA4404 harboring pBIB-Kan-AhR4DT-1.

(A) Chemical structures of pimosylvin and its prenylated product.

(B) HPLC chromatograms (UV 320 nm) of ethyl acetate extraction of reaction mixtures contained 100 μ M pinosylvin, 300 μ M DMAPP, 10 mM MgCl₂, 5 mM DTT and 30 μ g microsomal fraction in a pH 9.0 Tris-HCl buffer for 40 min.

(C) HPLC-PAD-ESI-MS³ analysis of prenylated product, chiricanine A.

Figure S12. Prenylation of oxyresveratrol by AhR4DT-1.

Substrate specificity of AhR4DT-1 in microsomal fraction of *Nicotiana benthamiana* leaf after vacuum infiltration with *Agrobacterium tumefaciens* LBA4404 harboring pBIB-Kan-AhR4DT-1.

(A) Chemical structures of oxyresveratrol and its prenylated product.

(B) HPLC chromatograms (UV 320 nm) of ethyl acetate extraction of reaction mixtures contained 100 μ M oxyresveratrol, 300 μ M DMAPP, 10 mM MgCl₂, 5 mM DTT and 30 μ g microsomal fraction in a pH 9.0 Tris-HCl buffer for 40 min.

(C) HPLC-PAD-ESI-MS³ analysis of prenylated product.

Figure S13. Prenylation of piceatannol by AhR3'DT-1.

Substrate specificity of AhR3'DT-1 in microsomal fraction of *Nicotiana benthamiana* leaf after vacuum infiltration with *Agrobacterium tumefaciens* LBA4404 harboring pBIB-Kan-AhR3'DT-1.

(A) Chemical structures of piceatannol and its prenylated product.

(B) HPLC chromatograms (UV 320 nm) of ethyl acetate extraction of reaction mixtures contained 100 μ M piceatannol, 300 μ M DMAPP, 10 mM MgCl₂, 5 mM DTT and 30 μ g microsomal fraction in a pH 9.0 Tris-HCl buffer for 40 min.

(C) HPLC-PAD-ESI-MS³ analysis of prenylated product.

Figure S14. Prenylation of oxyresveratrol by AhR3'DT-1.

Substrate specificity of AhR3'DT-1 in microsomal fraction of *Nicotiana benthamiana* leaf after vacuum infiltration with *Agrobacterium tumefaciens* LBA4404 harboring pBIB-Kan-AhR3'DT-1.

(A) Chemical structures of oxyresveratrol and its prenylated product.

(B) HPLC chromatograms (UV 320 nm) of ethyl acetate extraction of reaction mixtures contained 100 μ M oxyresveratrol, 300 μ M DMAPP, 10 mM MgCl₂, 5 mM DTT and 30 μ g microsomal fraction in a pH 9.0 Tris-HCl buffer for 40 min.

(C) HPLC-PAD-ESI-MS³ analysis of prenylated product.

Table S1. List of primers used in this study.

The restriction site on each primer is underlined.

Name	Sequence (5'-3')	Reference					
First screening for prenvltransferase gene							
PT-10-FW-NotI	TA <u>GCGGCCGC</u> ATGGCTTTTGGTGTTGTTGCTGC	This study					
PT-a-RV- <i>Kpn</i> I	ATCGATGGTACCCTATTTTTAAGAAGTTTTTTTACTGC	This study					
PT-d-RV- <i>Kpn</i> I	ATCGATGAGGTACCTCATGGAAATAGTTTGAACAGAGAG	This study					
PT-k-RV-KpnI	CGAT <u>GGTACC</u> TCATCTAACAAAAAGCATAAGAATATTTTC	This study					
Second screening for prenyltransferase gene							
PT-4-FW-NotI	TA <u>GCGGCCGC</u> ATGCCTTTCGGACTCTCCGC	This study					
PT-5-FW-NotI	TA <u>GCGGCCGC</u> ATGGCTTCCACTTCCAGGCT	This study					
PT-6-FW-NotI	TA <u>GCGGCCGC</u> ATGGCTTTTAGGCTTCTAGGATC	This study					
PT-9-FW-NotI	TA <u>GCGGCCGC</u> ATGGCTTTTGGGCATTTGGTGT	This study					
PT-b-RV- <i>Kpn</i> I	CTGA <u>GGTACC</u> TCAACGAACAAATTGTATAAGGATG	This study					
PT-c-RV-KpnI	CTGA <u>GGTACC</u> CTATCTCACGAAAAGTATAAGGATG	This study					
PT-e-RV-KpnI	CTGA <u>GGTACC</u> TCATCGAACAAAAAGTACAAGGAAG	This study					
PT-i-RV- <i>Kpn</i> I	CTGA <u>GGTACC</u> TTAGTTATTGGTTACCTTAAACATA	This study					
PT-m-RV- <i>Kpn</i> I	CTGA <u>GGTACC</u> TTATCTCACAAAAAGCACAAGGACA	This study					
Promoter cloning							
Ca35S-FW-SalI-1	ATCGAT <u>GTCGAC</u> AAGCTTGCATGCCTG	This study					
TEV-RW-NotI	ATCGAT <u>GCGGCCGC</u> GCTATCGTTCGTAAATGGTGA	This study					
GFP fusion protein clo	ning						
mgfp5-FW-BamHI	ATCGAT <u>GGATCC</u> ATGGCTAGTAAAGGAGAAGAACTTTTC	This study					
mgfp5-FW-NotI	ATCGAT <u>GCGGCCGC</u> ATGGCTAGTAAAGGAGAAGAACTTTT	This study					
mgfp5-RW-KpnI	ATCGAT <u>GGTACC</u> TCATTTGTATAGTTCATCCAT	This study					
PT-10k1-RV-BamHI	ATCGAT <u>GGATCC</u> TCTAACAAAAAGCATAAGAA	This study					
PT-9b13-RV-BamHI	AT <u>GGATCC</u> ACGAACAAATTGTATAAGGATG	This study					
Ca35S-FW-SalI-2	GATACCGTCGACAAGCTTGCATG	This study					
Real time-quantitative	PCR						
AHR4DT-1-FW	ACTTCTGGAGTTATACTTGTG	This study					
AHR4DT-1-RV	TAGATAGTGATGTGAGGATTATAG	This study					
AHR3'DT-1-FW	GCAGCATAATTGGAAGCA	This study					
AHR3'DT-1-RV	GGAAAGCATCTAAAGCATCA	This study					
JC1-FW	TATGTATTTAACAGAAGAAATAC	(Condori et al., 2009)					
JC1-RV	AGTTGCAGCCTCTTTTCCAACT	(Condori et al., 2009)					
ACT7-FW	ATGTATGTAGCCATCCAAG	(Condori et al., 2011)					
ACT7-RV	ACCAGAGTCCAGAACAATA	(Condori et al., 2011)					
EF1a-FW	GGTGTCAAGCAGATGATT	(Condori et al., 2011)					
EF1a-RV	ACTTCCTTCACGATTTCA	(Condori et al., 2011)					

Table S2. Substrates used for specificity assay and the prenylated products from reaction mixtures catalyzed by AhR4DT-1 or AhR3'DT-1.

No	Analyte	t_R (min)	UV (nm)	$\left[M+H ight] ^{+}\left(m/z ight)$	MS ² ions	MS ³ ions
1	Oxyresveratrol	5.74	243, 302, 328	245	227	209, 199, 157
2	Piceatannol	5.79	240, 324	245	227, 199, 135 ^a	107
3	Resveratrol	6.50	237, 306, 317	229	211 , 183	107
4	Prenylated oxyresveratrol by AhR3'DT-1	9.85	225, 325	313	257	239
5	Prenylated oxyresveratrol by AhR4DT-1	10.63	225, 304, 329	313	257	239
6	Arachidin-5	11.01	240, 327	313	257	239, 229, 211
7	Pinosylvin	12.42	229, 300, 307	213	135	107
8	Arachidin-2	13.84	239, 311, 323	297	241	223, 213, 195
9	Prenylated piceatannol by AhR3'DT-1	14.44	228, 325	313	257	239, 211
10	3-methyl-2-butenyl-3'-resveratrol	16.99	230, 320	297	241	223
11	Chiricanine A	25.02	209, 314	281	225	179 , 207

Analysis was done by HPLC-PDA-electrospray ionization-MS³.

^aMS² ions in boldface were the most abundant ions and were subjected to MS³ fragmentation.

Table S3. List of plasmids used in this study.

For details of the binary vectors, see Materials and Methods.

Name	Descirption	Reference
pBC KS(-)	Phagemid vector derived from pBluescript II KS(-)	
pBIB-Kan	Binary vector	(Becker, 1990)
pR8-2	CaMV35S::TEV::pat::mGFP5 in pBC KS(-)	(Medina-Bolívar and Cramer, 2004)
Prenyltransferase Characterization		
pGEM-CaMV35S-TEV	<i>CaMV35S::TEV</i> in pGEM-T	This study
pBC-CaMV35S-TEV-9b13	CaMV35S::TEV::AhR4DT-1 in pBC KS(-)	This study
pBC-CaMV35S-TEV-10k1	CaMV35S::TEV::AhR3'DT-1 in pBC KS(-)	This study
pBIB-Kan-AhR4DT-1	CaMV35S::TEV::AhR4DT-1 in pBIB-Kan	This study
pBIB-Kan-AhR3'DT-1	CaMV35S::TEV::AhR3'DT-1 in pBIB-Kan	This study
pBIB-Kan-AhR3'DT-2	CaMV35S::TEV::AhR3'DT-2 in pBIB-Kan	This study
pBIB-Kan-AhR3'DT-3	CaMV35S::TEV::AhR3'DT-3 in pBIB-Kan	This study
pBIB-Kan-AhR3'DT-4	CaMV35S::TEV::AhR3'DT-4 in pBIB-Kan	This study
Subcellular Localization		
pt-rk	<i>CaMV35S::RS-TP-mCherry</i> in pBIN20	(Nelson et al., 2007)
pGEM-mGFP5-1	<i>mGFP5</i> with <i>Bam</i> HI/ <i>Kpn</i> I sites in pGEM-T	This study
pGEM-mGFP5-2	<i>mGFP5</i> with <i>NotI/Kpn</i> I sites in pGEM-T	This study
pGEM-CaMV35S-TEV-AhR4DT-1-GFP	CaMV35S::TEV::AhR4DT-1::mGFP5 in pGEM-T	This study
pGEM-CaMV35S-TEV-AhR3'DT-1-GFP	CaMV35S::TEV::AhR3'DT-1::mGFP5 in pGEM-T	This study
pBC-CaMV35S-TEV-GFP	CaMV35S::TEV::mGFP5 in pBC KS(-)	This study
pBIB-Kan-AhR4DT-1-GFP	CaMV35S::TEV::AhR4DT-1::mGFP5 in pBIB-Kan	This study
pBIB-Kan-AhR3'DT-1-GFP	CaMV35S::TEV::AhR3'DT-1::mGFP5 in pBIB-Kan	This study
pBIB-Kan-GFP	CaMV35S::TEV::mGFP5 in pBIB-Kan	This study

Protein name	Accession number	Description	Organism
AaVTE2-1	ABB70124.1	homogentisate phytyltransferase VTE2-1	Allium ampeloprasum
AhR4DT-1	AQM74172.1	resveratrol-4-dimethylallyltransferase	Arachis hypogaea
AhR3'DT-1	AQM74173.1	resveratrol-3'-dimethylallyltransferase	Arachis hypogaea
AhR3'DT-2	AQM74174.1	resveratrol-3'-dimethylallyltransferase	Arachis hypogaea
AhR3'DT-3	AQM74175.1	resveratrol-3'-dimethylallyltransferase	Arachis hypogaea
AhR3'DT-4	AQM74176.1	resveratrol-3'-dimethylallyltransferase	Arachis hypogaea
AtHPT1	AAM10489.1	homogentisate phytylprenyltransferase	Arabidopsis thaliana
AtPPT1	BAB20818.2	p-hydroxybenzoate polyprenyltransferase	Arabidopsis thaliana
AtVTE2-2	ABB70127.1	homogentisate phytyltransferase VTE2-2	Arabidopsis thaliana
ClPT1a	BAP27988.1	umbelliferone 8-geranyltransferase	Citrus limon
CpVTE2-1	ABB70125.1	homogentisate phytyltransferase VTE2-1	Cuphea pulcherrima
CrVTE2-2	CAL01105.1	homogentisate prenyltransferase	Chlamydomonas reinhardtii
CtIDT	AJD80983.1	isoliquiritigenin 3'-dimethylallyltransferase	Cudrania tricuspidata
GmG4DT	BAH22520.1	pterocarpan 4-dimethylallyltransferase	Glycine max
GmVTE2-1	ABB70126.1	homogentisate phytyltransferase VTE2-1	Glycine max
GmVTE2-2	ABB70128.1	homogentisate phytyltransferase VTE2-2	Glycine max
GuA6DT	AIT11912.1	flavone prenyltransferase	Glycyrrhiza uralensis
HlPT-1	BAJ61049.1	aromatic prenyltransferase	Humulus lupulus
HvHGGT	AAP43911.1	homogentisic acid geranylgeranyl transferase	Hordeum vulgare
LaPT-1	AER35706.1	genistein 3'-dimethylallyltransferase	Lupinus albus
LePGT-1	BAB84122.1	4-hydroxybenzoate geranyltransferase	Lithospermum erythrorhizon
LePGT-2	BAB84123.1	4-hydroxybenzoate geranyltransferase	Lithospermum erythrorhizon
MaIDT	AJD80982.1	isoliquiritigenin 3'-dimethylallyltransferase	Morus alba
OsHGGT	AAP43913.1	homogentisic acid geranylgeranyl transferase	Oryza sativa
OsPPT1	BAE96574.1	p-hydroxybenzoate polyprenyltransferase	Oryza sativa
PcPT	BAO31627.1	umbelliferone 6-dimethylallyltransferase	Petroselinum crispum
SfG6DT	BAK52291.1	genistein 6-dimethylallyltransferase	Sophora flavescens
SfiLDT	BAK52290.1	isoliquiritigenin dimethylallyltransferase	Sophora flavescens
SfN8DT-1	BAG12671.1	naringenin 8-dimethylallyltransferase	Sophora flavescens
SfN8DT-2	BAG12673.1	naringenin 8-dimethylallyltransferase	Sophora flavescens
SfN8DT-3	BAK52289.1	naringenin 8-dimethylallyltransferase	Sophora flavescens
TaHGGT	AAP43912.1	homogentisic acid geranylgeranyl transferase	Triticum aestivum
TaVTE2-1	ABB70123.1	homogentisate phytyltransferase VTE2-1	Triticum aestivum
ZmVTE2-1	ABB70122.1	homogentisate phytyltransferase VTE2-1	Zea mays

Table S4. Accession numbers of proteins used for phylogenetic analysis.