Supplemental Data

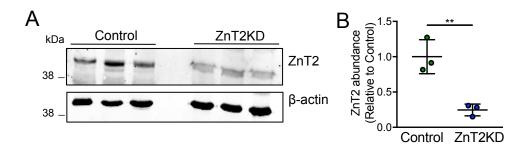
Title:

Zinc transporter 2 interacts with vacuolar ATPase and is required for polarization, vesicle acidification and secretion in mammary epithelial cells

Authors:

Sooyeon Lee, Olivia C. Rivera and Shannon L. Kelleher

Materials Included:


Supplemental Figure S1- ZnT2 Knockdown

Supplemental Figure S2- ZnT2 immunoprecipitation

Supplemental Figure S3- Total protein expression level of V-ATPase in secreting MECs

Supplemental Figure S4- V-ATPase knockdown

Supplemental Figure S1

FIGURE S1. ZnT2 knockdown

A) Representative immunoblot of ZnT2 in total lysates from mock-transfected (Control) and ZnT2-attenuated cells (ZnT2KD). β -actin served as a loading control. B) Data represent mean normalized signal of ZnT2 relative to Control \pm SD, n=3 samples/group.; p<0.01**.

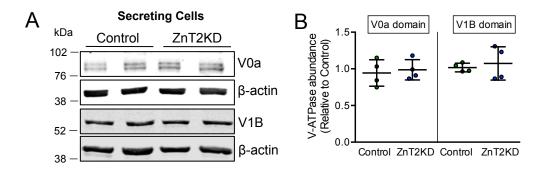

Supplemental Figure S2

FIGURE S2. ZnT2 immunoprecipitation

Representative immunoblots of ZnT2 in immunoprecipitates (IP) from mock-transfected (Control) and ZnT2-attenuated cells (ZnT2KD). IgG served as a negative control.

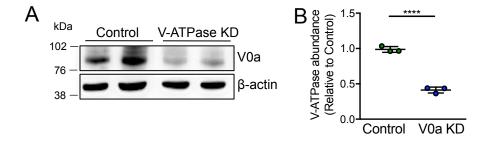

Supplemental Figure S3

FIGURE S3. Total protein expression level of V-ATPase in secreting MECs

A) Representative immunoblot of V-ATPase V0a and V1B domains in total lysates from mock-transfected (Control) and ZnT2-attenuated cells (ZnT2KD) treated with PRL. β -actin served as a loading control. B) Data represent mean normalized signal of V-ATPase V0a and V1B domains relative to Control \pm SD, n=4 samples/group.

Supplemental Figure S4

FIGURE S4. V-ATPase knockdown

A) Representative immunoblot of V-ATPase V0a in total lysates from mock-transfected (Control) and V-ATPase-attenuated cells (V-ATPase KD). β -actin served as a loading control. B) Data represent mean normalized signal of V-ATPase V0a relative to Control \pm SD, n=3 samples/group; p<0.0001****.