

Supporting Information

Evidence for Triplet Sensitization in the Visible-Light-Induced [2+2] Photocycloaddition of Eniminium Ions

Fabian M. Hörmann⁺, Tim S. Chung⁺, Elsa Rodriguez, Matthias Jakob, and Thorsten Bach^{*}

anie_201710441_sm_miscellaneous_information.pdf

1. General Information	S1
2. Analytical Methods	S3
3. Synthetic Procedures and Analytical Data	S5
4. Additional Experiments for the Sensitization of Eniminium ion 11	S29
5. Chiral GC Trace of Aldehyde 12	S30
6. Cyclic Voltammetry	
7. Data Sheets of Light Sources	S32
8. NMR-Spectra of New Compounds	S36
9. UV/Vis-Spectra	
10. Luminescence Measurements	
11. References	S57

1. General Information

All reactions sensitive to air and moisture were carried out in flame-dried glassware under an argon atmosphere using standard Schlenk techniques.

Commercially available chemicals were used without further purification unless otherwise mentioned.

For moisture sensitive reactions tetrahydrofuran (THF), diethyl ether (Et_2O) and dichloromethane (CH_2Cl_2) were dried using a MBSPS 800 *MBraun* solvent purification system. The following columns were used:

THF: $2 \times$ MB-KOL-M type 2 (3 Å molecular sieve)

Et₂O: 1 × MB-KOL-A type 2 (aluminium oxide), 1 × MB-KOL-M type 2 (3 Å molecular sieve)

CH₂Cl₂: $2 \times$ MB-KOL-A type 2 (aluminium oxide)

The following dry solvents are commercially available and were used without further purification:

Acetonitrile: Acros Organics, 99.9% extra dry, over molecular sieves.

Ethanol: Sigma-Aldrich, puriss., 99.8% (stored over molecular sieves).

Toluene: Acros Organics, 99.8% extra dry, over molecular sieves.

For photochemical reactions, dry acetonitrile was used and degassed either by three freezepump-thaw cycles or by purging with argon in an ultrasonicating bath for 15 minutes prior to irradiation.

2,3-Dimethylbutadiene (*Alfa-Aesar*), isoprene (*Sigma-Aldrich*), 2-methylhex-1-en-3-yne (*Sigma-Aldrich*) and (3-methylbut-3-en-1-ynyl)-trimethylsilane (*Alfa-Aesar*) are commercially available and were distilled and degassed by three freeze-pump-thaw cycles prior to use. 1,3-Butadiene (2 M in THF, *TCI Europe*) was dried over 3 Å molecular sieves prior to use. Cinnamaldehyde (*Sigma-Aldrich*) was distilled prior to use. 3-Ethoxycyclohex-2-en-1-one (*Sigma-Aldrich*), 5,5-dimethyl-3-ethoxycyclohex-2-en-1-one (*Sigma-Aldrich*) and (*S*)-bis(3,5-bis(trifluoromethyl)phenyl)(pyrrolidin-2-yl)methanol (*Sigma-Aldrich*) are commercially available. 5-Bromo-2-methylpent-1-ene was prepared according to a literature known procedure.^[1]

Technical solvents for column chromatography (pentane, diethyl ether, ethylacetate) were used after simple distillation.

Flash column chromatography was performed on silica 60 (*Merck*, 230-400 mesh) with the indicated eluent mixture.

Photochemical experiments using a LED were carried out in a Schlenk tube (diameter = 1 cm) with a polished quartz rod as an optical fiber, which was roughened by sandblasting at one end. The roughed end has to be completely submerged in the solvent during the reaction, in order to guarantee optimal and reproducible irradiation conditions.^[2] Photochemical experiments at 366 nm and 420 nm were performed in Duran tubes (diameter = 1 cm) in an RPR-100 photochemical reactor (*Southern New England Ultra Violet Company*, Branford, CT, USA) equipped with 16 fluorescence lamps ($\lambda = 420$ nm: Luzchem LZC-420, 8 W; $\lambda = 366$ nm: Philips Lighting, Black Light Blue, 8 W).^[3]

2. Analytical Methods

Thin Layer Chromatography (TLC) was performed on silica coated glass plates (*Merck*, silica 60 F254) with detection by UV-light ($\lambda = 254$ nm) and/or by staining with a potassium permanganate solution [KMnO₄] followed by heat treatment.

KMnO₄-staining solution: 3.00 g potassium permanganate, 20.0 g potassium carbonate and 5.00 mL 5% sodium hydroxide solution in 300 mL water.

Infrared Spectra (IR) were recorded on a *Perkin Elmer* Frontier IR-FTR spectrometer by ATR technique. The signal intensity is assigned using the following abbreviations: s (strong), m (medium), w (weak).

Nuclear Magnetic Resonance-Spectra were recorded at room temperature either on a *Bruker* AVHD-300, AVHD-400, AVHD-500 or an AV-500 cryo. ¹H-NMR spectra were calibrated to the residual solvent signal of chloroform-d₁ (δ = 7.26 ppm) or acetonitrile-d₃ (δ = 1.94 ppm). ¹³C-NMR spectra were calibrated to the ¹³C-D triplet of CDCl₃ (δ = 77.16 ppm) or CD₃CN (δ = 118.26 ppm). Apparent multiplets which occur as a result of accidental equality of coupling constants to those of magnetically non-equivalent protons are marked as virtual (*virt.*). Following abbreviations for single multiplicities were used: *br.*-broad, s-singlet, d-doublet, t-triplet, q-quartet, quint-quintet, sept-septet. Assignment and multiplicity of the ¹³C-NMR signals were determined by two dimensional NMR experiments (COSY, HSQC, HMBC, NOESY). Protons oriented above the molecular plane are labeled as α and those oriented below as β .

Melting Points were determined using a Büchi M-565 melting point apparatus, with range quoted to the nearest whole number.

Mass Spectroscopy (MS) and High Resolution Mass Spectroscopy (HR-MS) was performed on a *Thermo Scientific* LTQ-FT Ultra (ESI) or a *Thermo Scientific* DFS-HRMS spectrometer (EI).

UV/Vis Spectroscopy was performed on a *Perkin Elmer* Lambda 35 UV/Vis spectrometer. Spectra were recorded using a *Hellma* precision cell made of quartz SUPRASIL[®] with a pathway of 1 mm. Solvents and concentrations are given for each spectrum. **Chiral Gas Chromatography (GC)** was performed on an *Agilent* 7890 B gas chromatograph using a Cyclosil-B column (30 m, 0.25 mm, 0.25 μ m) with a flame ionization detector. The temperature method is given for the corresponding compounds.

Electrochemical Measurements were performed on EmStat³⁺ potentiostat using a threeelectrode cell equipped with glassy carbon working electrode, a platinum wire counter electrode and a Ag/AgNO₃ reference electrode.

Specific Rotation was determined using a Bellingham+Stanley ADP440+ polarimeter and is reported as follows: $[\alpha]_D^T$ (c in g per 100 mL solvent).

Luminescence Measurements were performed on Horiba Scientific FluoroMax-4 instrument (part number J810005 rev. C) using a SUPRASIL[®] quartz cuvette with a 1 mm light path to record emission spectra. Luminescent lifetimes were performed using a PL2250 Series laser from *Ekspla* equipped with a LeCroy waverunner 6030 oscilloscope 2.5 GS (4 ns in between two points) and H7732-10 Hamamatsu PMT (approximately 50 ns). All lifetime runs were averaged from 100 scans and all samples were purged with argon for 15 minutes to ensure no oxygen was present.

3. Synthetic Procedures and Analytical Data

3-(Pent-4-en-1-yl)cyclohex-2-en-1-one (1)

To a suspension of 338 mg magnesium (13.3 mmol, 1.30 eq.) and catalytic amounts of iodine in 7 mL dry THF were added 1.27 mL 5-bromopent-1-ene (1.60 g, 10.7 mmol, 1.00 eq.) dropwise and stirred for 30 minutes at 40 °C. After cooling to room temperature a solution of 1.56 mL 3-ethoxycyclohex-2-en-1-one (1.50 g, 10.7 mmol, 1.00 eq.) in 5 mL dry THF was added dropwise and stirred for 1 hour at room temperature. After addition of 50 mL water, conc. HCl was added dropwise until the formed precipitate dissolved and the mixture was extracted with diethyl ether (3×25 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 4/1), 1.38 g enone **1** (8.40 mmol, 79%) were obtained as a colorless oil.

TLC: $R_f = 0.29$ (P/Et₂O = 4/1) [UV, KMnO₄].

¹**H-NMR** (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.61 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 7.5$ Hz, 2 H, C-2'-H₂), 1.99 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 6.2$ Hz, 2 H, C-5-H₂), 2.08 (*virt.* q, ${}^{3}J \approx {}^{3}J = 7.1$ Hz, 2 H, C-3'-H₂), 2.22 (t, ${}^{3}J = 7.7$ Hz, 2 H, C-1'-H₂), 2.28 (t, ${}^{3}J = 6.0$ Hz, 2 H, C-4-H₂), 2.36 (t, ${}^{3}J = 6.7$ Hz, 2 H, C-6-H₂), 4.97 - 5.05 (m, 2 H, C-5'-H₂), 5.78 (ddt, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 6.7$ Hz, 1 H, C-4'-H), 5.88 (s, 1 H, C-2-H).

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 22.9 (t, C-5-H₂), 26.2 (t, C-2'-H₂), 29.9 (t, C-4-H₂), 33.3 (t, C-3'-H₂), 37.5 (t, C-6-H₂), 37.5 (t, C-1'-H₂), 115.4 (t, C-5'-H₂), 126.0 (d, C-2-H), 138.0 (d, C-4'-H), 166.3 (s, C-3), 200.0 (s, C-1).

The analytical data obtained matched those reported in the literature.^[3,4]

1-[3-(Pent-4-en-1-yl)cyclohex-2-en-1-ylidene]pyrrolidin-1-ium hexafluorophosphate (2)

To a solution of 500 mg enone **1** (3.04 mmol, 1.00 eq.) and 250 μ L pyrrolidine (216 mg, 3.04 mmol, 1.00 eq.) in 7.6 mL dry toluene were added 496 mg ammonium hexafluorophosphate (3.04 mmol, 1.00 eq.). The suspension was refluxed for 3 hours with continuous removal of the water formed (*Dean-Stark*). The mixture was cooled to 0 °C and the formed precipitate was collected by filtration and washed with dry diethyl ether. After recrystallization (EtOH) 629 mg iminium ion **2** (1.73 mmol, 57%) were obtained as a colorless solid.

M.p.: 95 °C.

IR (ATR): $\tilde{v} = 2946 \text{ cm}^{-1}$ (w, C_{sp3}H), 2884 (w, C_{sp3}H), 1625 (s, C=N), 1447 (m, C_{sp3}H), 1403 (m), 1383 (w), 820 (s), 756 (m).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.66 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 7.4$ Hz, 2 H, C-2'-H₂), 2.01 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 6.4$ Hz, 2 H, C-5-H₂), 2.12 (*virt.* q, ${}^{3}J \approx {}^{3}J = 7.1$ Hz, 2 H, C-3'-H₂), 2.17 - 2.21 (m, 4 H, NCH₂CH₂), 2.40 - 2.47 (m, 4 H, C-4-H₂, C-1'-H₂), 2.80 (t, ${}^{3}J = 6.6$ Hz, 2 H, C-6-H₂), 3.89 - 3.93 (m, 4 H, NCH₂CH₂), 5.00 - 5.08 (m, 2 H, C-5'-H₂), 5.77 (ddt, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 6.7$ Hz, 1 H, C-4'-H), 6.33 (s, 1 H, C-2-H).

¹³C-NMR (76 MHz, CDCl₃, 298 K): δ (ppm) = 20.7 (t, C-5-H₂), 24.4 (t, NCH₂CH₂), 24.4 (t, NCH₂CH₂), 26.3 (t, C-2'-H₂), 29.7 (t, C-4-H₂)*, 29.8 (t, C-6-H₂)*, 33.2 (t, C-3'-H₂), 39.3 (t, C-1'-H₂), 52.4 (t, NCH₂CH₂), 52.8 (t, NCH₂CH₂), 116.0 (t, C-5'-H₂), 117.2 (d, C-2-H), 137.5 (d, C-4'-H), 173.4 (s, C-1), 177.9 (s, C-3).

¹⁹**F-NMR** (377 MHz, CDCl₃, 300 K): δ (ppm) = -73.8 (d, ¹*J* = 713 Hz, PF₆).

³¹**P-NMR** (162 MHz, CDCl₃, 300 K): δ (ppm) = -144.7 (sept, ¹*J* = 713 Hz, PF₆).

* assignment is interconvertible.

HRMS (ESI): calc. [M–PF₆]⁺: 218.1903; found: 218.1902.

1-(Octahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6*H*)-ylidene)pyrrolidin-1-ium hexafluorophosphate (*rac*-3)

To a solution of 36.3 mg iminium ion **2** (100 μ mol, 1.00 eq.) in 5 mL acetonitrile were added 2.50 mg **6** (2.50 μ mol, 2.5 mol%.) and the solution was degassed for 15 minutes by purging with argon in an ultrasonicating bath. After irradiation ($\lambda = 420$ nm) at room temperature for 2 hours, the solvent was removed under reduced pressure. After recrystallization [EtOH/MeCN = 20/1 (V/V)], 27.2 mg iminium ion *rac*-**3** (74.9 μ mol, 75%) were obtained as a colorless solid.

M.p.: 215 °C.

IR (ATR): $\tilde{v} = 2938 \text{ cm}^{-1}$ (w, C_{sp3}H), 2858 (w, C_{sp3}H), 1648 (m, C=N), 1445 (m, C_{sp3}H), 1369 (w), 877 (w), 822 (s).

¹**H-NMR** (500 MHz, CD₃CN, 298 K): δ (ppm) = 1.37 (*virt.* td, ${}^{2}J \approx {}^{3}J = 12.8$ Hz, ${}^{3}J = 6.5$ Hz, 1 H, C-1-*H*H), 1.48 (ddd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 11.1$ Hz, ${}^{3}J = 5.2$ Hz, 1 H, C-8-*H*H), 1.57 - 1.70 (m, 4 H, C-1-H*H*, C-6-*H*H, C-7-*H*H, C-8-H*H*), 1.86 (*virt.* dt, ${}^{2}J = 12.8$ Hz, ${}^{3}J \approx {}^{3}J = 6.4$ Hz, 1 H, C-2-*H*H), 1.91 - 2.18 (m, 9 H, 2 × NCH₂C*H*₂, C-2-H*H*, C-3-H₂, C-4-H₂), 2.42 - 2.53 (m, 2 H, C-3a-H, C-7-H*H*), 2.84 - 2.91 (m, 1 H, C-6-H*H*), 2.99 (t, ${}^{3}J = 9.3$ Hz, 1 H, C-4a-H), 3.49 - 3.56 (m, 1 H, NCH₂CH₂), 3.63 - 3.80 (m, 3 H, NCH₂CH₂).

¹³C-NMR (101 MHz, CD₃CN, 300 K): δ (ppm) = 19.6 (t, C-3-H₂), 24.8 (t, NCH₂CH₂), 24.9 (t, NCH₂CH₂), 25.4 (t, C-2-H₂), 26.8 (t, C-4-H₂), 31.8 (t, C-8-H₂), 33.2 (t, C-6-H₂), 33.7 (t, C-7-H₂), 39.4 (d, C-3a-H), 40.6 (t, C-1-H₂), 41.5 (d, C-4a-H), 48.7 (s, C-8a), 54.0 (t, NCH₂CH₂), 54.2 (t, NCH₂CH₂), 191.3 (s, C-5).

¹⁹**F-NMR** (471 MHz, CD₃CN, 300 K) δ (ppm) = -73.4 (d, ¹*J* = 713 Hz, PF₆).

³¹**P-NMR** (203 MHz, CD₃CN, 300 K) δ (ppm) = -144.7 (sept, ¹*J* = 713 Hz, PF₆).

HRMS (ESI): calc. [M–PF₆]⁺: 218.1903; found: 218.1902.

Octahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (rac-4)

To a solution of 18.1 mg iminium ion 2 (49.8 μ mol, 1.00 eq.) in 2.5 mL dry acetonitrile were added 865 μ g 5 (1.25 μ mol, 2.5 mol%) and the solution was degassed for 15 minutes by purging with argon in an ultrasonicating bath. After irradiation ($\lambda = 433$ nm) at room temperature for 2 hours, 3 M NaOH solution was added and the mixture was extracted with ethylacetate. The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 10/1) 6.00 mg ketone *rac*-4 (36.5 μ mol, 73%) were obtained as a colourless oil.

TLC: $R_{\rm f} = 0.11$ (P/Et₂O = 10/1) [KMnO₄].

¹**H-NMR** (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.34 (*virt.* td, ${}^{2}J \approx {}^{3}J = 12.5$ Hz, ${}^{3}J = 6.9$ Hz, 1 H, C-1-*H*H), 1.48 - 1.67 (m, 5 H, C-1-H*H*, C-3-H₂, C-8-H₂), 1.76 - 1.94 (m 3 H, C-2-H₂, C-4-*H*H), 1.94 - 2.10 (m, 3 H, C-4-H*H*, C-7-H₂), 2.11 - 2.23 (m, 1 H, C-6-*H*H), 2.40 (dt, {}^{3}J = 10.1 Hz, ${}^{3}J = 5.9$ Hz, 1 H, C-3a-H), 2.48 (dd, ${}^{3}J = 11.3$ Hz, ${}^{3}J = 7.0$ Hz, 1 H, C-4a-H), 2.57 (dt, ${}^{2}J = 17.5$ Hz, ${}^{3}J = 3.6$ Hz, 1 H, C-6-H*H*).

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 21.3 (t, C-7-H₂), 25.1 (t, C-2-H₂), 26.9 (t, C-4-H₂), 32.9 (t, C-3-H₂)*, 33.1 (t, C-8-H₂)*, 39.6 (d, C-3a-H), 39.6 (t, C-6-H₂), 40.5 (t, C-1-H₂), 47.3 (d, C-4a-H), 50.1 (s, C-8a), 215.6 (s, C-5).

* assignment is interconvertible.

The analytical data obtained matched those reported in the literature.^[3,5]

3-(4-Methylpent-4-en-1-yl)cyclohex-2-en-1-one (S1)

To a suspension of 338 mg magnesium (13.3 mmol, 1.30 eq.) and catalytic amounts of iodine in 7 mL dry THF were added 1.27 mL 5-bromo-2-methylpent-1-ene (1.74 g, 10.7 mmol, 1.00 eq.) dropwise and stirred for 30 minutes at 40 °C. After cooling to room temperature a solution of 1.56 mL 3-ethoxycyclohex-2-en-1-one (1.50 g, 10.7 mmol, 1.00 eq.) in 5 mL dry THF was added dropwise and stirred for 1 hour at room temperature. After addition of 50 mL water, conc. HCl was added dropwise until the formed precipitate dissolved and the mixture was extracted with diethyl ether (3×25 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 4/1), 1.90 g enone **S1** (7.81 mmol, 73%) were obtained as a colorless oil.

TLC: $R_{\rm f} = 0.39 \, (P/Et_2O = 1/1) \, [UV, KMnO_4].$

IR (ATR): $\tilde{v} = 3074 \text{ cm}^{-1}$ (w, C_{sp2}H), 2936 (m, C_{sp3}H), 2868 (w, C_{sp3}H), 1666 (s, C=O), 1624 (s, C=C), 885 (s, C=C).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.60 - 1.69 (m, 2 H, C-2'-H₂), 1.71 (t, ⁴*J* = 1.1 Hz, 3 H, C-4'-CH₃), 1.96 - 2.02 (m, 4 H, C-5-H₂, C-3'-H₂), 2.18 - 2.23 (m, 2 H, C-1'-H₂), 2.26 - 2.31 (m, 2 H, C-4-H₂), 2.34 - 2.39 (m, 2 H, C-6-H₂), 4.68 (dq, ²*J* = 2.2 Hz, ⁴*J* = 1.0 Hz, 1 H, C-5'-*H*H), 4.73 - 4.75 (m, 1 H, C-5'-H*H*), 5.89 (*virt.* quint, ⁴*J* \approx ⁴*J* = 1.4 Hz, 1 H, C-2-H).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 22.4 (q, C-4'-CH₃), 22.9 (t, C-5-H₂), 24.8 (t, C-2'-H₂), 29.9 (t, C-4-H₂), 37.3 (t, C-3'-H₂), 37.5 (t, C-6-H₂), 37.6 (t, C-1'-H₂), 110.7 (t, C-5'-H₂), 125.9 (d, C-2-H), 145.1 (s, C-4'), 166.5 (s, C-3), 200.1 (s, C-1).

MS (EI, 70 eV): m/z (%) = 178 (5) [M]⁺, 163 (16) [M–CH₃]⁺, 141 (23), 135 (29), 123 (100) [M–C₄H₇]⁺, 110 (38) [C₇H₁₀O]⁺, 94 (68) [C₆H₆O]⁺, 82 (99) [C₆H₁₀]⁺, 67 (40), 41 (37).

HRMS (EI, 70 eV): calc. ($C_{12}H_{18}O$): 178.1352; found: 178.1355.

5,5-Dimethyl-3-(pent-4-en-1-yl)-cyclohex-2-en-1-one (S2)

To a suspension of 338 mg magnesium (13.3 mmol, 1.30 eq.) and catalytic amounts of iodine in 7 mL dry THF were added 1.27 mL 5-bromo-2-methylpent-1-ene (1.80 g, 10.7 mmol, 1.00 eq.) dropwise and stirred for 30 minutes at 40 °C. After cooling to room temperature a solution of 1.56 mL 5,5-dimethyl-3-ethoxycyclohex-2-en-1-one (1.50 g, 10.7 mmol, 1.00 eq.) in 5 mL dry THF was added dropwise and stirred for 1 hour at room temperature. After addition of 50 mL water, conc. HCl was added dropwise until the formed precipitate dissolved and the mixture was extracted with diethyl ether (3×25 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 4/1), 860 mg enone **S2** (4.17 mmol, 39%) were obtained as a colorless oil.

TLC: $R_f = 0.39 (P/Et_2O = 1/1) [UV, KMnO_4].$

IR (ATR): $\tilde{v} = 3074 \text{ cm}^{-1}$ (w, C_{sp2}H), 2938 (m, C_{sp3}H), 2869 (w, C_{sp3}H), 1666 (s, C=O), 1628 (s, C=C), 886 (s, C=C).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.03 [s, 6 H, C-5-(CH₃)₂], 1.64 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 7.8$ Hz, 2 H, C-2'-H₂), 1.71 (s, 3 H, C-4'-CH₃), 2.03 (t, ${}^{3}J = 7.6$ Hz, 2 H, C-3'-H₂), 2.15 - 2.19 (m, 4 H, C-4-H₂, C-1'-H₂), 2.21 (s, 2 H, C-6-H₂), 4.67 - 4.68 (m, 1 H, C-5'-*H*H), 4.73 - 4.74 (m, 1 H, C-5'-H*H*), 5.89 (*virt.* quint, ${}^{4}J \approx {}^{4}J = 1.4$ Hz, 1 H, C-2-H).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 22.4 (q, C-4'-CH₃), 24.8 (t, C-2'-H₂), 28.4 (q, 2 × C-5-CH₃), 33.8 (s, C-5), 37.3 (t, C-3'-H₂), 37.6 (t, C-1'-H₂), 44.1 (t, C-4-H₂), 51.2 (t, C-6-H₂), 110.7 (t, C-5'-H₂), 124.9 (d, C-2-H), 145.1 (s, C-4'), 164.1 (s, C-3), 200.3 (s, C-1).

MS (EI, 70 eV): m/z (%) = 206 (30) [M]⁺, 191 (26) [M–CH₃]⁺, 163 (30), 151 (73), 138 (38), 107 (36), 94 (90) [C₆H₆O]⁺, 82 (100) [C₆H₁₀]⁺, 67 (19), 41 (25).

HRMS (EI, 70 eV): calc. (C₁₄H₂₂O): 206.1665; found: 206.1651.

calc. (C₁₃¹³CH₂₂O): 207.1699; found: 207.1689.

1-[3-(4-Methylpent-4-en-1-yl)cyclohex-2-en-1-ylidene]pyrrolidin-1-ium hexafluorophosphate (8a)

To a solution of 164 mg enone **S1** (920 μ mol, 1.00 eq.) and 75.0 μ L pyrrolidine (65.0 mg, 920 μ mol, 1.00 eq.) in 2 mL dry toluene were added 150 mg ammonium hexafluorophosphate (920 μ mol, 1.00 eq.). The suspension was refluxed for 3 hours with continuous removal of the water formed (*Dean-Stark*). The solvent was evaporated under reduced pressure to afford a yellow solid. After washing the solid with cold ethanol, 164 mg iminium ion **8a** (435 μ mol, 47%) were obtained as a white solid.

M.p.: 59 °C.

IR (ATR): $\tilde{v} = 2943 \text{ cm}^{-1}$ (w, C_{sp3}H), 1623 (s, C=N), 1446 (w, C_{sp3}H), 1400 (w), 1350 (w), 824 (s).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.66 - 1.73 (m, 2 H, C-2'-H₂), 1.72 (dd, ⁴*J* = 1.3 Hz, ⁴*J* = 0.9 Hz, 3 H, C-4'-CH₃), 2.00 (*virt.* quint, ³*J* \approx ³*J* = 6.4 Hz, 2 H, C-5-H₂), 2.06 (t, ³*J* = 7.3 Hz, 2 H, C-3'-H₂), 2.15 - 2.22 (m, 4 H, NCH₂CH₂), 2.37 - 2.42 (m, 2 H, C-1'-H₂), 2.44 (t, ³*J* = 6.0 Hz, 2 H, C-4-H₂), 2.79 (t, ³*J* = 6.6 Hz, 2 H, C-6-H₂), 3.87 - 3.94 (m, 4 H, NCH₂CH₂), 4.69 (dq, ²*J* = 2.1 Hz, ⁴*J* = 1.3 Hz, 1 H, C-5-*H*H), 4.75 - 4.76 (m, 1 H, C-5-H*H*), 6.34 (*virt.* quint, ⁴*J* \approx ⁴*J* = 1.3 Hz, 1 H, C-2-H).

¹³C-NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 20.7 (t, C-5-H₂), 22.3 (q, C-4'-CH₃), 24.4 (t, NCH₂CH₂), 24.4 (t, NCH₂CH₂), 24.9 (t, C-2'-H₂), 29.7 (t, C-4-H₂)*, 29.8 (t, C-6-H₂)*, 37.2 (t, C-3'-H₂), 39.4 (t, C-1'-H₂), 52.4 (t, NCH₂CH₂), 52.8 (t, NCH₂CH₂), 111.2 (t, C-5'-H₂), 117.3 (d, C-2-H), 144.6 (s, C-4'), 173.5 (s, C-1), 178.0 (s, C-3).

¹⁹**F-NMR** (471 MHz, CDCl₃, 300 K): δ (ppm) = -73.6 (d, ¹*J* = 713 Hz, PF₆).

³¹**P-NMR** (203 MHz, CDCl₃, 300 K): δ (ppm) = -144.7 (sept, ¹*J* = 713 Hz, PF₆).

* assignment is interconvertible.

HRMS (ESI): calc. [M–PF₆]⁺: 232.2060; found: 232.2059.

1-[5,5-Dimethyl-3-(4-methylpent-4-en-1-yl)cyclohex-2-en-1-ylidene]pyrrolidin-1-ium hexafluorophosphate (8b)

To a solution of 119 mg enone **S2** (580 μ mol, 1.00 eq.) and 47.0 μ L pyrrolidine (41.0 mg, 580 μ mol, 1.00 eq.) in 2 mL dry toluene were added 94.0 mg of ammonium hexafluorophosphate (580 μ mol, 1.00 eq.). The suspension was refluxed for 3 hours with continuous removal of the water formed (*Dean-Stark*). The solvent was removed in vacuo to afford a yellow solid. After washing with diethyl ether, 62.0 mg iminium ion **8b** (153 μ mol, 26%) were obtained as a white solid.

M.p.: 109 °C.

IR (ATR): $\tilde{v} = 2965 \text{ cm}^{-1}$ (w, C_{sp3}H), 1629 (s, C=N), 1441 (w, C_{sp3}H), 1400 (w), 1357 (w), 826 (s).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.09 [s, 6 H, C-5-(CH₃)₂], 1.68 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 7.5$ Hz, 2 H, C-2'-H₂), 1.72 (s, 3 H, C-4'-CH₃), 2.07 (t, ${}^{3}J = 7.4$ Hz, 2 H, C-3'-H₂), 2.17 - 2.22 (m, 4 H, NCH₂CH₂), 2.35 (s, 2 H, C-4-H₂), 2.38 (t, ${}^{3}J = 7.7$ Hz, 2 H, C-1'-H₂), 2.65 (s, 2 H, C-6-H₂), 3.84 - 4.01 (m, 4 H, NCH₂CH₂), 4.62 - 4.69 (m, 1 H, C-5'-*H*H), 4.74 - 4.76 (m, 1 H, C-5'-H*H*), 6.37 (s, 1 H, C-2-H).

¹³C-NMR (126 MHz, CDCl₃, 298 K): δ (ppm) = 22.3 (q, C-4'-CH₃), 24.4 (t, NCH₂CH₂), 24.5 (t, NCH₂CH₂), 24.8 (t, C-2'-H₂), 28.2 (q, 2 × C-5-CH₃), 32.7 (s, C-5), 37.2 (t, C-3'-H₂), 39.5 (t, C-1'-H₂), 43.0 (t, C-6-H₂), 44.0 (t, C-4-H₂), 52.7 (t, NCH₂CH₂), 53.0 (t, NCH₂CH₂), 111.2 (t, C-5'-H₂), 116.4 (d, C-2-H), 144.6 (s, C-4'), 173.2 (s, C-1), 176.2 (s, C-3).

¹⁹**F-NMR** (471 MHz, CDCl₃, 300 K): δ (ppm) = -73.5 (d, ¹*J* = 713 Hz, PF₆).

³¹**P-NMR** (203 MHz, CDCl₃, 300 K): δ (ppm) = -144.6 (sept, ¹*J* = 713 Hz, PF₆).

HRMS (ESI): calc. [M–PF₆]⁺: 260.2373; found: 260.2372.

3a-Methyloctahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6*H*)-one (*rac*-9a)

To a solution of 37.0 mg iminium ion **8a** (100 µmol, 1.00 eq.) in 5 mL dry acetonitrile were added 1.70 mg **5** (2.50 µmol, 2.50 mol%) and the solution was degassed for 15 minutes by purging with argon in an ultrasonicating bath. After irradiation ($\lambda = 433$ nm) at room temperature for 2 hours, 3 M NaOH solution was added and the mixture was extracted with ethylacetate. The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 4/1), 12.7 mg ketone *rac*-**9a** (71.0 µmol, 71%) were obtained as a colourless oil.

TLC: $R_{\rm f} = 0.58$ (P/Et₂O = 1/1) [KMnO₄].

IR (ATR): $\tilde{v} = 2933 \text{ cm}^{-1}$ (s, C_{sp3}H), 2865 (m, C_{sp3}H), 2847 (m, C_{sp3}H), 1701 (s, C=O), 1442 (m, C_{sp3}H).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.06 (s, 3 H, C-3a-CH₃), 1.29 - 1.36 (m, 1 H, C-3-*H*H), 1.36 - 1.42 (m, 1 H, C-1-*H*H), 1.45 (ddd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 9.1 Hz, ${}^{3}J$ = 4.2 Hz, 1 H, C-8-*H*H), 1.57 - 1.63 (m, 1 H, C-3-H*H*), 1.71 - 1.83 (m, 4 H, C-1-H*H*, C-2-H₂, C-8-H*H*), 1.86 (ddd, ${}^{2}J$ = 12.7 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, C-4-*H*H), 1.88 - 1.98 (m, 2 H, C-7-H₂), 2.01 (dd, ${}^{2}J$ = 12.7 Hz, ${}^{3}J$ = 11.0 Hz, 1 H, C-4-H*H*), 2.21 - 2.28 (m, 1 H, C-6-*H*H), 2.37 - 2.44 (m, 2 H, C-4a-H, C-6-H*H*).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 22.0 (t, C-7-H₂), 22.9 (q, C-3a-CH₃), 23.9 (t, C-2-H₂), 29.5 (t, C-8-H₂), 35.1 (t, C-4-H₂), 40.0 (t, C-6-H₂), 41.7 (t, C-1-H₂), 42.0 (t, C-3-H₂), 44.6 (s, C-3a), 45.3 (d, C-4a-H), 51.3 (s, C-8a), 216.5 (s, C-5).

MS (EI, 70 eV): m/z (%) = 178 (24) [M]⁺, 163 (31) [M–CH₃]⁺, 135 (62) [C₉H₁₁O]⁺, 123 (90) [C₈H₁₁O]⁺, 110 (56) [C₇H₁₀O]⁺, 94 (100) [C₆H₆O]⁺, 83 (68) [C₆H₁₀]⁺, 67 (41), 55 (27). **HRMS** (EI, 70 eV): calc. (C₁₂H₁₈O): 178.1352; found: 178.1357.

3a,7,7-Trimethyloctahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (rac-9b)

To a solution of 40.0 mg iminium ion **8b** (100 µmol, 1.00 eq.) in 5 mL dry acetonitrile were added 1.70 mg **5** (2.50 µmol, 2.50 mol%) and the solution was degassed for 15 minutes by purging with argon in an ultrasonicating bath. After irradiation ($\lambda = 433$ nm) at room temperature for 2 hours, 3 M NaOH solution was added and the mixture was extracted with ethylacetate. The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 4/1) 15.7 mg ketone *rac-***9b** (76.0 µmol, 76%) were obtained as a colourless oil.

TLC: $R_{\rm f} = 0.58$ (P/Et₂O = 1/1) [KMnO₄].

IR (ATR): $\tilde{v} = 2945$ (m, C_{sp3}H), 2866 (m, C_{sp3}H), 1698 (s, C=O), 1446 (m, C_{sp3}H).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.90 (s, 3 H, C-7-CH₃), 1.01 (s, 3 H, C-3a-CH₃), 1.04 (s, 3 H, C-7-CH₃), 1.27 (dd, ²*J* = 14.2 Hz, ⁴*J* = 2.4 Hz, 1 H, C-8-*H*H), 1.30 - 1.34 (m, 1 H, C-3-*H*H), 1.39 (*virt.* td, ²*J* \approx ³*J* = 12.3 Hz, ³*J* = 7.0 Hz, 1 H, C-1-*H*H), 1.62 (dd, ²*J* = 12.8 Hz, ³*J* = 6.0 Hz, 1 H, C-3-H*H*), 1.69 - 1.82 (m, 3 H, C-4-*H*H, C-2-H₂), 1.91 (d, ²*J* = 14.2 Hz, 1 H, C-8-*H*H), 1.96 (dd, ²*J* = 12.7 Hz, ³*J* = 5.7 Hz, 1 H, C-1-H*H*), 2.02 (dd, ²*J* = 12.4 Hz, ³*J* = 11.3 Hz, 1 H, C-4-H*H*), 2.12 (ddd, ²*J* = 16.1 Hz, ⁴*J* = 2.4 Hz, ⁴*J* = 1.2 Hz, 1 H, C-6-*H*H), 2.21 (d, ²*J* = 16.1 Hz, 1 H, C-6-H*H*), 2.36 (dd, ³*J* = 11.1 Hz, ³*J* = 7.8 Hz, 1 H, C-4a-H).

¹³C-NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 24.3 (q, C-3a-CH₃)*, 24.3 (t, C-2-H₂)*, 28.0 (q, C-7-CH₃), 31.8 (q, C-7-CH₃), 33.9 (s, C-7), 34.8 (t, C-4-H₂), 40.8 (t, C-3-H₂), 42.8 (t, C-8-H₂), 43.7 (d, C-4a-H), 44.0 (t, C-1-H₂), 45.4 (s, C-3a)**, 50.0 (s, C-8a)**, 52.7 (t, C-6-H₂), 216.2 (s, C-5).

*,** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 206 (35) [M]⁺, 191 (39) [M–CH₃]⁺, 163 (50), 151 (67), 138 (47), 125 (42), 94 (100) [C₆H₆O]⁺, 82 (78) [C₆H₁₀]⁺, 67 (15), 41 (27).

HRMS (EI, 70 eV): calc. (C₁₄H₂₂O): 206.1665; found: 206.1648.

calc. (C₁₃¹³CH₂₂O): 207.1699; found: 207.1681.

(E)-1-(3-Phenylallyliden)pyrrolidin-1-ium trifluoromethanesulfonate (11)

To a solution of $402 \,\mu\text{L}$ aldehyde **10** (456 mg, 3.45 mmol, 1.00 eq.) and $632 \,\mu\text{L}$ *N*-trimethylsilylpyrrolidine (519 mg, 3.62 mmol, 1.05 eq.) in 14 mL dry diethyl ether were added 656 μ L TMSOTf (805 mg, 3.62 mmol, 1.05 eq.) dropwise. After 2 hours stirring at room temperature the solvent was removed by filtration and the solid was washed with dry diethyl ether (2 × 25 mL). After recrystallization (Et₂O/CH₂Cl₂), 765 mg iminium ion **11** (2.28 mmol, 66%) were obtained as pale yellow crystals.

M.p.: 121 °C.

¹**H-NMR** (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.02 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 6.8$ Hz, 2 H, C-3-H₂), 2.14 (*virt.* quint, ${}^{3}J \approx {}^{3}J = 6.8$ Hz, 2 H, C-4-H₂), 4.00 (t, ${}^{3}J = 6.9$ Hz, 2 H, C-5-H₂), 4.08 (t, ${}^{3}J = 6.9$ Hz, 2 H, C-2-H₂), 7.08 (dd, ${}^{3}J = 15.3$ Hz, ${}^{3}J = 10.5$ Hz, 1 H, C-2'-H), 7.39 (*virt.* t, ${}^{3}J \approx {}^{3}J = 7.4$ Hz, 2 H, C_{Ph}-H_{meta}), 7.47 (t, ${}^{3}J = 7.3$ Hz, 1 H, C_{Ph}-H_{para}), 7.68 (d, ${}^{3}J = 7.3$ Hz, 2 H, C_{Ph}-H_{ortho}), 7.90 (d, ${}^{3}J = 15.3$ Hz, 1 H, C-3'-H), 8.80 (d, ${}^{3}J = 10.5$ Hz, 1 H, C-1'-H).

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 24.4 (t, C-3-H₂), 24.6 (t, C-4-H₂), 51.9 (t, C-5-H₂), 57.3 (t, C-2-H₂), 117.4 (d, C-2'-H), 120.9 (q, ¹*J* = 320 Hz, CF₃), 129.5 (d, 2 × C_{Ph}-H_{meta}), 130.5 (d, 2 × C_{Ph}-H_{ortho}), 133.5 (s, C_{Ph}), 133.7 (d, C_{Ph}-H_{para}), 161.1 (d, C-3'-H), 166.6 (d, C-1'-H).

¹⁹**F-NMR** (377 MHz, CD₃CN, 300 K): δ (ppm) = -79.3.

The analytical data obtained matched those reported in the literature.^[6]

(S)-2-{Bis[3,5-bis(trifluoromethyl)phenyl][((2,3-dimethylbutan-2-yl)dimethylsilyl)oxy]methyl}pyrrolidine (S3)

To a solution of 478 mg (*S*)-bis(3,5-bis(trifluoromethyl)phenyl)(pyrrolidin-2-yl)methanol (909 μ mol, 1.00 eq.) in 4.6 mL dry THF were added 109 mg NaH (60 wt% in mineral oil, 2.73 mmol, 3.00 eq.) portionwise. After 10 minutes of stirring, 377 μ L chloro(2,3-dimethylbutan-2-yl)dimethylsilane (342 mg, 1.82 mmol, 2.00 eq.) were added dropwise. After 8 hours of stirring at room temperature the reaction mixture was poured onto ice and extracted with diethyl ether (3 × 50 mL). The combined organic layers were washed with 30 mL water, 30 mL brine, dried over Na₂SO₄, filtered and the solvent was removed in vacuo. Purification by column chromatography (silica, P/EtOAc = 50/1) gave 554 mg amine **S3** (830 μ mol, 91%) as a colorless solid.

TLC: $R_{\rm f} = 0.50 \, (P/EtOAc = 9/1) \, [UV, KMnO_4].$

¹**H-NMR** (400 MHz, CDCl₃, 298 K): δ (ppm) = -0.47 [s, 3 H, Si(CH₃)₂], -0.16 [s, 3 H, Si(CH₃)₂], 0.67 - 0.82 (m, 1 H, C-4-*H*H), 0.85 [d, ³*J* = 10.1 Hz, 6 H, SiC(CH₃)₂CH(CH₃)₂], 0.92 [d, ⁴*J* = 1.8 Hz, 3 H, SiC(CH₃)₂], 1.42 - 1.50 (m, 2 H, C-3-*H*H, C-4-H*H*), 1.68 - 1.90 [m, 2 H, C-3-H*H*, SiC(CH₃)*CH*(CH₃)₂], 2.42 - 2.49 (m, 1 H, C-5-*H*H), 2.87 (dt, ²*J* = 10.0 Hz, ³*J* = 7.0 Hz, 1 H, C-5-H*H*), 4.30 (dd, ³*J* = 8.6 Hz, ³*J* = 5.1 Hz, 1 H, C-2-H), 7.74 (s, 2 H, C_{Ar}-H_{ortho}), 7.85 (s, 2 H, C_{Ar}-H_{para}), 8.08 (s, 2 H, C_{Ar}-H_{ortho}).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = -0.82 [q, Si(CH₃)₂], -0.03 [q, Si(CH₃)₂], 18.6 [q, SiC(CH₃)₂], 18.7 [q, SiC(CH₃)₂], 20.2 [q, SiC(CH₃)₂CH(CH₃)₂], 20.4 [q, SiC(CH₃)₂CH(CH₃)₂], 25.5 (t, C-4-H₂), 25.8 [s, SiC(CH₃)₂], 28.1 (t, C-3-H₂), 33.9 [d, SiC(CH₃)₂CH(CH₃)₂], 47.4 (t, C-5-H₂), 63.7 (d, C-2-H), 83.1 (s, C-6), 121.6 (d, C_{Ar}-H_{para}), 122.0 (d, C_{Ar}-H_{para}), 123.3 (q, ¹*J* = 273 Hz, 2 × CF₃), 123.6 (q, ¹*J* = 273 Hz, 2 × CF₃), 129.4 (d, 4 × C_{Ar}-H_{ortho}), 130.5 (q, ²*J* = 33.4 Hz, 2 × CCF₃), 131.6 (q, ²*J* = 33.4 Hz, 2 × CCF₃), 146.1 (s, C_{Ar}), 147.8 (s, C_{Ar}).

¹⁹**F-NMR** (471 MHz, CDCl₃, 300 K): δ (ppm) = -62.8 (s, 2 × CF₃), -62.9 (s, 2 × CF₃).

The analytical data obtained matched those reported in the literature.^[7]

(*S*,*E*)-2-{Bis[3,5-bis(trifluoromethyl)phenyl][((2,3-dimethylbutan-2-yl)dimethylsilyl)oxy]methyl}-1-[(*E*)-3-phenylallylidene]pyrrolidin-1-ium tetrafluoroborate (17)

A solution of 400 mg amine **S3** (599 µmol, 1.00 eq) in 6 mL dry *n*-pentane was cooled to 0 °C and 103 µL tetrafluoroboric acid diethyl ether complex (121 mg, 749 µmol, 1.25 eq.) were added dropwise. The reaction mixture was warmed to room temperature and after 3.5 hours of stirring, the precipitate was filtered, washed with dry *n*-pentane (3×5 mL) and dried in vacuo. A mixture of 200 mg of the obtained ammonium salt (265 µmol, 1.00 eq.), 100 mg 4 Å molecular sieves and 50.0 µL aldehyde **10** (52.5 mg, 397 µmol, 1.50 eq.) in 1.5 mL dry dichloromethane was refluxed for 6 hours. After cooling to room temperature the yellow solution was added dropwise to 40 mL dry *n*-pentane (3×5 mL). The obtained solid was dissolved in 2 mL dry dichloromethane and added dropwise to 50 mL dry *n*-pentane and cooled to -20 °C. The formed precipitate was filtered, washed with dry *n*-pentane (3×5 mL) and dried in vacuo, which gave 83.2 mg iminium ion **17** (95.7 µmol, 36%) as a yellow solid.

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = -0.32 [s, 3 H, Si(CH₃)₂], -0.27 [s, 3 H, Si(CH₃)₂], 0.83 [s, 3 H, SiC(CH₃)₂], 0.88 - 0.92 [m, 9 H, SiC(CH₃)₂, SiC(CH₃)₂CH(CH₃)₂], 1.34 - 1.44 (m, 1 H, C-4-*H*H), 1.76 [*virt.* sept, ³*J* \approx ³*J* = 6.4 Hz, 1 H, SiC(CH₃)₂CH(CH₃)₂], 1.84 - 1.94 (m, 1 H, C-4-HH), 2.05 - 2.13 (m, 1 H, C-3-*H*H), 2.34 (dt, ²*J* = 14.5 Hz, ³*J* = 8.6 Hz, 1 H, C-5-*H*H), 2.52 - 2.63 (m 1 H, C-3-HH), 3.93 (ddd, ²*J* = 14.5 Hz, ³*J* = 8.9 Hz, ³*J* = 4.6 Hz, 1 H, C-5-HH), 5.56 (dd, ³*J* = 9.2 Hz, ³*J* = 4.1 Hz, 1 H, C-2-H), 7.12 (dd, ³*J* = 15.3 Hz, ³*J* = 10.7 Hz, 1 H, C-2'-H), 7.60 (*virt.* t, ³*J* \approx ³*J* = 7.7 Hz, 2 H, C_{Ph}-H_{meta}), 7.70 (t, ³*J* = 7.4 Hz, 1 H, C-3'-H, CAr-H_{para}), 7.89 (d, ³*J* = 7.7 Hz, 2 H, C_{Ph}-H_{ortho}), 7.97 (s, 2 H, CAr-H_{ortho}), 7.96 - 8.06 (m, 3 H, C-3'-H, CAr-H_{ortho}), 8.19 (s, 1 H, CAr-H_{para}), 8.22 (s, 1 H, CAr-H_{para}), 8.64 (d, ³*J* = 10.7 Hz, 1 H, C-1'-H).

¹³C-NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = -0.38 [q, Si(CH₃)₂], -0.33 [q, Si(CH₃)₂], 18.5 [q, SiC(CH₃)₂CH(CH₃)₂], 19.0 [q, SiC(CH₃)₂CH(CH₃)₂], 19.9 [q, SiC(CH₃)₂], 20.8 [q, SiC(CH₃)₂], 23.1 (t, C-4-H₂), 26.4 [s, SiC(CH₃)₂], 27.0 (t, C-3-H₂), 34.1 [d, SiC(CH₃)₂CH(CH₃)₂], 54.4 (t, C-5-H₂), 77.1 (d, C-2-H), 84.3 (s, C-6), 118.6 (d, C-2'-H), 124.1 S17

(q, ${}^{1}J = 272$ Hz, $2 \times CF_3$), 124.2 (q, ${}^{1}J = 272$ Hz, $2 \times CF_3$), 124.6 (d, C_{Ar} -H_{para}), 124.8 (d, C_{Ar} -H_{para}), 130.2 (d, $2 \times C_{Ar}$ -H_{ortho}), 130.7 (d, $2 \times C_{Ph}$ -H_{meta}), 131.8 (d, $2 \times C_{Ar}$ -H_{ortho}, $2 \times C_{Ph}$ -H_{ortho}), 132.5 (q, ${}^{2}J = 33.6$ Hz, $2 \times CCF_3$), 132.9 (q, ${}^{2}J = 33.7$ Hz, $2 \times CCF_3$), 134.3 (s, C_{Ph}), 135.7 (d, C_{Ph} -H_{para}), 142.2 (s, C_{Ar}), 142.6 (s, C_{Ar}), 164.4 (d, C-3'-H), 169.0 (d, C-1'-H). ¹⁹**F**-**NMR** (471 MHz, CDCl₃, 300 K): δ (ppm) = -63.3 (s, $2 \times CF_3$), -63.4 (s, $2 \times CF_3$), -151.8 (s, BF₄).

The analytical data obtained matched those reported in the literature.^[7]

3-Methyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutane-1-carbaldehyde (rac-12)

[2+2]-photocycloaddition of iminium ion 11

To a solution of 69.6 mg iminium ion **11** (208 µmol, 1.00 eq.) and 4.46 mg Ru(bpy)₃(PF₆)₂ (5.19 µmol, 2.5 mol%) in dry, degassed acetonitrile were added 467 µL 2,3-dimethylbutadiene (341 mg, 4.15 mmol, 20.0 eq.). After irradiation ($\lambda = 457$ nm) for 4 hours, 25 mL 3 M NaOH solution were added and the mixture was extracted with diethyl ether (3 × 25 mL). The combined organic layers were washed with 25 mL 1 M HCl solution, 25 mL saturated NaHCO₃-solution, 25 mL brine and dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 25/1) 30.8 mg aldehyde *rac*-**12** (144 µmol, 69%, d.r. = 87/13) were obtained as a colorless oil.

Enantioselective [2+2]-photocycloaddition of chiral iminium ion 17

A solution of 35.0 mg iminium ion **17** (40.3 μ mol, 1.00 eq.) and 865 μ g Ru(bpy)₃(PF₆)₂ (1.01 μ mol, 2.5 mol%) in 2 mL dry, degassed acetonitrile was cooled to -40 °C and 91.6 μ L S18

2,3-dimethylbutadiene (66.1 mg, 805 μ mol, 20.0 eq.) were added. After irradiation ($\lambda = 457$ nm) at -40 °C for 3.5 hours the solution was warmed up to room temperature, 15 mL 3 M NaOH solution were added and the mixture was extracted with diethyl ether (3 × 20 mL). The combined organic layers were washed with 15 mL 1 M HCl solution, 15 mL saturated NaHCO₃-solution, 15 mL brine and dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (silica, P/Et₂O = 25/1), 6.70 mg aldehyde **12a** (31.3 µmol, 78%, d.r. = 94/6, 88% *ee*) were obtained as a colorless oil.

Major Diastereoisomer

TLC: $R_{\rm f} = 0.39$ (P/EtOAc = 9/1) [KMnO₄].

IR (ATR): $\tilde{v} = 3085 \text{ cm}^{-1}$ (w, C_{sp2}H), 3062 (w, C_{sp2}H), 2964 (m, C_{sp3}H), 2926 (m, C_{sp3}H), 1718 (s, C=O), 1448 (m, C_{sp3}H), 1378 (m), 891 (m), 774 (m, C_{sp2}H), 699 (s, C_{sp2}H).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.06 (s, 3 H, C-3-*C*H₃), 1.75 (*br.* s, 3 H, C-3'-H₃), 1.94 (dd, ${}^{2}J$ = 11.0 Hz, ${}^{3}J$ = 8.7 Hz, 1 H, C-4-H_β), 2.33 (dd, ${}^{2}J$ = 11.0 Hz, ${}^{3}J$ = 9.6 Hz, 1 H, C-4-H_α), 3.47 (*virt.* qd, ${}^{3}J \approx {}^{3}J$ = 9.6 Hz, ${}^{3}J$ = 2.5 Hz, 1 H, C-1-H), 3.89 (d, ${}^{3}J$ = 10.2 Hz, 1 H, C-2-H), 4.85 (*virt.* quint, ${}^{2}J \approx {}^{4}J$ = 1.4 Hz, 1 H, C-1'-*H*H), 4.89 (*br.* s, 1 H, C-1'-*HH*), 7.22 - 7.26 (m, 3 H, C_{Ph}-H_{ortho}, C_{Ph}-H_{para}), 7.30 - 7.34 (m, 2 H, C_{Ph}-H_{meta}), 9.80 (d, ${}^{3}J$ = 2.5 Hz, 1 H, CHO).

¹³C-NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 18.9 (q, C-3'-H₃), 21.6 (q, C-3-*C*H₃), 31.5 (t, C-4-H₂), 44.8 (d, C-1-H), 46.1 (s, C-3), 47.7 (d, C-2-H), 109.1 (t, C-1'-H₂), 126.8 (d, C_{Ph}-H_{para}), 128.1 (d, 2 × C_{Ph}-H_{ortho}), 128.4 (d, 2 × C_{Ph}-H_{meta}), 139.2 (s, C_{Ph}), 152.4 (s, C-2'), 202.4 (d, CHO). **Important NOE-contacts**

MS (EI, 70 eV): m/z (%) = 214 (3) [M]⁺, 183 (19), 131 (74) [C₉H₇O]⁺, 91 (27) [C₇H₇]⁺, 82 (100), 77 (7) [C₆H₅]⁺, 67 (67) [C₅H₇]⁺.

HRMS (EI, 70 eV): calc. ($C_{15}H_{18}O$): 214.1352; found: 214.1344.

calc. (C₁₄¹³CH₁₈O): 215.1386; found: 215.1377.

Chiral GC: $t_{R1} = 95.8 \text{ min}, t_{R2} = 96.0 \text{ min} [60 °C (3 min), 125 °C (25 °C/min), 125 °C (90 min), 230 °C (15 °C/min), 230 °C (3 min)].$ **Specific Rotation:** $[\alpha]_D^{25} = +76.0 (c = 0.5, CHCl_3) [88\% ee].$

Minor Diastereoisomer

TLC: $R_{\rm f} = 0.41$ (P/EtOAc = 9/1) [KMnO₄].

IR (ATR): $\tilde{v} = 3089 \text{ cm}^{-1}$ (w, C_{sp2}H), 3062 (w, C_{sp2}H), 2959 (m, C_{sp3}H), 2925 (m, C_{sp3}H), 1719 (s, C=O), 1454 (m, C_{sp3}H), 1376 (m), 890 (m), 762 (m, C_{sp2}H), 698 (s, C_{sp2}H).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.08 (*br.* s, 3 H, C-3'-H₃), 1.39 (s, 3 H, C-3-*C*H₃), 2.11 (dd, ${}^{2}J$ = 12.0 Hz, ${}^{3}J$ = 8.7 Hz, 1 H, C-4-H_α), 2.55 (dd, ${}^{2}J$ = 12.0 Hz, ${}^{3}J$ = 9.1 Hz, 1 H, C-4-H_β), 3.39 (*virt.* qd, ${}^{3}J \approx {}^{3}J$ = 9.0 Hz, ${}^{3}J$ = 2.0 Hz, 1 H, C-1-H), 3.51 (d, ${}^{3}J$ = 9.2 Hz, 1 H, C-2-H), 4.88 (*virt.* quint, ${}^{2}J \approx {}^{4}J$ = 1.4 Hz, 1 H, C-1'-*H*H), 4.91 (*br.* s, 1 H, C-1'-*HH*), 7.20 - 7.24 (m, 3 H, C_{Ph}-H_{ortho}, C_{Ph}-H_{para}), 7.26 - 7.30 (m, 2 H, C_{Ph}-H_{meta}), 9.80 (d, ${}^{3}J$ = 2.0 Hz, 1 H, CHO).

¹³C-NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 20.3 (q, C-3'-H₃), 28.7 (q, C-3-CH₃), 30.6 (t, C-4-H₂), 45.9 (d, C-1-H), 47.7 (s, C-3), 52.0 (d, C-2-H), 111.2 (t, C-1'-H₂), 127.0 (d, C_{Ph}-H_{para}), 127.8 (d, 2 × C_{Ph}-H_{ortho}), 128.3 (d, 2 × C_{Ph}-H_{meta}), 136.7 (s, C_{Ph}), 147.5 (s, C-2'), 202.4 (d, CHO). **Important NOE-contacts**

MS (EI, 70 eV): m/z (%) = 214 (6) [M]⁺, 199 (8) [M–CH₃]⁺, 183 (81), 172 (50), 131 (90) [C₉H₇O]⁺, 115 (49), 91 (72) [C₇H₇]⁺, 82 (100), 77 (53) [C₆H₅]⁺, 67 (97) [C₅H₇]⁺. **HRMS** (EI, 70 eV): calc. (C₁₅H₁₈O): 214.1352; found: 214.1346. calc. (C₁₄¹³CH₁₈O): 215.1386; found: 215.1386.

3-Methyl-2-phenyl-3-vinylcyclobutane-1-carbaldehyde (rac-13)

To a solution of 69.6 mg iminium ion **11** (208 µmol, 1.00 eq.) and 4.46 mg Ru(bpy)₃(PF₆)₂ (5.19 µmol, 2.5 mol%) in 4.2 mL dry, degassed acetonitrile were added 416 µL isoprene (283 mg, 4.15 mmol, 20.0 eq.). After irradiation ($\lambda = 457$ nm) for 4 hours, 25 mL 3 M NaOH solution were added and the mixture was extracted with diethyl ether (3 × 25 mL). The combined organic layers were washed with 25 mL brine and dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was filtered through a short pad of silica and after column chromatography (silica, P/Et₂O = 25/1) 27.1 mg aldehyde *rac*-**13** (135 µmol, 65%, d.r. = 75/25, r.r. = 90/10) were obtained as a colorless oil.

TLC: $R_f = 0.35$ (P/EtOAc = 9/1) [KMnO₄].

IR (ATR): $\tilde{v} = 3084 \text{ cm}^{-1}$ (w, C_{sp2}H), 3062 (w, C_{sp2}H), 2963 (m, C_{sp3}H), 2865 (m, C_{sp3}H), 1718 (s, C=O), 1450 (m, C_{sp3}H), 1377 (m), 778 (m, C_{sp2}H), 699 (s, C_{sp2}H).

MS (EI, 70 eV): m/z (%) = 200 (1) [M]⁺, 169 (8), 131 (100) [C₉H₇O]⁺, 104 (19), 91 (13) [C₇H₇]⁺, 77 (9) [C₆H₅]⁺, 67 (11) [C₅H₇]⁺.

HRMS (EI, 70 eV): calc. (C₁₄H₁₆O): 200.1196; found: 200.1196.

calc. (C₁₃¹³CH₁₆O): 201.1229; found: 201.1226.

Major Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.94 (s, 3 H, C-3-*C*H₃), 1.93 (dd, ${}^{2}J$ = 11.1 Hz, ${}^{3}J$ = 8.5 Hz, 1 H, C-4-H_β), 2.33 (*virt.* t, ${}^{2}J \approx {}^{3}J$ = 10.7 Hz, 1 H, C-4-H_α), 3.45 - 3.61 (m, 1 H, C-1-H), 3.73 (d, ${}^{3}J$ = 10.2 Hz, 1 H, C-2-H), 5.06 (dd, ${}^{3}J$ = 17.3 Hz, ${}^{2}J$ = 1.0 Hz, 1 H, C-2'-H_b), 5.07 (dd, ${}^{3}J$ = 10.7 Hz, ${}^{2}J$ = 1.0 Hz, 1 H, C-2'-H_b), 6.09 (dd, ${}^{3}J$ = 17.3 Hz, ${}^{3}J$ = 10.7 Hz, 1 H, C-1'-H), 7.11 - 7.16 (m, 2 H, C_{Ph}-H_{ortho}), 7.20 - 7.26 (m, 1 H, C_{Ph}-H_{para}), 7.28 - 7.34 (m, 2 H, C_{Ph}-H_{meta}), 9.82 (d, ${}^{3}J$ = 2.6 Hz, 1 H, CHO).

¹³C-NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 20.4 (q, C-3-CH₃), 31.6 (t, C-4-H₂), 42.9 (s, C-3), 44.5 (d, C-1-H), 48.9 (d, C-2-H), 112.0 (t, C-2'-H₂), 126.8 (d, C_{Ph}-H_{para}), 127.2 (d, 2 × C_{Ph}-H_{ortho}), 128.4 (d, 2 × C_{Ph}-H_{meta}), 138.7 (s, C_{Ph}), 146.8 (d, C-1'-H), 202.3 (d, CHO).

Important NOE-contacts

Minor Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.38 (s, 3 H, C-3-*C*H₃), 2.15 (dd, ²*J* = 11.3 Hz, ³*J* = 9.6 Hz, 1 H, C-4-H_{\(\alpha\)}), 2.27 (dd, ²*J* = 11.3 Hz, ³*J* = 8.6 Hz, 1 H, C-4-H_{\(\beta\)}), 3.45 - 3.61 (m, 2 H, C-1-H, C-2-H), 4.98 (dd, ³*J* = 10.8 Hz, ²*J* = 1.2 Hz, 1 H, C-2'-H_{\(\alpha\)}), 5.03 (dd, ³*J* = 17.4 Hz, ²*J* = 1.2 Hz, 1 H, C-2'-H_{\(\beta\)}), 5.58 (dd, ³*J* = 17.4 Hz, ³*J* = 10.8 Hz, 1 H, C-1'-H), 7.11 - 7.16 (m, 2 H, C_{Ph}-H_{ortho}), 7.20 - 7.26 (m, 1 H, C_{Ph}-H_{para}), 7.28 - 7.34 (m, 2 H, C_{Ph}-H_{meta}), 9.81 (d, ³*J* = 2.3 Hz, 1 H, CHO).

¹³C-NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 27.9 (q, C-3-*C*H₃), 30.5 (t, C-4-H₂), 44.2 (s, C-3), 45.1 (d, C-1-H), 51.8 (d, C-2-H), 112.8 (t, C-2'-H₂), 126.9 (d, C_{Ph}-H_{para}), 127.5 (d, 2 × C_{Ph}-H_{ortho}), 128.4 (d, 2 × C_{Ph}-H_{meta}), 138.5 (s, C_{Ph}), 142.0 (d, C-1'-H), 202.2 (d, CHO).

Important NOE-contacts

2-Phenyl-3-vinylcyclobutane-1-carbaldehyde (rac-14)

To a solution of 55.0 mg iminium ion **11** (164 µmol, 1.00 eq.) and 3.52 mg Ru(bpy)₃(PF₆)₂ (4.10 µmol, 2.5 mol%) in 3.3 mL dry, degassed acetonitrile were added 1.64 mL butadiene (2 M in THF, 3.28 mmol, 20.0 eq.). After irradiation ($\lambda = 457$ nm) for 4 hours, 25 mL 3 M NaOH solution were added and the mixture was extracted with diethyl ether (3 × 25 mL). The combined organic layers were washed with 25 mL brine and dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was filtered through a short pad of silica and after column chromatography (silica, P/Et₂O = 30/1) 15.2 mg aldehyde *rac*-**14** (84.3 µmol, 50%, d.r. = 60/40) were obtained as a colorless oil.

TLC: $R_f = 0.35$ (P/EtOAc = 9/1) [KMnO₄].

IR (ATR): $\tilde{v} = 3082 \text{ cm}^{-1}$ (w, C_{sp2}H), 3063 (w, C_{sp2}H), 2980 (m, C_{sp3}H), 2811 (m, C_{sp3}H), 1716 (s, C=O), 1448 (m, C_{sp3}H), 1389 (m), 745 (m, C_{sp2}H), 699 (s, C_{sp2}H).

MS (EI, 70 eV): m/z (%) = 186 (1) [M]⁺, 168 (4), 155 (5), 131 (74) [C₉H₇O]⁺, 104 (27), 91 (11) [C₇H₇]⁺, 77 (9) [C₆H₅]⁺.

HRMS (EI, 70 eV): calc. (C₁₃H₁₄O): 186.1039; found: 186.1040.

calc. (C₁₄¹³CH₁₈O): 187.1073; found: 187.1073.

Major Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 2.10 (*virt.* q, ${}^{2}J \approx {}^{3}J = 10.1$ Hz, 1 H, C-4-H_a), 2.35 (*virt.* dtd, ${}^{2}J = 11.0$ Hz, ${}^{3}J \approx {}^{3}J = 8.2$ Hz, ${}^{4}J = 0.9$ Hz, 1 H, C-4-H_β), 3.06 (*virt.* tddt, ${}^{3}J \approx {}^{3}J = 9.4$ Hz, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 6.7$ Hz, ${}^{4}J \approx {}^{4}J = 1.2$ Hz, 1 H, C-3-H), 3.23 (*virt.* tdd, ${}^{3}J \approx {}^{3}J = 10.0$ Hz, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 2.2$ Hz, 1 H, C-1-H), 3.54 (*virt.* t, ${}^{3}J \approx {}^{3}J = 9.6$ Hz, 1 H, C-2-H), 5.06 (*virt.* dt, ${}^{3}J = 10.4$ Hz, ${}^{2}J \approx {}^{4}J = 1.4$ Hz, 1 H, C-2'-H_a), 5.10 (*virt.* dt, ${}^{3}J = 17.2$ Hz, ${}^{2}J \approx {}^{4}J = 1.5$ Hz, 1 H, C-2'-H_b), 5.97 (ddd, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 6.7$ Hz, 1 H, C-1'-H), 7.22 - 7.26 (m, 2 H, C_{Ph}-H_{ortho}), 7.30 - 7.36 (m, 3 H, C_{Ph}-H_{meta}, C_{Ph}-H_{para}), 9.80 (d, ${}^{3}J = 2.2$ Hz, 1 H, CHO).

¹³**C-NMR** (76 MHz, CDCl₃, 300 K): δ (ppm) = 25.7 (t, C-4-H₂), 42.7 (d, C-3-H), 47.1 (d, C-2-H), 49.4 (d, C-1-H), 115.0 (t, C-2'-H₂), 126.6 (d, 2 × C_{Ph}-H_{ortho}), 126.9 (d, C_{Ph}-H_{para}), 128.7 (d, 2 × C_{Ph}-H_{meta}), 140.3 (d, C-1'-H), 142.0 (s, C_{Ph}), 201.9 (d, CHO).

Important NOE-contacts

Minor Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 2.10 - 2.16 (m, 1 H, C-4-H_β), 2.58 (*virt.* dt, ${}^{2}J = 11.7$ Hz, ${}^{3}J \approx {}^{3}J = 8.4$ Hz, 1 H, C-4-H_α), 3.26 - 3.32 (m, 1 H, C-3-H), 3.61 (*virt.* qdd, ${}^{3}J \approx {}^{3}J = 9.0$ Hz, ${}^{3}J = 2.1$ Hz, ${}^{4}J = 1.2$ Hz, 1 H, C-1-H), 4.03 (*virt.* t, ${}^{3}J \approx {}^{3}J = 9.1$ Hz, 1 H, C-2-H), 4.97 (*virt.* dt, ${}^{3}J = 10.3$ Hz, ${}^{2}J \approx {}^{4}J = 1.4$ Hz, 1 H, C-2'-H_a), 5.03 (*virt.* dt, ${}^{3}J = 17.0$ Hz, ${}^{2}J \approx {}^{4}J = 1.6$ Hz, 1 H, C-2'-H_b), 5.64 (ddd, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 10.3$ Hz, ${}^{3}J = 8.0$ Hz, 1 H, C-1'-H), 7.14 - 7.17 (m, 2 H, CPh-Hortho), 7.22 - 7.26 (m, 1 H, CPh-H_{para}), 7.30 - 7.35 (m, 2 H, CPh-H_{meta}), 9.87 (d, ${}^{3}J = 2.1$ Hz, 1 H, CHO).

¹³C-NMR (76 MHz, CDCl₃, 300 K): δ (ppm) = 24.5 (t, C-4-H₂), 40.7 (d, C-3-H), 43.9 (d, C-2-H), 48.1 (d, C-1-H), 115.7 (t, C-2'-H₂), 126.6 (d, C_{Ph}-H_{para}), 127.7 (d, 2 × C_{Ph}-H_{ortho}), 128.4 (d, 2 × C_{Ph}-H_{meta}), 138.3 (d, C-1'-H), 139.3 (s, C_{Ph}), 201.9 (d, CHO).

Important NOE-contacts

3-(But-1-yn-1-yl)-3-methyl-2-phenylcyclobutane-1-carbaldehyde (rac-15)

To a solution of 69.6 mg iminium ion **11** (208 µmol, 1.00 eq.) and 4.46 mg Ru(bpy)₃(PF₆)₂ (5.19 µmol, 2.5 mol%) in 4.2 mL dry, degassed acetonitrile were added 516 µL 2-methylhex-1-ene-3-yne (391 mg, 4.15 mmol, 20.0 eq.). After irradiation ($\lambda = 457$ nm) for 4 hours, 25 mL 3 M NaOH solution were added and the mixture was extracted with diethyl ether (3 × 25 mL). The combined organic layers were washed with 25 mL brine and dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was filtered through a short pad of silica and after column chromatography (silica, P/Et₂O = 25/1) 36.6 mg aldehyde *rac*-**15** (162 µmol, 78%, d.r. = 80/20) were obtained as a colorless oil.

TLC: $R_{\rm f} = 0.35$ (P/EtOAc = 9/1) [KMnO₄].

IR (ATR): $\tilde{v} = 3029 \text{ cm}^{-1}$ (w, C_{sp2}H), 2974 (m, C_{sp3}H), 2934 (m, C_{sp3}H), 1717 (s, C=O), 1452 (m, C_{sp3}H), 1322 (m), 747 (m, C_{sp2}H), 697 (s, C_{sp2}H).

MS (EI, 70 eV): m/z (%) = 226 (1) [M]⁺, 211 (7) [M–CH₃]⁺, 197 (18) [M–C₂H₅]⁺, 155 (15), 131 (63) [C₉H₇O]⁺, 94 (82), 91 (18) [C₇H₇]⁺, 79 (100), 77 (21) [C₆H₅]⁺.

HRMS (EI, 70 eV): calc. (C₁₅H₁₈O): 226.1352; found: 226.1348.

calc. (C14¹³CH18O): 227.1386; found: 227.1385.

Major Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.92 (t, ³*J* = 7.5 Hz, 3 H, C-4'-H₃), 1.45 (s, 3 H, C-3-*C*H₃), 1.99 - 2.04 (m, 2 H, C-3'-H₂), 2.16 (dd, ²*J* = 10.7 Hz, ³*J* = 9.8 Hz, 1 H, C-4-H_a), 2.32 (dd, ²*J* = 10.7 Hz, ³*J* = 8.6 Hz, 1 H, C-4-H_β), 3.46 (d, ³*J* = 10.2 Hz, 1 H, C-2-H), 3.64 (*virt*. tdd, ³*J* \approx ³*J* = 10.4 Hz, ³*J* = 8.6 Hz, ³*J* = 2.1 Hz, 1 H, C-1-H), 7.22 - 7.29 (m, 3 H, C_{Ph}-H_{ortho}, C_{Ph}-H_{para}), 7.31 - 7.36 (m, 2 H, C_{Ph}-H_{meta}), 9.78 (d, ³*J* = 2.1 Hz, 1 H, CHO).

¹³**C-NMR** (76 MHz, CDCl₃, 300 K): δ (ppm) = 12.5 (t, C-3'-H₂), 14.2 (q, C-4'-H₃), 28.9 (q, C-3-*C*H₃), 34.4 (t, C-4-H₂), 38.1 (s, C-3), 46.3 (d, C-1-H), 52.3 (d, C-2-H), 82.9 (s, C-1'), 86.6

(s, C-2'), 127.1 (d, C_{Ph}-H_{para}), 127.9 (d, $2 \times C_{Ph}$ -H_{ortho})*, 128.0 (d, $2 \times C_{Ph}$ -H_{meta})*, 138.9 (s, C_{Ph}), 201.9 (d, CHO).

* assignment is interconvertible.

Important NOE-contacts

Minor Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.03 (s, 3 H, C-3-*C*H₃), 1.17 (t, ${}^{3}J$ = 7.5 Hz, 3 H, C-4'-H₃), 2.07 (dd, ${}^{2}J$ = 11.1 Hz, ${}^{3}J$ = 8.5 Hz, 1 H, C-4-H_β), 2.24 (q, ${}^{3}J$ = 7.5 Hz, 2 H, C-3'-H₂), 2.53 (*virt.* t, ${}^{2}J \approx {}^{3}J$ = 10.8 Hz, 1 H, C-4-H_α), 3.41 - 3.49 (m, 1 H, C-1-H), 3.99 (d, ${}^{3}J$ = 10.3 Hz, 1 H, C-2-H), 7.22 - 7.29 (m, 3 H, C_{Ph}-H_{ortho}, C_{Ph}-H_{para}), 7.31 - 7.36 (m, 2 H, C_{Ph}-H_{meta}), 9.81 (d, ${}^{3}J$ = 2.8 Hz, 1 H, CHO).

¹³C-NMR (76 MHz, CDCl₃, 300 K): δ (ppm) = 12.7 (t, C-3'-H₂), 14.4 (q, C-4'-H₃), 22.8 (q, C-3-*C*H₃), 33.8 (t, C-4-H₂), 33.9 (s, C-3), 44.6 (d, C-1-H), 50.5 (d, C-2-H), 84.0 (s, C-2'), 86.2 (s, C-1'), 127.0 (d, C_{Ph}-H_{para}), 127.1 (d, 2 × C_{Ph}-H_{ortho}), 128.5 (d, 2 × C_{Ph}-H_{meta}), 138.1 (s, C_{Ph}), 201.7 (d, CHO).

Important NOE-contacts

3-Methyl-2-phenyl-3-[(3-trimethylsilyl)ethynyl]cyclobutane-1-carbaldehyde (rac-16)

To a solution of 69.6 mg iminium ion **11** (208 µmol, 1.00 eq.) and 4.46 mg Ru(bpy)₃(PF₆)₂ (5.19 µmol, 2.5 mol%) in 4.2 mL dry, degassed acetonitrile were added 738 µL (3-methylbut-3-en-1-ynyl)trimethylsilane (574 mg, 4.15 mmol, 20.0 eq.). After irradiation (λ = 457 nm) for 4 hours, 25 mL 3 M NaOH solution were added and the mixture was extracted with diethyl ether (3 × 25 mL). The combined organic layers were washed with 25 mL brine and dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was filtered through a short pad of silica and after column chromatography (silica, P/Et₂O = 25/1) 41.5 mg aldehyde *rac*-**16** (153 µmol, 74%, d.r. = 76/24) were obtained as a colorless oil.

TLC: $R_{\rm f} = 0.33$ (P/EtOAc = 9/1) [KMnO₄].

IR (ATR): $\tilde{v} = 3031 \text{ cm}^{-1}$ (w, C_{sp2}H), 2962 (m, C_{sp3}H), 2899 (m, C_{sp3}H), 2163 (m, C_{sp}) 1719 (s, C=O), 1450 (m, C_{sp3}H), 1249 (s), 839 (s), 759 (m, C_{sp2}H), 696 (s, C_{sp2}H).

MS (EI, 70 eV): m/z (%) = 270 (1) [M]⁺, 255 (11) [M–CH₃]⁺, 199 (6), 138 (28), 131 (25) [C₉H₇O]⁺, 123 (100), 73 (12).

 $\label{eq:HRMS} \textbf{(EI, 70 eV):} \quad calc. \ (C_{17}H_{22}OSi): \ 270.1434; \ found: \ 270.1422.$

Major Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.00 [s, 9 H, Si(CH₃)₃], 1.48 (s, 3 H, C-3-*C*H₃), 2.19 (dd, ²*J* = 10.8 Hz, ³*J* = 9.8 Hz, 1 H, C-4-H_a), 2.39 (dd, ²*J* = 10.8 Hz, ³*J* = 8.6 Hz, 1 H, C-4-H_β), 3.49 (d, ³*J* = 10.3 Hz, 1 H, C-2-H), 3.68 (*virt.* tdd, ³*J* \approx ³*J* = 9.6 Hz, ³*J* = 8.6 Hz, ³*J* = 2.0 Hz, 1 H, C-1-H), 7.22 - 7.30 (m, 3 H, C_{Ph}-H_{ortho}, C_{Ph}-H_{para}), 7.31 - 7.39 (m, 2 H, C_{Ph}-H_{meta}), 9.80 (d, ³*J* = 2.0 Hz, 1 H, CHO).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = -0.03 (q, 3 × SiCH₃), 28.3 (q, C-3-*C*H₃), 34.1 (t, C-4-H₂), 38.8 (s, C-3), 46.1 (d, C-1-H), 52.3 (d, C-2-H), 88.9 (s, C-2'), 110.1 (s, C-1'), 127.2 (d, C_{Ph}-H_{para}), 127.9 (d, 2 × C_{Ph}-H_{ortho}), 128.1 (d, 2 × C_{Ph}-H_{meta}), 138.5 (s, C_{Ph}), 201.8 (d, CHO).

Important NOE-contacts

Minor Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.21 [s, 9 H, Si(CH₃)₃], 1.06 (s, 3 H, C-3-*C*H₃), 2.10 (dd, ²*J* = 11.1 Hz, ³*J* = 8.5 Hz, 1 H, C-4-H_β), 2.59 (*virt.* t, ²*J* \approx ³*J* = 10.7 Hz, 1 H, C-4-H_α), 3.46 - 3.52 (m, 1 H, C-1-H), 4.05 (d, ³*J* = 10.3 Hz, 1 H, C-2-H), 7.22 - 7.30 (m, 3 H, C_{Ph}-H_{ortho}, C_{Ph}-H_{para}), 7.31 - 7.39 (m, 2 H, C_{Ph}-H_{meta}), 9.83 (d, ³*J* = 2.6 Hz, 1 H, CHO).

¹³C-NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 0.32 (q, 3 × SiCH₃), 22.3 (q, C-3-*C*H₃), 33.5 (t, C-4-H₂), 34.3 (s, C-3), 44.5 (d, C-1-H), 50.3 (d, C-2-H), 86.1 (s, C-2'), 112.9 (s, C-1'), 127.0 (d, 2 × C_{Ph}-H_{ortho}), 127.2 (d, C_{Ph}-H_{para}), 128.5 (d, 2 × C_{Ph}-H_{meta}), 137.7 (s, C_{Ph}), 201.6 (d, CHO). **Important NOE-contacts**

4. Additional Experiments for the Sensitization of Eniminium ion 11

#	sens. (mol%)	λ [nm]	t [h]	yield [%]	d.r.
1	benzil (50)	366	7	34	75/25
2	thioxanthone (20)	420	24	38	86/14
3	Ru(bpz) ₃ (PF ₆) ₂ (2.5)	457	4	73	87/13
4	Eosin Y (2.5)	512	4	-	-
5	-	457	4	-	-
6	$Ru(bpy)_3(PF_6)_2$	-	4	-	-

5. Chiral GC Trace of Aldehyde 12

Racemic product (major diastereomer)

Enantioenriched product (major diastereoisomer, 88% ee)

6. Cyclic Voltammetry

Cyclic voltammogram of iminium ion 2 [1.43 mM] in TBAPF₆ [0.1 M] in CH₃CN. Scan rate: 0.1 V/s, glassy carbon working electrode, platinum wire counter electrode, Ag/AgNO₃ [0.01 M] reference electrode, $E_{1/2}$ (2/2⁻) = -1.69 V.

Cyclic voltammogram of iminium ion **11** [2.86 mM] in TBAPF₆ [0.1 M] in CH₃CN. Scan rate: 0.1 V/s, glassy carbon working electrode, platinum wire counter electrode, Ag/AgNO₃ reference electrode [0.01 M], $E_{1/2}$ (**11**/**11**⁻) = -1.13 V.

7. Data Sheets of Light Sources

420 nm

Lehrstuhl OC 1 - TUM 200 nm 250 nm 300 nm 350	nm 400 nm 450 n	m 1500 nm 1550 nm	1600 nm 1650 nm
Datasheet FLT020			LZC-420
Basic Information			
Туре	Fluorescent light tub	e	
Description	Luzchem LZC-420		
Manufacturer / Supplier	n/a / Luzchem		
Order number / Date of purch.	n/a / 09/2015		
Internal lot / serial number	2015-09 / FLT020		
Specification Manufacturer			
Type / size	T5 tube, G5 socket		
Mechanical specification	16 mm diameter, 28	8 mm length	
Electrical specification	8 W		
Wavelength (range, typ.)	400 - 440 nm		
Spectral width (FWHM)	~ 30 nm		
Datasheet	LES-420-016		
Characterization			
Description of measurement	Measured with Ocea	n-optics USB4000 spec	trometer using a
	calibrated setup (cos	ine corrector/fibre).	
	The cosine corrector	was placed at 20 mm o	distance from a
	single fluorescent tu	be at half height.	
Measured dominant wavelength / Int.	421 nm	117 μW/n	nm²nm
Measured spectral width (FWHM)	31 nm		
Integral Reference intensity / range	4118 µW/cm²	350-500 n	m

LED 433 nm

Lehrstuhl OC 1 - TUM 200 nm 250 nm 300 nm	1350 nm 1400 nm 1450 nm 1500 nm 1550 nm 1600 nm 1650 nm									
Datasheet LED029	Av-430-3W									
Basic Information										
Туре	High-Power-LED									
Description	Avonec 430-435 nm / 3 W									
Manufacturer / Supplier	n/a / Avonec									
Order number / Date of purch.	n/a / 01/2016									
Internal lot / serial number	2016-01 / LED029									
Specification Manufacturer										
Type / size	single emitter / ca. 1 x 1 mm									
Mechanical specification										
Electrical specification	700 mA, UF 3.7 V									
Wavelength (range, typ.)	430-435 nm, typ. n/a									
Spectral width (FWHM)	n/a									
Datasheet	n/a									
Characterization										
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a									
	calibrated setup (cosine corrector/fibre).									
	The distance between the emitting surface and the surface of									
	the cosine corrector was 20 mm. The LED was operated at									
	700 mA on a passive heat-sink at approx. 20 °C									
Measured wavelength	433 nm									
Measured spectral width	15 nm									
Integral Reference intensity	50270 μW/cm² (350-550 nm @ 20 mm distance, 4 mmcosine corr.)									

LED 457 nm

Lehrstuhl OC 1 - TUM 200 nm 250 nm 300 nm	 350 nm 400 nm 450 nm 500 nm 550 nm 600 nm 650 nm
Datasheet	H2A3-H470
Basic Information	
Туре	High-Power-LED
Description	H2A3-H470
Manufacturer / Supplier	n/a / Roithner-Lasertechnik, Wien
Order number / Date of purch.	H2A3-H470 / 12/2011
Internal lot / serial number	2011-12 / LED005
Specification Manufacture	r
Type / size	single emitter / <1 x <1 mm
Mechanical specification	
Electrical specification	700 mA, UF~3.8 V
Wavelength (range, typ.)	not spec., typ. 470 nm
Spectral width (FWHM)	25 nm
Datasheet	H2A3H470.pdf (n. b datasheet is for H2A3H530!)
Characterization	
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a
	calibrated setup (cosine corrector/fibre).
	The distance between the emitting surface and the surface of
	the cosine corrector was 20 mm. The LED was operated at
	700 mA on a passive heat-sink at approx. 20 °C
Measured wavelength	457 nm
Measured spectral width	21 nm
Integral Reference intensity	56580 µW/cm² (400-550 nm @ 20 mm distance, 4 mmcosine corr.)

LED 5	12 n	m
-------	------	---

Lehrstuhl OC 1 - TUM	350 nm	l 400 nm	l 450 nm	1500 nm	1550 nm	1600 nm	1650 nm				
Datasheet LED039						XPEG	RN-Q2				
Basic Information											
Туре	High-Po	wer-LED									
Description	Cree® XI	.amp⊕ XP-E	green								
Manufacturer / Supplier	Cree / C	onrad									
Order number / Date of purch.	181826	- 62 / 03/2	015								
Internal lot / serial number	2016-03	/ LED039									
Specification Manufacturer											
Type / size	single er	nitter / <1 >	< <1 mm								
Mechanical specification											
Electrical specification	1000 m/	A, UF~3.8 V									
Wavelength (range, typ.)	520 - 53	520 – 535 nm, typ. 520 nm									
Spectral width (FWHM)	40 nm										
Datasheet	XPEGRN	-Q2.pdf									
Characterization											
Description of measurement	Measure	ed with Oce	an-optics l	JSB4000 sp	ectromete	er using a					
	calibrate	ed setup (co	sine correc	tor/fibre).							
	The dist	ance betwe	en the emi	tting surfac	e and the	surface of					
	the cosi	ne correcto	r was 20 m	m. The LED	was oper	ated at					
	700 mA	on a passiv	e heat-sink	at approx.	20 °C						
Measured wavelength	512 nm										
Measured spectral width	38 nm										
Integral Reference intensity	20915 u	W/cm² (45)	0-600 nm @	∂20 mm di	istance, 4 i	mmcosine (corr.)				

8. NMR-Spectra of New Compounds

1-[3-(Pent-4-en-1-yl)cyclohex-2-en-1-ylidene]pyrrolidin-1-ium hexafluorophosphate (2)

¹H-NMR (500 MHz, CDCl₃, 298 K):

 6^{-6} , 6^{-5} , 5^{-

¹⁹**F-NMR** (377 MHz, CDCl₃, 300 K):

1-(Octahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6*H*)-ylidene)pyrrolidin-1-ium hexafluorophosphate (*rac*-3)

¹H-NMR (500 MHz, CD₃CN, 298 K):

~-72.64 ~-74.16

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

3-(4-Methylpent-4-en-1-yl)cyclohex-2-en-1-one (S1)

¹H-NMR (500 MHz, CDCl₃, 298 K):

5,5-Dimethyl-3-(4-methylpent-4-en-1-yl)cyclohex-2-en-1-one (S2)

¹H-NMR (500 MHz, CDCl₃, 298 K):

1-[3-(4-Methylpent-4-en-1-yl)cyclohex-2-en-1-ylidene]pyrrolidin-1-ium hexafluorophosphate (8a)

¹H-NMR (500 MHz, CDCl₃, 298 K):

6.6.34 6.6.23 6.6.23 6.6.23 6.6.22 6.6.23 6.6.226 6.6.226 6.6.26 6.6.26 6.6.26 6.6.26 6.6.26 6.6.26 6.6.26

8	0	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-2
f1 (ppm)															

1-[5,5-Dimethyl-3-(4-ethylpent-4-en-1-yl)cyclohex-2-en-1-ylidene]pyrrolidin-1-ium hexafluorophosphate (8b)

¹**H-NMR** (500 MHz, CDCl₃, 298 K):

 $||_{1}$

3a-Methyloctahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (rac-9a)

¹H-NMR (500 MHz, CDCl₃, 298 K):

2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.40 2.2.23 2.2.23 2.2.23 2.2.24 2.2.01 1.95 2.2.01 1.05 2.2.01 2.5.

¹³C-NMR (126 MHz, CDCl₃, 300 K):

3a,7,7-Trimethyloctahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (rac-9b)

¹H-NMR (500 MHz, CDCl₃, 298 K):

¹³C-NMR (126 MHz, CDCl₃, 300 K):

3-Methyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutane-1-carbaldehyde (rac-12)

Major diastereoisomer

¹H-NMR (500 MHz, CDCl₃, 298 K):

3-Methyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutane-1-carbaldehyde (rac-12)

Minor diastereoisomer

¹H-NMR (500 MHz, CDCl₃, 298 K):

3-Methyl-2-phenyl-3-vinylcyclobutane-1-carbaldehyde (rac-13)

2-Phenyl-3-vinylcyclobutane-1-carbaldehyde (rac-14)

¹H-NMR (500 MHz, CDCl₃, 298 K):

¹³C-NMR (76 MHz, CDCl₃, 300 K):

3-(But-1-yn-1-yl)-3-methyl-2-phenylcyclobutane-1-carbaldehyde (rac-15)

¹H-NMR (500 MHz, CDCl₃, 298 K):

¹³C-NMR (76 MHz, CDCl₃, 300 K):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3-Methyl-2-phenyl-3-[(3-trimethylsilyl)ethynyl]cyclobutane-1-carbaldehyde (rac-16)

¹H-NMR (500 MHz, CDCl₃, 298 K):

¹³C-NMR (126 MHz, CDCl₃, 300 K):

9. UV/Vis-Spectra

UV/Vis-spectra of enone **1** ($\epsilon_{233 \text{ nm}} = 15650 \text{ L/mol}^{-1}\text{cm}^{-1}$, $\epsilon_{320 \text{ nm}} = 70 \text{ L/mol}^{-1}\text{cm}^{-1}$) and eniminium ion **2** ($\epsilon_{270 \text{ nm}} = 21320 \text{ L/mol}^{-1}\text{cm}^{-1}$) in MeCN [c = 0.5 mM].

UV/Vis-spectra of aldehyde **10** ($\epsilon_{284 \text{ nm}} = 29100 \text{ L/mol}^{-1}\text{cm}^{-1}$) and iminium ion **11**, ($\epsilon_{330 \text{ nm}} = 36840 \text{ L/mol}^{-1}\text{cm}^{-1}$) in MeCN [c = 0.1 mM].

10. Luminescence Measurements

Emission spectra of $[Ir(dF(CF_3)ppy)bpy]$ (PF₆) (6) with varying concentration of iminium ion 2. A 10µM solution of 6 was prepared and arduously degassed for 30 minutes. For each run, 1.4 mL of the stock solution was placed in a cuvette with varying amounts (0.00 - 0.08 M) of the iminium ion added to the cuvette. We used 370 nm as the excitation wavelength and observed emission spectra from 420-700 nm. Both excitation and emission bandwidth was set to 1 nm for each sample.

Emission spectra of $Ir(ppy)_3$ was recorded using analogous conditions as that of $[Ir(dF(CF_3)ppy)bpy]$ (PF₆) (6). We prepared a 10µM solution of $Ir(ppy)_3$ and used 400 nm as the excitation wavelength and observed emission spectra from 440-700 nm. Both excitation and emission bandwidth was set to 1 nm for each sample.

Kinetic lifetimes of FIrPic (5) with varying concentrations of iminium ion 2 using PL2250 Series laser from Ekspla equipped with a LeCroy waverunner 6030 oscilloscope 2.5 GS (4 ns in between two points) and H7732-10 Hamamatsu PMT (approximately 50 ns). Excitation wavelength was set to 380 nm and we detected all wavelengths (global) by placing a 410 nm filter in front of the PMT to record luminescent lifetimes. Each concentration point was averaged to 100 scans.

Kinetic plot using the following equation to reveal the dynamic quenching constant (*kq*):

 $k_{\rm obs} = 1/\tau^{\rm o} + k_{\rm q}c_{\rm q}$

 $k_q = 2 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ for FIrPic under our instrumental setup.

11. References

- [1] M. Schuster, M. Knollmueller, P. Gaertner, *Tetrahedron: Asymmetry* **2006**, *17*, 2430-2441.
- [2] a) D. Rackl, V. Kais, P. Kreitmeier, O. Reiser, *Beilstein J. Org. Chem.* 2014, *10*, 2157-2165; b) D. Lenhart, A. Bauer, A. Pöthig, T. Bach, *Chem. Eur. J.* 2016, *22*, 6519-6523.
- [3] For emission spectra of the 366 nm lamps, see: C. Brenninger, A. Pöthig, T. Bach, *Angew. Chem. Int. Ed.* 2017, 56, 4337-4341.
- [4] I. de Miguel, B. Herrad, E. Mann, Adv. Synth. Catal. 2012, 354, 1731-1736.
- [5] G. Lutteke, R. AlHussainy, P. J. Wrigstedt, B. T. B. Hue, R. de Gelder, J. H. van Maarseveen, H. Hiemstra, *Eur. J. Org. Chem.* 2008, 2008, 925-933.
- [6] S. Lakhdar, T. Tokuyasu, H. Mayr, Angew. Chem. Int. Ed. 2008, 47, 8723-8726.
- [7] M. Silvi, C. Verrier, Y. P. Rey, L. Buzzetti, P. Melchiorre, *Nat. Chem.* **2017**, *9*, 868-873.