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Supporting Text 
 

1. Expectation maximization of a Gaussian mixture (EMGM) 
 

1.1 Classic algorithm 

We apply expectation maximization of a Gaussian mixture (EMGM) [1] on single-molecule localization 

(SMLM) data to investigate the substructure of focal adhesions (FAs). The main assumption is that the 

FA subunits can be described as bivariate Gaussians. The spatial probability distribution of an FA 

subunit is thus given by: 

 
𝐺(𝒓|𝝁, 𝚺) =

1

2𝜋√|𝚺|
exp (−

1

2
(𝒓 − 𝝁)T ∙ 𝚺−1 ∙ (𝒓 − 𝝁)) (1) 

where 𝒓 is the position in which the Gaussian is being evaluated, 𝝁 the center position of the Gaussian, 

and 𝚺 the covariance matrix of the Gaussian. Assume one or more FAs consisting out of 𝑁 positions 

𝒓𝑛. According to our assumption, these FAs can be modeled by a mixture of bivariate Gaussians. 

Assume that this mixture consists of 𝐾 components with the weight of component 𝑘 described by the 

mixing coefficient 𝜋𝑘. These mixing coefficients fulfil the condition: 

 
∑ 𝜋𝑘

𝐾

𝑘=1
= 1 (2) 

Expectation maximization is a popular algorithm to identify the properties 𝝁𝑘, 𝚺𝑘 and 𝜋𝑘 of each 

component the Gaussian mixture. After choosing initial values, the expectation step consists of 

evaluating the posterior probability that localization 𝒓𝑛 was generated from component 𝑘: 

 
𝛾𝑛𝑘 =

𝜋𝑘𝐺(𝒓𝑛|𝝁𝑘 , 𝚺𝑘)

∑ 𝜋𝑗𝐺(𝒓𝑛|𝝁𝑗 , 𝚺𝑗)𝐾
𝑗=1

 (3) 

In the maximization step, the parameters are re-estimated using the posterior probabilities: 

 
𝝁𝑘

new =
1

𝑁𝑘
∑ 𝛾𝑛𝑘𝒓𝑛

𝑁

𝑛=1
 

𝚺𝑘
new =

1

𝑁𝑘
∑ 𝛾𝑛𝑘(𝒓𝑛 − 𝝁𝑘

new)
𝑁

𝑛=1
∙ (𝒓𝑛 − 𝝁𝑘

new)T 

𝜋𝑘
new =

𝑁𝑘

𝑁
 

(4) 

Where 𝑁𝑘  is defined as the number of localizations that belong to component 𝑘: 

 
𝑁𝑘 = ∑ 𝛾𝑛𝑘

𝑁

𝑛=1
 (5) 

Finally, the likelihood of the updated Gaussian mixture is calculated and checked for convergence: 

 
ℒ = ∏ ∑ 𝜋𝑘

new𝐺(𝒓𝑛|𝝁𝑗
new, 𝚺𝑗

new)
𝐾

𝑗=1

𝑁

𝑛=1
 (6) 

If the convergence criterion is not satisfied, the expectation and maximization steps described in Eqs. 

(3) and (4) are repeated. 
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1.2 Initialization by greedy learning 

EMGM is known to be sensitive to local maxima. To avoid finding such a solution, initial values of the 

parameters 𝝁𝑘, 𝚺𝑘 and 𝜋𝑘 (see Supporting Text, Section 1.1) need to be chosen sufficiently close to 

the real values. In the context of SMLM, these values are not known. Although several approaches 

have been reported in order to initialize the model parameters for EMGM, there is no widely accepted 

method. Popular approaches are randomly generating the initial parameter values, or estimating 

them using the k-means clustering algorithm [1]. 

An interesting alternative to these initialization methods is the so-called “greedy learning” approach 

[2], based on repeating the EMGM by starting from a trivial Gaussian mixture consisting of one 

component, and each time adding an extra component. The EMGM solution obtained for a 𝑃-1 

component mixture is used as initialization for the 𝑃 component mixture, by deleting one component 

and inserting two random components, based on the deleted one. This can be done 𝑃-1 times, for 

each component of the old mixture, and the solution with the highest likelihood is retained. By doing 

so, one proceeds until a desired number of components 𝐾 is attained. Additionally, each step 

consisting of 𝑃-1 initializations can be repeated 𝑄 times to increase the accuracy of the result. The 

total number of EMGM repeats to obtain the correct solution of 𝐾 components is thus given by 

𝑄(1 + ∑ 𝑖𝐾
𝑖=1 ). 

This shows that the initialization procedure becomes computationally more expensive for datasets 

containing more components. The computation time on a mid-range personal computer for the 

simulations shown in Fig. 2 ranged from ~3 s (for 𝐾 = 1 and 𝑄 = 3) to ~1000 s (for 𝐾 = 20 and 𝑄 = 3). 

Note that we actually used 𝑄(1 + ∑ [𝑖 + 1]𝐾
𝑖=1 ) initializations due to an extra background 

“component” (see Supporting Text, Section 1.4). 

 

1.3 Model selection by hypothesis testing 

When applying EMGM, the number of components 𝐾 for the Gaussian mixture needs to be chosen. 

In the context of SMLM, this number is unknown. In order to select the most appropriate number of 

components, one can repeat the EMGM procedure for a range of 𝐾 values. The likelihood value is not 

a good selection criterion, as increasing the number of components increases the likelihood 

monotonously. A solution provided by information theory is the Akaike or Bayes information criterion 

[1], which penalizes an increasing number of components and therefore leads to a maximum value for 

a certain 𝐾 value. However, this value has been reported to typically overestimate the real number of 

components [3]. 

Hypothesis testing can provide a more conservative approach towards selecting to right mixture 

model [4]. Assume two mixtures calculated by EMGM, one containing 𝐾-1 components and the other 

containing 𝐾 components. The 𝐾 component model will have a larger likelihood than the 𝐾-1 

component model. Consider the null hypothesis that the 𝐾-1 component model is the correct one, 

which will correspond to a specific distribution of likelihood increments. If the real model consists of 

more than 𝐾-1 components, the likelihood increment can be expected to be larger than the values 

described by the null hypothesis distribution. This distribution, however, is unknown, but can be 

simulated from the identified 𝐾-1 component model, i.e. a number of bootstrapped data sets are 

generated assuming the null hypothesis and the increments in likelihood are obtained by applying 

EMGM for both 𝐾-1 and 𝐾 components. Comparing the real likelihood increment with the bootstrap 

null hypothesis distribution allows to determine the p-value, in turn allowing to accept or reject the 

null hypothesis. Choosing the maximum allowed p-value sufficiently small, e.g. equal to 0.01, means 
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that there is only a 1% chance to select a mixture model that contains too many components, 

preventing overestimation of the number of components. 

 

1.4 Localization background 

While initialization and model selection issues are inherent to EMGM, other problems arise because 

of the nature of SMLM data. One important problem is that not necessarily all localizations are part 

of FAs, but instead can belong to a background. Consider a SMLM dataset consisting of 𝑁 positions 

that belong to a mixture of multivariate Gaussians, and an extra 𝑁b positions that belong to a 

background, within an area 𝐴. In case of a simple uniform background, the probability distribution of 

the background localizations is given by: 

 
𝐵 =

1

𝐴
 (7) 

The algorithm can readily be adjusted to incorporate the background described by 𝐵. First of all, the 

posterior probability that localization 𝒓𝑛 was generated from component 𝑘 (see Eq. (3)) is now given 

by: 

 
𝛾𝑛𝑘 =

𝜋𝑘𝐺(𝒓𝑛|𝝁𝑘 , 𝚺𝑘)

∑ 𝜋𝑗𝐺(𝒓𝑛|𝝁𝑗 , 𝚺𝑗)𝐾
𝑗=1 + 𝐵

 (8) 

And an equivalent posterior probability for the background can be defined as: 

 
𝛿𝑛 =

𝐵

∑ 𝜋𝑗𝐺(𝒓𝑛|𝝁𝑗, 𝚺𝑗)𝐾
𝑗=1 + 𝐵

 (9) 

The re-estimation of the parameters 𝝁𝑘 and 𝚺𝑘 can be done as before, while the re-estimation of the 

mixing coefficients (see Eq. (4)) has to be adjusted as follows: 

 
𝜋𝑘

new =
𝑁𝑘

𝑁 + 𝑁b
 (10) 

where 𝑁b can be calculated using the background posterior probabilities: 

 
𝑁b = ∑ 𝛿𝑛

𝑁

𝑛=1
 (11) 

Finally, the calculation of the likelihood of the updated Gaussian mixture (see Eq. (6)) is adjusted as 

follows: 

 
ℒ = ∏ {∑ 𝜋𝑘

new𝐺(𝒓𝑛|𝝁𝑗
new, 𝚺𝑗

new)
𝐾

𝑗=1
+ 𝐵}

𝑁+𝑁b

𝑛=1
 (12) 

The background can effectively be considered as an extra component of the Gaussian mixture, 

requiring an adaptation of the initialization procedure (see Supporting Text, Section 1.2). Initialization 

of a 𝑃 component Gaussian mixture is done 𝑃 times instead of 𝑃 – 1 times (i.e. 𝑃 – 1 initializations 

corresponding to each component of the previous solution, and 1 initialization corresponding to the 

background of the previous solution). 

 

1.5 Localization uncertainty 

The localizations in SMLM data contain measurement uncertainties [5]. The localization uncertainty 

can be described as an extra contribution 𝜺 to the real position of the molecule. This contribution is 

described by a spatial probability distribution that is usually modeled as a Gaussian: 

 
𝐸(𝜺|𝑠) =

1

2𝜋𝑠
 exp (−

|𝜺|2

2𝑠2) (13) 
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The standard deviation 𝑠 is often termed as the localization uncertainty or precision. An observed 

localization 𝒓 belonging to component 𝑘 is described by the sum of 𝜺 and the real emitter position. 

Since both variables are independent, the spatial probability distribution of their sum is given by the 

convolution of their corresponding spatial probability distributions (see Eqs. (1) and (13)): 

 
𝑁(𝒓|𝝁𝑘 , 𝚺𝑘 , 𝑠) = ∫ 𝐸(𝒓 − 𝒓′|𝑠)𝐺(𝒓′|𝝁𝑘 , 𝚺𝑘)

+∞

−∞

𝑑𝒓′ (14) 

This is the convolution of two bivariate Gaussians, which can be solved as [6]: 

 
𝐺(𝒓|𝝁𝑘 , 𝚺𝑘 , 𝑠) =

1

2𝜋√|𝚺𝑘 + 𝑠2𝑰|
exp (−

1

2
(𝒓 − 𝝁𝑘)T ∙ (𝚺𝑘 + 𝑠2𝑰)−1 ∙ (𝒓 − 𝝁𝑘)) (15) 

where 𝑰 is the identity matrix. This expression describes the observed spatial probability distribution 

of component 𝑘. In order to incorporate the effect of the localization uncertainty in EMGM, we need 

to adjust the algorithm in two ways. First of all, the expectation step needs to be adjusted, since the 

expression for the posterior probability 𝛾𝑛𝑘 of position 𝒓𝑛 of component 𝑘 contains the spatial 

probability distribution of that component (see Eq. (3)). Substitution of Eq. (15) in Eq. (3) yields the 

adjusted posterior probability: 

 
𝛾𝑛𝑘 =

𝜋𝑘𝐺(𝒓𝑛|𝝁𝑘, 𝚺𝑘 , 𝑠𝑛)

∑ 𝜋𝑗𝐺(𝒓𝑛|𝝁𝑗, 𝚺𝑗 , 𝑠𝑛)𝐾
𝑗=1

 (16) 

where 𝑠𝑛 is the localization uncertainty corresponding to localization 𝒓𝑛. Secondly, the maximization 

step needs to be adjusted, because the apparent spatial probability distribution is a bivariate Gaussian 

with a covariance matrix equal to 𝚺𝑘 + 𝑠2𝑰 (see Eq. (15)). This means that the presence of localization 

uncertainties affects both the shape and size of the observed component 𝑘. The re-estimation of the 

covariance matrix (see Eq. (4)) should be adjusted as follows: 

 
𝚺𝑘

new =
1

𝑁𝑘
∑ 𝛾𝑛𝑘{(𝒓𝑛 − 𝝁𝑘

new) ∙ (𝒓𝑛 − 𝝁𝑘
new)T − 𝑠𝑛

2𝑰}
𝑁

𝑛=1
 (17) 

The contribution coming from the localization uncertainty is included within the sum, since the value 

of the localization uncertainty can change for different localizations. Note that Eq. (17) suggests that 

the covariance matrix values of certain mixture components can possibly become negative during the 

EMGM procedure. If this occurs during EMGM, the covariance matrix is not updated, and the value of 

the previous iteration is retained. 
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2. Simulations 
 

2.1 Simulation details 

The simulations shown in Fig. 2 were performed in Matlab (The Mathworks). Briefly, Gaussian 

mixtures consisting of 𝐾 components were simulated. The localizations in each component were 

obtained from a Gaussian probability distribution, using the Matlab function mvnrnd. The Gaussian 

standard deviation was 𝜎𝑥 = 𝜎𝑦 = 20 nm (except for Fig. 2E), and the number of localizations for each 

component was 𝑁𝑘  = 100. The number of mixture components 𝐾 was varied between 1 and 20 in Fig. 

2B, and fixed at 4 in Fig. 2C-F. The centers of the mixture components were placed in a square grid 

with a spacing 𝑑𝑥,𝑦 equal to five times 𝜎𝑥,𝑦 (except for Fig. 2F). 

A uniform localization background was added in Fig. 2C by randomly generating a number of 

localizations from a uniform distribution, using the Matlab function rand. The number of background 

localizations was determined from the localization background density 𝑏𝑔, which was varied between 

0 and 50,000 #/µm2, in steps of 1000 #/µm2. The effect of the localization uncertainty shown in Fig. 

2D was simulated by adding to each localization coordinate a value randomly generated from a 

Gaussian distribution with standard deviation 𝑠, using the Matlab function randn. The value of the 

localization uncertainty 𝑠 was varied from 0 to a 40 nm, in steps of 1 nm. To account for the apparent 

increase in component size, the spacing between the component centers was adjusted to five times 

√𝜎𝑥,𝑦
2 + 𝑠2. The changing component eccentricity shown in Fig. 2E was simulated by increasing the 

component standard deviation 𝜎𝑥 from 2.8 to 20 nm, and simultaneously decreasing the standard 

deviation 𝜎𝑦 from 140 to 20 nm, resulting in eccentricities 𝜎𝑥 𝜎𝑦⁄  increasing from 0.02 to 1. In Fig. 2F, 

the spacing 𝑑𝑥,𝑦 between the component centers was increased from 0 to 200 nm, in steps of 5 nm. 

For each case, 100 simulations were performed. 

 

2.2 Number of mixture components 

The simulation results in Fig. 2B show that EMGM increasingly underestimates the number of mixture 

components for an increasing value of 𝐾. Additionally, the number of non-existing components (i.e. 

false positives) identified by EMGM also increases with 𝐾, as illustrated in Fig. S3B. We define 𝐾id as 

the number of mixture components correctly identified by EMGM, and 𝐾fp as the number of false 

positive components found by EMGM. Using the simulated data from Fig. 2B, we calculated the 

probability of obtaining a completely correct EMGM result (i.e. 𝐾id = 𝐾 and 𝐾fp = 0) as a function of 𝐾. 

The results are shown in Fig. S3C. For mixtures with 𝐾 < 10, this probability is on average equal to 94%. 

For larger numbers, the method starts to underestimate 𝐾, most likely because the contribution of 

correctly fitting individual components to the total likelihood becomes smaller with an increasing 

number. Fig. S3D shows the average values of 𝐾id and 𝐾fp as a function of 𝐾. The average number of 

false positives is smaller than 1 for mixtures with 𝐾 < 10. 

While mixtures of identical Gaussian components with equidistantly spaced centers allow an 

unambiguous interpretation of the effect of changing one of the mixture characteristics, they are not 

representative of the reality. We therefore performed additional simulations showing a complexity 

closer to the experimental situation. We simulated mixtures with a number of components 𝐾 varying 

between 1 and 10 (i.e. the range in which the EMGM approach was found to perform well), while the 

component centers, orientation, and eccentricities were randomly generated. More specifically, the 
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standard deviation 𝜎𝑥 and 𝜎𝑦 were each randomly generated between 4 and 40 nm, while the center 

positions were randomly generated within a square region with an area of 𝐾π(20 nm)2. Resulting 

components with an eccentricity 𝜎𝑥 𝜎𝑦⁄  lower than 0.1 were rejected. The components were allowed 

to approach each other closely, the only restriction being that their 2𝜎 ellipses did not overlap 

(resulting in a relative spacing that does not go below 4, cfr. Fig. S10). The results are shown in Fig. S4. 

Interestingly, the performance of our EMGM approach for these realistic datasets is not much worse 

than for the idealized case (Fig. 2B and Fig. S3). The probability of identifying all components correctly 

is slightly lower (Fig. S4C), and there is a larger spread on the average number of correctly identified 

components 𝐾id (Fig. S4D). 

 

2.3 Number of initializations 

The initialization procedure (see Supporting Text, Section 1.2) consists of 𝑃-1 separate initializations 

for a 𝑃 component Gaussian mixture. If the localization background is considered as an extra 

component, the procedure actually consists of 𝑃 separate initializations for a 𝑃 component mixture 

(see Supporting Text, Section 1.4). This procedure can be repeated several times 𝑄 to improve the 

accuracy of the EMGM result, resulting in a total of 𝑄𝑃 initializations for a 𝑃 component Gaussian 

mixture. In order to investigate the effect of the value of 𝑄 on the EMGM performance, we performed 

simulations similar to the ones shown in Fig. 2B, for different values of 𝑄. Fig. S5A shows that an 

increasing 𝑄 results in less underestimation of 𝐾, although the improvement is small for 𝑄 > 3. The 

number of false positive components 𝐾fp does not seem to be affected by the value of 𝑄 (Fig. S5B). 

We therefore used 𝑄 = 3 (see Materials and Method). 

 

2.4 Localization background 

The adapted EMGM performs excellently in the presence of a uniform localization background (see 

Fig. 2C and Fig. S6, A and B). Only for values of the localization background density that are not 

representative for our experimental conditions (e.g. 𝑏𝑔 = 50,000 #/µm2 in Fig S6C), the algorithm 

starts to underestimate the true amount of mixture components and finds false positive components. 

Using the simulated data from Fig. 2C, we calculated the probability of obtaining a completely correct 

EMGM result (i.e. 𝐾id = 𝐾 and 𝐾fp = 0) as a function of 𝑏𝑔 (see Fig. S6C). For mixtures with 𝑏𝑔 < 25,000 

#/µm2, this probability is on average equal to 93%. Fig. S6D shows the average values of 𝐾id and 𝐾fp 

as a function of 𝑏𝑔, confirming that the EMGM performance deteriorates for values larger than 25,000 

#/µm2. This is not a surprise, since the characteristic localization density of the component mixtures 

themselves is lower (each component counts 100 localization and has a standard deviation of 𝜎𝑥,𝑦 = 

20 nm, resulting in a 2𝜎 ellipse area of 0.016 µm2, which yields a characteristic localization density 

around 20,000 #/µm2). 

The results shown in Fig. 2C and Fig. S6 were obtained from simulated Gaussian mixtures with a fixed 

number of components 𝐾 = 4. We therefore also investigated the simultaneous effect of the 

localization background and the number of components on the EMGM performance. We simulated 

mixtures similar to Fig. 2B, varying 𝐾 between 1 and 10 (i.e. the range in which the EMGM approach 

was found to perform well, see Supporting Text, Section 2.2) for different values of 𝑏𝑔 in the same 

range as in Fig. 2C. The results shown in Fig. S7 indicate that our EMGM approach generally performs 

well for values of 𝑏𝑔 up to 10,000 #/μm2. For larger values, the method increasingly underestimates 

𝐾, while the number of false positive components increases. 

 



8 
 

2.5 Localization uncertainty 

The simulation results in Fig. 2D show that the estimated standard deviation 𝜎𝑥,𝑦 of the mixture 

components is slightly affected by an increasing localization uncertainty 𝑠. However, as illustrated in 

Fig. S8C, a high value of 𝑠 can have an important impact on the values of 𝐾id and 𝐾fp. We assessed the 

probability of obtaining a completely correct EMGM result (i.e. 𝐾id = 𝐾 and 𝐾fp = 0) as a function of 𝑠, 

using the simulated data shown in Fig. 2D. The results are shown in Fig. S8D, indicating that the 

probability decreases strongly when 𝑠 becomes larger than 30 nm. This is to be expected, since the 

localization uncertainty is larger than the standard deviation 𝜎𝑥,𝑦 = 20 nm of the mixture components 

itself. Fig. S8E shows 𝐾id and 𝐾fp as a function of 𝑠. For localization uncertainties larger than 30 nm, 

the average number of correctly identified components slightly decreases, while the average number 

of false positives increases more strongly. 

The results shown in Fig. 2D and Fig. S8 were obtained from simulated Gaussian mixtures with a fixed 

number of components 𝐾 = 4. We therefore also investigated the simultaneous effect of the 

localization uncertainty and the number of components on the EMGM performance. We simulated 

mixtures similar to Fig. 2B, varying 𝐾 between 1 and 10 (i.e. the range in which the EMGM approach 

was found to perform well, see Supporting Text, Section 2.2) for different values of 𝑠 in the same range 

as in Fig. 2D. The results shown in Fig. S9 indicate that our EMGM approach performs well for values 

of 𝑠 up to 30 nm. For larger localization uncertainties, the EMGM algorithm breaks down. Interestingly, 

the effect of the localization uncertainty does not seem to depend on the number of mixture 

components, unlike for the localization background (Fig. S7). 

 

2.6 Component eccentricity 

The results in Fig. 2E suggest that the component eccentricity 𝜎𝑥 𝜎𝑦⁄  does not have an effect on the 

performance of our EMGM approach. To verify this, we performed simulations similar to the ones 

shown in Fig. 2F, repeated for different values of 𝜎𝑥 𝜎𝑦⁄ . The spacing 𝑑𝑥 in the 𝑥-direction between 

the component centers was increased from 0 to 100 nm, while the spacing in the 𝑦-direction was 

taken equal to 𝑑𝑥 divided by 𝜎𝑥 𝜎𝑦⁄  (to ensure the same relative overlap between the components in 

both directions). Surprisingly, the results shown in Fig. S10A seem to suggest that the performance of 

the EMGM algorithm improves with an increasing eccentricity (i.e. a smaller value of 𝜎𝑥 𝜎𝑦⁄ ). This can 

be explained by the decreasing overlap between the components for the same spacing. Indeed, 

plotting the result as a function of the ratio 𝑑𝑥 𝜎𝑥⁄  shows almost no difference between the 

eccentricities (see Fig. S10B). 

 

2.7 Number of localizations 

The simulations presented in Fig. 2 describe Gaussian mixtures with components that each consist of 

𝑁𝑘  = 100 localizations. However, as illustrated in Fig. S11A, the performance of the EMGM algorithm 

can depend on the value of 𝑁𝑘. We assessed the probability of obtaining a completely correct EMGM 

result (i.e. 𝐾id = 𝐾 and 𝐾fp = 0) as a function of 𝑁𝑘, using simulations similar to Fig. 2A. The results are 

shown in Fig. S11D, indicating that the probability decreases strongly when 𝑁𝑘  becomes smaller than 

50. Fig. S11E shows 𝐾id and 𝐾fp as a function of 𝑁𝑘, indicating that this low probability is mainly due 

to EMGM not detecting all mixture components for low numbers of localizations. 
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3. Applying EMGM on experimental data 
 

3.1 Scanning procedure 

The number of FA substructures present in a typical SMLM dataset is not known, and can be assumed 

to be larger than 10. However, the simulation results in Fig. 2B indicate that the EMGM analysis is 

optimal when the Gaussian mixture consists of a smaller number of components. We therefore split 

the SMLM dataset into smaller subsets and perform the EMGM analysis on each subset separately. 

This can be done simply by scanning the original region of interest along non-overlapping square 

subregions with side length 𝐿, as illustrated in Fig. S2, A and B. However, this scanning procedure clips 

Gaussian mixture components that are not completely contained in a single subregion. A solution is 

repeating the scan with subregions that are shifted over a distance equal to 𝐿 2⁄ . If this shift is done 

in three different directions (as shown in Fig. S2, B-E), each component with dimensions below 𝐿 2⁄  is 

completely included in at least one subregion of at least one scan. Considering that the FA 

substructures of interest have sizes below the diffraction limit, we choose 𝐿 = 2 µm. 

 

3.2 Combining procedure 

Combining the EMGM results obtained from the scanning procedure (see Supporting Text, Section 

3.1) consists of two steps: (1) the EMGM results of the subregions within each separate scan need to 

be combined, resulting in four different EMGM descriptions of the same original dataset, and (2) 

combining these four results yields the final EMGM result. 

For the first step, we make the approximation that all components identified in a subregion are 

completely described by the localizations within that subregion. The posterior probability (see Eq. (3)) 

of a localization within a certain subregion belonging to a component identified in another subregion 

will therefore be zero. This means that the posterior probabilities of all 𝑀 subregions of a single scan 

can be assembled into a sparse matrix 𝜸scan to describe the posterior probabilities of the full dataset: 

 
𝜸scan = [

𝜸1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝜸𝑀

] (18) 

where the matrices 𝜸𝑖  describe the posterior probabilities of the localizations inside subregion 𝑖, with 

𝑖 = 1, …, 𝑀. The posterior probabilities corresponding to the full dataset for a localization to belong to 

the background (see Eq. (9)) are similarly given by: 

 
𝜹scan = [

𝜹1

⋮
𝜹𝑀

] (19) 

This approximation is not optimal for the case of Gaussian mixture components being clipped (see 

Supporting Text, Section 3.1). The column in 𝜸scan corresponding to such a clipped component is 

therefore deleted, and its values are added to 𝜹scan. The criterion for determining whether a 

component is clipped is chosen as whether its 2𝜎 error ellipse (containing around ~95% of 

localizations) is completely inside the subregion or not. 

The resulting 𝜸scan does not provide a complete description of the Gaussian mixture in the full dataset 

due to the deletion of components that are clipped during the scanning procedure. However, each 

clipped component that is deleted from a certain scan is, in theory, identified in at least one of the 

three other scans (see Fig. S2). The second step therefore consists of merging the 𝜸scan matrices of 

the four different scans. For this purpose, the Pearson correlation between the posterior probabilities 

of each pair of components 𝑖 and 𝑗 belonging to different scans is calculated: 
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𝜌𝑖𝑗 =

∑ (𝛾𝑖𝑛 − 𝛾𝑖𝑛̅̅ ̅̅ )𝑛 (𝛾𝑗𝑛 − 𝛾𝑗𝑛̅̅ ̅̅ )

√∑ (𝛾𝑖𝑛 − 𝛾𝑖𝑛̅̅ ̅̅ )2
𝑛 ∑ (𝛾𝑗𝑛 − 𝛾𝑗𝑛̅̅ ̅̅ )

2
𝑘

 
(20) 

The sum runs over all localizations 𝑛 that have a non-zero posterior probability (i.e. excluding all 

localizations outside subregion 𝑖 and 𝑗). The correlation is tested against the null hypothesis that the 

posterior probabilities of components 𝑖 and 𝑗 are not correlated (i.e. it is verified that the correlation 

is larger than the values described by a simulated null hypothesis distribution). Two components 

identified in two different scans are considered to be identical if their correlation is significant 

according to the null hypothesis and if the correlation is larger than any other significant correlation 

involving either 𝑖 or 𝑗. After identifying all identical components, their posterior probabilities are 

combined by averaging, while the posterior probabilities of components identified in only one scan 

are retained. This results in a final 𝜸 that describes the full dataset without clipped components. The 

background posterior probabilities are combined similarly into a final 𝜹. 
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4. Merging procedure 
 

The merging procedure illustrated in Fig. 5A is performed by splitting the mixture components 

obtained by EMGM into two categories: the ones whose 1𝜎 error ellipse intersects with at least one 

other error ellipse, called the “overlapping” components, and the ones whose 1𝜎 error ellipse does 

not intersect with another one, called the “isolated” components. The 1𝜎 error ellipse is chosen 

because it corresponds to the probability of containing ~40% of all localizations. This means that 

localizations on the intersection between two such error ellipses have approximately an equal 

probability to belong to both corresponding components, therefore suggesting that they can be 

viewed as a single merged object. Once a set of 𝐾overlap overlapping components have been verified, 

a new merged object can be calculated by summing their posterior probabilities 𝛾𝑛𝑘 (see Eq. (3)): 

 

𝛾𝑛,merged = ∑ 𝛾𝑛𝑘

𝐾overlap

𝑘=1

 (21) 

The properties of the merged object can then be calculated using Eq. (4). This gives rise to a third 

category, called the “merged” components. 
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5. PAINT imaging of integrin β3 
 

5.1 Sample preparation 

We used a commercial kit (Ultivue-2, Ultivue) for our points accumulation in nanoscale topography 

(PAINT) [7] experiments. The sample was prepared according to the manufacturer’s 

recommendations. Briefly, we seeded around 105 REF cells on a fibronectin-coated 25 mm diameter 

cover slip, incubated them at 37° C in cell culture medium, washed them with PBS after 24h, and fixed 

them with 2.5% paraformaldehyde at 37° C for 10 minutes (see Materials and Methods). After 

removing the fixative, the cells were washed three times with PBS, the cover slip was placed into a 

custom made holder, and they were incubated in PBS for 10 minutes at 37° C. 

The cells were subsequently reduced by incubating them for 10 minutes in a freshly prepared 0.1% 

sodium borohydride solution at room temperature. Afterwards, the cells were washed three times 

with PBS, and incubated in PBS for 10 minutes at room temperature. Next, the cells were incubated 

for 1.5h at room temperature in a blocking and permeabilization buffer consisting of PBS with 3% 

bovine serum albumin and 0.2% Triton X-100. 

The primary antibody staining was carried out by incubating the cells overnight at 4 °C with integrin 

β3 mouse monoclonal antibodies (sc-7311, Santa Cruz Biotechnology) diluted 100 times in staining 

buffer composed of PBS with 1% bovine serum albumin and 0.2% Triton X-100. Next, the cells were 

washed four times with PBS, and incubated in PBS for 10 minutes at room temperature. The secondary 

antibody staining was carried out by first incubating the cells in Antibody Dilution Buffer (Ultivue-2, 

Ultivue) for 10 minutes at room temperature, and then for 2h with Goat-anti-Mouse-D1 antibodies 

(Ultivue-2, Ultivue) diluted 100 times in Antibody Dilution Buffer. Next, the cells were washed four 

times with PBS, and incubated in PBS for 10 minutes at room temperature. 

 

5.2 Imaging procedure 

Prior to imaging, 100 nm gold nanospheres (C-AU-0.100, Corpuscular) were added to the sample for 

lateral drift correction (see Materials and Methods). Imaging was performed using image strand I1-

560 (Ultivue-2, Ultivue) diluted in Image Buffer (Ultivue-2, Ultivue) at a concentration of 1 nM. The 

imaging procedure was similar as for the PALM measurements (see Materials and Methods). 

 

5.3 Discussion 

We used PAINT to image fixed rat embryonic fibroblast (REF) cells where integrin β3 was antibody 

stained. The resulting PAINT images show FAs as patchy structures (Fig. S14). We hypothesize that this 

is caused by difficulties in labeling integrin with antibodies, for instance due to cell membrane areas 

that are curved inwards, resulting in an integrin epitope that is more difficult to access. We also 

noticed that mostly the cell periphery was labelled, again suggesting that not all integrins are 

accessible for the antibodies. 
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6. Production of nano-patterned substrates 
 

Nano-patterned substrates were prepared by means of block-copolymer micelle nanolithography 

(BCML) as previously described [8-10]. Briefly, quasi-hexagonally ordered gold nanoparticle arrays on 

cleaned 25 mm diameter microscope cover slips (#1.5 Micro Coverglass, Electron Microscopy 

Sciences) were fabricated using a toluene solution of poly(styrene)-block-poly(2-vinyl pyridine) (PS-b-

P2VP, Polymer Source Inc.) [9, 10]. The PS-b-P2VP toluene solution was treated with HAuCl4 (Sigma 

Aldrich) at a stoichiometric loading of (P2VP/HAuCl4) = 0.5 and stirred for at least 24h in order to obtain 

gold nanoparticles (AuNPs) with a diameter between 6-8 nm. The lateral distance between the 

individual AuNPs was adjusted by varying the micellar coating process (spinning speed). Details 

concerning the applied block polymers and the spin casting processes are included in Table S1. 

The area between the AuNPs was passivated with PLL-g-PEG (PLL(20kDa)-g[3.5]-PEG(2kDa), Susos AG) 

to prevent non-specific adhesion. The substrates were first activated in an oxygen plasma at 0.4 mbar 

and 150 W for 10 minutes. The PLL-g-PEG was diluted to a concentration of 0.25 mg/ml in a 10 mM 

HEPES buffer at pH 7.4. The freshly activated substrates were incubated upside down for 45 minutes 

at room temperature on a 60 µl drop of the PLL-g-PEG solution on parafilm in a moist chamber. 

Afterwards the substrates are washed once with milli-Q water. Following passivation, each surface 

was functionalized with cRGD pentapeptide (Peptide Specialty Laboratories GmbH) at a concentration 

of 25 μM in MilliQ water for 2h at room temperature. The cRGD pentapeptide was conjugated with a 

PEG spacer (6 units) that serves as a breach between the peptide and the cysteine. The physisorbed 

material was removed by thorough rinsing with MilliQ water and PBS. 
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Supporting Figures 
 

 

 

Figure S1. Phase-contrast microscopy imaging of REF cells. (A-C) The REF cells were growing on (A) a 

fibronectin-coated substrate, (b) a nano-patterned substrate with 56 nm spacing between AuNPs, or 

(C) a nano-patterned substrate with 119 nm spacing between AuNPs. The images were recorded 24h 

after transection with the integrin β3 vector. 
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Figure S2. Scanning procedure for EMGM analysis of SMLM data. (A) Illustration of a Gaussian mixture 

with components represented by black ellipses. (B-E) Scanning procedure consisting of 4 different 

scans. During each scan, the EMGM analysis is performed on separate square subregions with a side 

length 𝐿, indicated by the colored squares. The Gaussian mixture components that can be correctly 

identified in a certain scan are indicated by the ellipses that have the same color as the squares. In 

between scans, the subregions are shifted over a distance 𝐿 2⁄  in one of the following directions: left, 

right, up, or down. 
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Figure S3. Influence of the number of mixture components 𝐾 on the EMGM performance. (A-B) 

Example EMGM results for simulated Gaussian mixtures with 𝐾 = 20 components. EMGM correctly 

identified 𝐾id = 20 components and found 𝐾fp = 0 false positive components for (A). EMGM correctly 

identified 𝐾id = 18 components and found 𝐾fp = 1 false positive component for (B). The red dots 

symbolize the simulated localizations. The blue/green dots symbolize the center positions of the 

correct/false positive components, the blue/green ellipses symbolize the 2𝜎 error ellipses of the 

correct/false positive components. (D) The simulated probability of obtaining a completely correct 

EMGM result (i.e. 𝐾id = 𝐾 and 𝐾fp = 0) as a function of 𝐾. (E) The simulated average values of 𝐾id and 

𝐾fp as a function of 𝐾. The dashed line represents the ground truth (GT) and the shaded areas the 

standard deviation (𝑛 = 100). 
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Figure S4. EMGM analysis on simulated random Gaussian mixtures. (A-B) Example EMGM results for 

simulated Gaussian mixtures with 𝐾 = 10 components. EMGM correctly identified 𝐾id = 10 

components and found 𝐾fp = 0 false positive components for (A). EMGM correctly identified 𝐾id = 8 

components and found 𝐾fp = 1 false positive component for (B). The red dots symbolize the simulated 

localizations. The blue/green dots symbolize the center positions of the correct/false positive 

components, the blue/green ellipses symbolize the 2𝜎 error ellipses of the correct/false positive 

components. The black ellipses symbolize the simulated components. (D) The simulated probability of 

obtaining a completely correct EMGM result (i.e. 𝐾id = 𝐾 and 𝐾fp = 0) as a function of 𝐾. (E) The 

simulated average values of 𝐾id and 𝐾fp as a function of 𝐾. The dashed line represents the ground 

truth (GT) and the shaded areas the standard deviation (𝑛 = 100). 
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Figure S5. Influence of the number of initialization procedures 𝑄 on the EMGM performance. Gaussian 

mixtures with different values of 𝐾 were simulated and analyzed by EMGM. (A) The average value of 

the number of correctly identified compenents 𝐾id as a function of 𝐾, for different values of 𝑄. (B) The 

average value of number of false positive components 𝐾fp as a function of 𝐾, for different values of 

𝑄. The dashed line represents the ground truth (GT) and 𝑛 = 100 simulations were performed. 
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Figure S6. Influence of the localization background on the EMGM performance. (A-C) Example EMGM 

results for simulated Gaussian mixtures. Each mixture consists of 𝐾 = 4 components with localization 

background density (A) 𝑏𝑔 = 0, (B) 𝑏𝑔 = 25,000 #/µm2, or (C) 𝑏𝑔 = 50,000 #/µm2. EMGM correctly 

identified 𝐾id = 4 components and found 𝐾fp = 0 false positive components for (A) and (B). EMGM 

correctly identified 𝐾id = 2 components and found 𝐾fp = 1 false positive component for (C). The red 

dots symbolize the simulated localizations. The blue/green dots symbolize the center positions of the 

correct/false positive components, the blue/green ellipses symbolize the 2𝜎 error ellipses of the 

correct/false positive components. (D) The simulated probability of obtaining a completely correct 

EMGM result (i.e. 𝐾id = 4 and 𝐾fp = 0) as a function of 𝑏𝑔. (E) The simulated average values of 𝐾id and 

𝐾fp as a function of 𝑏𝑔. The dashed line represents the ground truth (GT) and the shaded areas the 

standard deviation (𝑛 = 100). 
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Figure S7. Influence of the localization background and the number of mixture components 𝐾 on the 

EMGM performance. (A) Simulated average number of correctly identified components 𝐾id as a 

function of 𝐾, for different values of the localization background density 𝑏𝑔. (B) Simulated average 

number of false positive components 𝐾fp as a function of 𝐾, for different values of the localization 

background density 𝑏𝑔. The dashed line represents the ground truth (GT) and 𝑛 = 100 simulations 

were performed. 
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Figure S8. Influence of the localization uncertainty on the EMGM performance. (A-C) Example EMGM 

results for simulated Gaussian mixtures. Each mixture consists of 𝐾 = 4 components with localization 

uncertainty (A) 𝑠 = 0, (B) 𝑠 = 20 nm, or (C) 𝑠 = 40 nm. EMGM correctly identified 𝐾id = 4 components 

and found 𝐾fp = 0 false positive components for (A) and (B). EMGM correctly identified 𝐾id = 4 

components and found 𝐾fp = 1 false positive component for (C). The red dots symbolize the simulated 

localizations. The blue/green dots symbolize the center positions of the correct/false positive 

components, the blue/green ellipses symbolize the 2𝜎 error ellipses of the correct/false positive 

components. (D) The simulated probability of obtaining a completely correct EMGM result (i.e. 𝐾id = 

4 and 𝐾fp = 0) as a function of 𝑠. (E) The simulated average values of 𝐾id and 𝐾fp as a function of 𝑠. The 

dashed line represents the ground truth (GT) and the shaded areas the standard deviation (𝑛 = 100). 

  



23 
 

 

 

Figure S9. Influence of the localization uncertainty 𝑠 and the number of mixture components 𝐾 on the 

EMGM performance. (A) Simulated average number of correctly identified components 𝐾id as a 

function of 𝐾, for different values of 𝑠. (B) Simulated average number of false positive components 

𝐾fp as a function of 𝐾, for different values of s. The dashed line represents the ground truth (GT) and 

𝑛 = 100 simulations were performed. 

  



24 
 

 

 

Figure S10. Influence of the eccentricity 𝜎𝑥 𝜎𝑦⁄  and the spacing 𝑑𝑥 on the EMGM performance. (A) 

Simulated average number of mixture components correctly identified by EMGM as a function of 𝑑𝑥 

for different values of 𝜎𝑥 𝜎𝑦⁄ . (B) Simulated average number of mixture components correctly 

identified by EMGM as a function of 𝑑𝑥 𝜎𝑥⁄ . The dashed line represents the ground truth (GT) and the 

average values were obtained from 𝑛 = 100 simulations. 
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Figure S11. Influence of the number of localizations on the EMGM performance. (A-C) Example EMGM 

results for simulated Gaussian mixtures. Each mixture consists of 𝐾 = 4 components with localization 

number (A) 𝑁𝑘  = 30, (B) 𝑁𝑘  = 100, or (C) 𝑁𝑘  = 200. EMGM correctly identified 𝐾id = 2 components and 

found 𝐾fp = 1 false positive components for (A). EMGM correctly identified 𝐾id = 4 components and 

found 𝐾fp = 0 false positive component for (B) and (C). The red dots symbolize the simulated 

localizations. The blue/green dots symbolize the center positions of the correct/false positive 

components, the blue/green ellipses symbolize the 2𝜎 error ellipses of the correct/false positive 

components. (D) The simulated probability of obtaining a completely correct EMGM result (i.e. 𝐾id = 

4 and 𝐾fp = 0) as a function of 𝑁𝑘. (E) The simulated average values of 𝐾id and 𝐾fp as a function of 𝑁𝑘. 

The dashed line represents the ground truth (GT) and the shaded areas the standard deviation (𝑛 = 

100). 
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Figure S12. Illustration of a Gaussian component with standard deviation 𝜎𝑥 and 𝜎𝑦, together with the 

corresponding 2𝜎 error ellipse with major axis 𝑎 and minor axis 𝑏. 
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Figure S13. Focal adhesion substructures with small localization numbers 𝑁𝑘  identified by EMGM. (A) 

PALM image of a small area in a fixed REF cell expressing integrin β3 labelled with mEos2, growing on 

a fibronectin-coated substrate (see Fig. 3B). (B) Result of the EMGM analysis of the PALM data shown 

in (A). The red dots symbolize the localizations, and the blue ellipses the 2𝜎 error ellipses of the 

mixture components. (C) Same as (B) showing only the components with 𝑁𝑘  < 50. 
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Figure S14. Focal adhesion substructures with large localization numbers 𝑁𝑘  identified by EMGM. (A) 

PALM images of a small area in a fixed REF cell expressing paxillin or integrin β3 labelled with mEos2, 

growing on a fibronectin-coated substrate (see Fig. 3B). (B) Result of the EMGM analysis of the PALM 

data shown in (A). The red dots symbolize the localizations, and the blue ellipses the 2σ error ellipses 

of the mixture components. (C) Same as (B) showing only the components with 𝑁𝑘  > 100. 
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Figure S15. PAINT imaging of focal adhesions. (A) PAINT image of a fixed REF cell where integrin β3 

was antibody stained. (B) Zoom-in of the region in (A) indicated by the white rectangle. 
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Supporting Tables 
 

 

Table S1 Details concerning the block polymers and the spin casting processes used for the fabrication 

of the nano-patterned substrates. 

 

Polymer 
PS(units)-b-P2VP(units) 

PDI 
Polymer concentration 

[mg/ml] 
Spinning 

speed [rpm] 
Distance on glass 

[nm] 

PS1056-b-P2VP671 1.09 
5 2000 56  9 

2.5 6000 119  11 


