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Supplemental Information and Supporting Figures

S1 Numerical methods and dependence on numerical parameters

S1.1 Short-term single division cycle

In the simulations of the short-term, single-division-cycle aggregate dynamics of our passive-only model
we first introduce the organelles inside the mother cell as spheres centered at a random position. The
centers of organelles are computed using a uniform distribution inside a sphere of radius rm− ro, where
ro is the radius of the organelle and rm the radius of the mother cell. Organelles are not allowed to
overlap with other organelles and therefore their centers must lie at a distance larger that the addition
of their radii. Next, we set an initial number of aggregates N , represented by spheres with radius ria,
with centers computed from a uniform distribution inside a sphere of radius rm − ria, again with the
restriction that they cannot overlap or lie inside the organelles.

Aggregates are generated randomly inside the mother and bud compartments at times taken from
exponential distributions with rates 1

τm
and 1

τb
respectively. Each time this occurs, the position of the

aggregate is generated randomly from a uniform distribution in each compartment –in the case of the
bud, the centers are computed using a uniform distribution inside a sphere with radius rb(t) − ria and
which is centered at (xb(t), yb(t), zb(t)) which denotes the bud’s focus.

Aggregates undergo diffusion, with a time step of length δt (see Fig. S1) and diffusion coefficient
D(ri(t)) = β

ri(t)γ
, taken from (1). As measured in (1), the values for β and γ are different from β = kBTe

6πµ

and γ = 1, which correspond to the traditional Stokes-Einstein equation (Te being the absolute tem-

perature). Additionally we increase the radii of all aggregates following ri(t) = ( 3
4πCcδt+ ri(t− δt)3)

1
3

where Cc = 4π(ria)3

3τm
or Cc = 4π(ria)3

3τd
depending on the compartment. These growth rates are chosen so

that, in absence of fusion and cross-compartment crossings, aggregates will have a radius ria after a time
τc.

Upon contact of aggregates i and j (when the distance between aggregate centers is smaller that
the sum of their radii), binding happens with a probability pb. If this is the case, a new aggregate of

radius (ri(t)
3 + rj(t)

3)
1
3 is generated at the intermediate position. In the case of collision against the

cell walls (mother or bud) or against an organelle, the position of the aggregate is recalculated assuming
a completely elastic collision against the boundary. We also considered the case where a fraction el of
the energy was lost by setting the distance after the impact to be l∗2 = l2(1− el), l2 being the distance
after a completely elastic collision, but the results were not substantially different, with the exception
of a small increase in the amount of cross-compartment crossings (see Fig. S2).

The process above is continued until a time T is reached, corresponding to the time at which the neck
connecting both cells closes. Meanwhile, the radius of the daughter cell –with initial value rd(0) = ln

2 +ε–
grows progressively until it reaches its final value rd(T ) at the end of the process. The value of the
parameter rd(0) was chosen so that the center of the daughter cell was at a distance larger than rm from
the center of the mother cell. In order to keep the length of the neck constant, the position of the center
of the daughter cell is varied.

S1.2 Long-term yeast life cycle

The long-term simulations of the passive-only model have the following structure. Initially, cells are born
with zero aggregates. Before the first division and in-between divisions, similarly as in (1, 2), fusion of
pre-existing aggregates i and j of radii ri(0), rj(0) may occur with rate:

K(i, j) = pb
4π

V
(D(ri(0)) +D(rj(0)))(ri(0) + rj(0)), (S1)
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where V is the volume of the domain in which they are allowed to diffuse (approximately the volume of
the mother minus the volumes of organelles). Here, ri(0) is not necessarily equal to ria but to the radius
of aggregate i at the end of the last division. Additionally, at the end of this period of duration Ts, pre-
existing aggregates’ radii are increased to a value ri(t+Ts) = ( 3

4πCmTs+ri(0)3)
1
3 and a random number

of aggregates taken from a Poisson distribution with mean Ts
τm

are generated with initial radii ria. During
this period, we generate the event times with a constant rate. The precision of this approximation
becomes considerable when the rate of growth is small, as is the case for WT unperturbed cells. After
the period between two consecutive division cycles, we run the single-division dynamics described in
Section S1.1.

S1.3 Dependence on δt

In Fig. S1 we show the dependence of the short-term simulation results when varying the parameter δt.
At short and intermediate timescales the MSD is similar for all values of the time-step size. At longer
timescales, for δt = 1 sec., there appears to be an overestimation of aggregate motion as shown in Fig.
S1A. Concerning aggregate numbers, for larger values of δt, fusion is underestimated as a consequence
of overlooked collisions. Nevertheless, after sufficient time, for values smaller than δt = 0.5 sec. all
trajectories converge to similar values after a sufficiently long time. This underestimation of aggregate
collisions impacts the aggregate volume in the mother cell as well (Fig. S1E). Indeed, for having constant
rates of growth for aggregates of all sizes, two aggregates increase in volume at twice the rate of one
larger aggregate. We claim that this does not impact strongly the results shown above since aggregate
numbers are always low (close to 1 or 2) given the frequency of fusion and that for smaller growth rates
the error becomes negligible. In the case where aggregate volume becomes significantly overestimated,
we also provide a variant of the model and the mathematical approximation where aggregate growth
increases with the surface area of the aggregate (Section S8). In this case –although in general, rates
must be smaller (due to the exponential growth of volume)– all the conclusions remain unvaried.
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Figure S1: Dependence on δt. A-D. MSD of one aggregate throughout the simulation of the single-
division component of the model (top) and volume of the same aggregate for which the
MSD was computed (bottom) for different values of δt. F-G. Log-log plot of Fig. S1A-S1B.
Dashed lines correspond to the MSD of an aggregate of radius ria. E-G. Total aggregate
volume, fraction of the total aggregate volume and number of aggregates inside the mother
and the daughter cell for different values of δt. H. Total number of cross-compartment events
from mother to bud (M > B) and from bud to mother (B > M) as a function of δt. In all
figures, N = 5, τm = 12 min., τd = 120 min. All other parameters were set to the values in
Table S1. Results averaged over 1024 realizations.
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S2 Mathematical Analysis

From (3) we know that the first order approximation of the mean-first-passage-time (MFPT) of a particle
undergoing diffusion in a domain of volume V follows E(τ) = V

2lD (1 + o(1)) ' V
2lD , where l denotes the

diameter of the disc through which particles can escape and D denotes the diffusion coefficient. Due to
the possibility of recrossings at the open window where the probability of movement in both directions is
equal, the rate of exit from the domain is κ = 1

2E(τ) '
lD
V (4). If besides undergoing diffusion, aggregates

also appear and fuse on collision, we can model inner-cell aggregate dynamics using a system of coupled
differential equations. Let V a

m(t), V a
d (t) be the total aggregate volume (detected) at mother and daughter

cells at a time t. In addition, let Nm(t), Nd(t) be the total number of aggregates in each compartment.
We abuse notation by denoting E(Nm(t)), E(Nd(t)) by Nm(t) and Nd(t), and E(V a

m(t)), E(V a
d (t)) by

V a
m(t), V a

d (t). Lets define 〈V (t)〉m = V a
m(t)/Nm(t), 〈V (t)〉d = V a

d (t)/Nd(t) as the average volume of an
aggregate in the mother and the daughter cell respectively at a time t. We assume that all aggregates

in the mother have radius rm(t) = (
3〈V (t)〉m

4π )
1
3 and diffusion coefficient D(rm(t)) = β

rm(t)γ . Likewise,

aggregates inside the daughter all have radius equal to rd(t) = (
3〈V (t)〉d

4π )
1
3 and diffusion coefficient

D(rd(t)) = β
rd(t)γ . If V1 = Vm − Vv − Vn denotes the volume of the mother cell inside which aggregates

undergo diffusion and V2(t) denotes the volume of the daughter at a time t then we can model the
dynamics of Nm(t), Nd(t), V

a
m(t), V a

d (t) as:



dNm(t)

dt
= 1

τm
− pbNm(t) max(Nm(t)− 1, 0)16πrm(t)D(rm(t))

V1
− κm(t)Nm(t) + κd(t)Nd(t)

dNd(t)

dt
= 1

τd
− pbNd(t) max(Nd(t)− 1, 0)16πrd(t)D(rd(t))

V2(t) − κd(t)Nd(t) + κm(t)Nm(t)

dV a
m(t)

dt
= CmNm(t)− κm(t)Nm(t) 〈V (t)〉m + κd(t)Nd(t) 〈V (t)〉d + 1

τm
V i
a

dV a
d (t)

dt
= CdNd(t)− κd(t)Nd(t) 〈V (t)〉d + κm(t)Nm(t) 〈V (t)〉m + 1

τd
V i
a

(S2)

Where κm = (ln−2rm(t))+D(rm(t))
V1

is the escape rate from the mother, κd(t) = (ln−2rd(t))+D(rd(t))
V2(t) the

escape rate of the daughter and V i
a the volume of an aggregate with radius ria. The second term on

the right of the equality in the first two equations corresponds to rate of fusion in each one of the two
domains, which was introduced in Eq. S1. Here, the constant 16π is a consequence of the assumption
that all aggregates in each of the compartments have equal radius and equal diffusion coefficient.

S3 Parameter Values of the Model

The parameter values used in the simulations of the model are shown in Table S1.
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Parameter Interpretation Value Source Additional comments

rm Radius of mother cell 2.5 µm T.N.

rd(T ) Final radius of daughter cell 1.9 µm T.N.

rv Radius of vacuole 1.1 µm T.N.

rn Radius of nucleus 0.9 µm T.N.

ln Length of neck 1.35 µm T.N.

rd0 = rd(0) Initial radius of daughter cell ln
2

+ 0.025 µm - The radius of the daughter must be larger

than half the size of the neck.

T Duration of cell division 100 min T.N.

ria Detection threshold (initial radius of aggre-

gate)

0.08 µm (1) Estimated after a temperature shift from

30oC to 38oC using time-lapse mi-

croscopy to observe the fluorescence in-

tensity of foci. Since the initial volume

is via = (0.01)(0.6 µm)3, then ria =

0.08 µm.

Ts Time between two cell division cycles 45 min (5, 6) Two successive cell divisions occur with

a difference of 145 mins. Since we set

T = 100 min we leave Ts = 45 min. This

is consistent with Fig. 3A in (6) for WT

unperturbed cells.

τm Average time of appearance of aggregates in

mother cell

12 min, 25 min, 50

min, 100 min, 200

min, 400 min, 800

min

(7) Around 30% of cells form an aggregate af-

ter 1-2 divisions and thus τm ' 800 min

in WT cells and τm � 800 min after

stress.

τd Average time of appearance of aggregates in

daughter cell

10× τm -

β Constant in functional relation between diffu-

sion coefficient and radius of aggregate

1.4× 10−4 (1) Estimated after a temperature shift from

30oC to 38oC using time-lapse mi-

croscopy and image analysis.

γ Power of radius of aggregate in functional de-

scription of diffusion coefficient

2.1 (1) Same as with β.

D(r(t)) Diffusion coefficient for an agg. with radius

r(t)

D(r(t)) = β/r(t)γ (1) Same as with β and γ

Ndeath Number of cell divisions before death 28 divisions (7, 8)

pb Probability of fusion in case of collision 0.9 (2) The reference value used was estimated

in fission yeast after wide-field fluores-

cence microscopy.

el Proportion of energy lost in case of collision

against boundary or organelles

0 -

ps Probability of movement only in direction of

mother cell’s pole (every time step)

0.05 -

pc Probability of remaining confined to organellar

surfaces for every passing minute

1 -

dc Maximum distance between center of the ag-

gregate and surface of organelle for possible

confinement to organellar surface

0.3 µm -

pa Probability of attachment to cell membrane in

case of collision

0.5 -

pw Probability of remaining attached to cell mem-

brane after adhesion to organellar surfaces for

every passing minute

0.9 -

Table S1: Model parameters, values and sources. T.N refers to a personal communication with T. Nyström, Department of Cell
and Molecular Biology–Microbiology, Göteborg University, Göteborg, Sweden. March 2012.
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S4 Dependence on el

We show in Fig. S2 the results of the simulations of the short-term component of our model when
varying the fraction of energy lost after collision against organelles or the cell’s boundary. All statistics
appear to be independent of the parameter el, except the number of crossings which has a subtle increase
for higher values of this parameter. This is likely to be a consequence of aggregates remaining close to
the neck once they collide to the cell walls in its vicinity.

S5 Dependence on the diffusion coefficient

We complement the observations concerning the dependence of the model on the diffusion rate with the
results shown in Fig. S3. For higher diffusion rates, the number of aggregates in the mother and the
daughter is low as a consequence of increased fusion.
Concerning aggregate volumes, at high diffusion rates, the volume in the mother decreases as its reten-
tion capacity is diminished. This produces an increase in aggregate volumes inside the daughter. At low
diffusion rates, aggregates remain inside the mother and do not cross to the bud and thus aggregate vol-
umes are higher in the mother compartment. Nevertheless, the fraction of volume in each compartment
does not change substantially. This is a consequence of the high aggregation rates and of the constant
growth in volume of existing aggregates.

S6 Aggregate kinetics under no cross-compartment movement and under
no fusion

In Fig. 3A, when comparing the slopes of both curves after 40 min., we observe that the growth rate in
the mother cell is approximately 6 times higher than the growth rate in the daughter cell. Under small
or non-existent cross-compartment movement, given that the rates differ in a tenfold, the ratio would be
expected to be over 10 instead. Thus, cross-compartment transport reduces substantially the difference
between the appearance rates, the growth rates and the initial number of aggregates between the two
cells.

We show in Fig. S4 the aggregate dynamics of the single-division component when assuming no com-
partmental crossings (i.e a closed neck) in our model. Under this assumption, the effect of bud-specific
dilution, represented by the difference in the aggregate generation and growth rates, on the asymmetrical
distribution of damage is substantially stronger, as can be confirmed in Fig. S4C. Moreover, aggregate
numbers would be overestimated in the daughter cell (Fig. S4A) due to the lack of escape, and aggre-
gate volume overestimated and underestimated in the mother and daughter cells respectively (Fig. S4B).

With respect to a model without fusion or appearance of new aggregates as in (14, 15), under the
diffusion rates measured in (1), asymmetrical partitioning of volume would be substantially reduced
to 68%-32% (measured with equations (S2)). This yields a probability of approximately 0.32 for each
aggregate to be inherited by the bud, which is not in agreement with experimental quantifications (16).

Hence, both bud-specific dilution and cross-compartment movement have an important role in the
compartmental distribution of aggregate volumes, although their strength may vary depending on the
experimental conditions (the rate 1/τm). We then suggest that both should be considered when modeling
the asymmetrical distribution of aggregates in budding yeast.
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Figure S2: Dependence on el. A-D. MSD of one aggregate throughout the single-division cycle simulation
of the model and volume of the same aggregate for which the MSD was computed (bottom)
for different values of el. F-G. Log-log plot of Fig. S2A-S2B. Dashed lines correspond to
the MSD of an aggregate of radius ria. E-G. Total aggregate volume, fraction of the total
aggregate volume and number of aggregates inside the mother and the daughter cell for
different values of el. H. Total number of cross-compartment events from mother to bud
(M > B) and from bud to mother (B > M) as a function of el. In all figures, N = 5,
δt = 0.1 sec., τm = 12 min., τd = 120 min. All other parameters were set to the values in
Table S1. Results averaged over 1024 realizations.
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Figure S3: Dependence on the diffusion coefficient. A. Logarithm of the diffusion rate of an aggregate
with radius ria (top) and fraction of volume inside the mother cells (bottom) at the end of
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cell (top) and inside the daughter cell (bottom) at the end of the cell division for different
values of β and γ. N = 1, δt = 0.5, τm = 12 min., τd = 120 min. All other parameters were
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S7 Mathematical Analysis of confined diffusion in 2D

The MSD of a particle undergoing diffusion with rate D in d dimensional space follows
〈
r2(t)

〉
u

= 2dDt.

Anomalous Diffusion corresponds to the case where
〈
r2(t)

〉
= 2dDtα, with α < 1 (sub-diffusion) of

α > 1 (super-diffusion).
In 2D space, the MSD particle undergoing diffusion inside a disk of radius a can be found to be (9–11):

〈
r2(t)

〉
d

= a2

(
1− 8

∑
n∈Z

exp

(
−β2

nDt

a2

)
1

β2
n − 1

J2
0 (βn)

J2
1 (βn)

)
.

Where Ji(x) denotes the i-th Bessel function of the first kind and the βn’s are the zeros of J ′1(x).
In the case of diffusion inside an annulus with outer and inner radii a and b respectively, following the
work done in (11–13), we are able to approximate

〈
r2(t)

〉
at intermediate or large timescales as

〈
r2(t)

〉
'

C(1 − exp(−2ωDt)), where C and ω are positive constants. As proven in (11), C = limt→∞
〈
r2(t)

〉
=

2R2
G, where RG is the radius of gyration of the domain (the annulus) whereas ω is related to the degree of

sub-diffusion at intermediate stages (which can be computed using curve fitting tools given its difficulty).
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S8 Growth proportional to surface area

We believe that a constant rate of growth in volume is more consistent with the period of relaxation
after heat or oxidative stress since, relative to the aggregate’s size, initially growth happens fast (for
many aggregates) and then slow for fewer larger aggregates after fusion events. In contrast, growth
proportional to the surface area could be more consistent with aggregate growth at lower rates in WT
unperturbed cells. For this purpose we introduce the following model.

We modify the rate of volume growth so that it is proportional to the surface area of the aggregate.
Since the surface area of a sphere of radius r is A = 4πr2, we now let the volume of an aggregate increase

according to dV/dt = (r(t)2/(ria)
2)Cc. Here, in order for r(τc) = ria, Cc = Cc = 4π(ria)3

τc
(so a factor of 3

larger than in the original version of the model). The mathematical approximation for the dynamics of
this variant takes the following form:



dNm(t)

dt
= 1

τm
− pbNm(t) max(Nm(t)− 1, 0)16πrm(t)D(rm(t))

V1
− κm(t)Nm(t) + κd(t)Nd(t)

dNd(t)

dt
= 1

τd
− pbNd(t) max(Nd(t)− 1, 0)16πrd(t)D(rd(t))

V2(t) − κd(t)Nd(t) + κm(t)Nm(t)

dV a
m(t)

dt
= Cm(rm(t)2/(ria)

2)Nm(t)− κm(t)Nm(t) 〈V (t)〉m + κd(t)Nd(t) 〈V (t)〉d + 1
τm
V i
a

dV a
d (t)

dt
= Cd(rd(t)

2/(ria)
2)Nd(t)− κd(t)Nd(t) 〈V (t)〉d + κm(t)Nm(t) 〈V (t)〉m + 1

τd
V i
a

(S3)

As observed in Fig. S5, the consistency between the numerical and mathematical approximations
remains remarkable. Besides aggregate volume growth, which is now growing exponentially (and hence
the fraction of volume in the mother increases as well), all other results and conclusions remain unvaried.
Fusion remains frequent, and the MSD slows down at intermediate and long timescales. In this case, the
MSD reaches a higher value and rises faster since we only consider one initial aggregate instead of five.
Thus, the aggregate experiences faster diffusion at small timescales and a stronger deceleration given
the increasing volume growth rate.

Concerning Fig. S6, all results are equivalent to those in the original model –when decreasing slightly
the growth rates, given that exponential growth occurs at longer timescales–, except for the number of
crossings. Since, for smaller values of τm aggregates grow very fast, the number of crossings is signifi-
cantly reduced as a function of τm. Nevertheless, the number of crossings remains orders of magnitude
higher than the experimental observations in (14).

With respect to the the dependence on other parameters (el, δt and β and γ), almost all the observa-
tions above remain, with the exception of the aggregate volume growth, which is now higher for higher
diffusion values (Fig. S7B). Accumulation in the mother is favored with increased size and fusion and
the appearance of larger aggregates.

Finally, as observed in Fig. S8 and Fig. S9, all observations made in the original model regarding
active-quality-control remain valid when aggregate growth is proportional to the surface area (and under
smaller rates of growth). Indeed, the MSD remains consistent with sub-diffusion in all three cases, one
aggregate deposit forms and is maintained in the mother cell, the number of crossings is significantly
reduced to values matching experimental data, and the probability of inheritance by the bud of the
largest aggregate drops to values near 0.02.
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Figure S5: Single-division aggregate dynamics of the model with aggregate growth proportional to sur-
face area. A-C. Number of aggregates, total aggregate volume and fraction of the total
aggregate volume inside the mother (blue) and the daughter cell (red). Continuous line cor-
responds to the analytical prediction from the mathematical model with growth proportional
to the surface area when numerically integrating Eq. S3. Dotted line corresponds to the
numerical average from the simulations of the short-term aggregate dynamics. D. MSD of
one aggregate throughout the short-term aggregate dynamics of the model corresponding to
a single cycle of cell division. E-F. Log-log plot of Fig. S5D (top) and volume of the same
aggregate for which the MSD was computed (bottom). Dashed lines correspond to the MSD
of an aggregate of radius ria (top) and to the volume of one aggregate with initial radius ria
in absence of fusion events. G. Histogram of total number of cross-compartment events from
mother to bud (M > B) and from bud to mother (B > M). H Inset. Fraction of total cross-
compartment events in each direction. In all figures, N = 1, δt = 0.1 sec., τm = 100 min.,
τd = 1000 min. All other parameters were set to the values in Table S1. Results averaged
over 1024 realizations.
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Figure S6: Single-division aggregate dynamics; dependence on the rate of appearance and growth of
aggregates when growth is proportional to surface area. A-C. Number of aggregates, total
aggregate volume and fraction of the total aggregate volume inside the mother and the
daughter cell. D. Number of crossing events from mother to daughter (blue line) and from
daughter to mother (red dashed line). E. MSD of one aggregate throughout the short-term
component of the model corresponding to a single cycle of cell division for different rates
of appearance and growth of aggregates. In all figures N = 1, δt = 0.25 sec. All other
parameters were set to the values in Table S1. Results averaged over 1024 realizations.
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Figure S7: Dependence on diffusion coefficient continued when growth is proportional to surface area.
A-B. Number of aggregates and total aggregate volume inside mother cell (top) and inside
the daughter cell (bottom) at the end of the cell division for different values of β and γ. C.
MSD of one aggregate throughout the short-term component of the model corresponding to
a single cycle of cell division (top) and volume of the same aggregate for which the MSD
was computed (bottom) for different values of β and γ. N = 1, δt = 0.5, τm = 100 min.,
τd = 1000 min. All other parameters were set to the values in Table S1. Results averaged
over 1024 realizations.
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Figure S8: Single-division aggregate dynamics; Quality-control-mechanisms with aggregate growth pro-
portional to surface area. A. Average number of crossing events from mother to bud (M > B)
and from bud to mother (B > M) under different quality control mechanisms. Inset. Pro-
portion of crossing events in both directions under different quality control mechanisms. B.
MSD of one aggregate throughout a single cycle of cell division and volume of the same ag-
gregate for which the MSD was computed for different quality-control-mechanisms. Dashed
line corresponds to the MSD of an aggregate of radius ria (top). In all simulations, N = 1,
δt = 0.1 sec., τm = 100 min., τd = 1000 min. All other parameters were set to the values in
Table S1. Results averaged over 1024 realizations.
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Figure S9: Variants of the model with active-quality-control mechanisms and aggregate growth propor-
tional to surface area. A. Total aggregate volume inside the mother cell at the end of the 28th
division for different QCMs. B. Number of crossing events from mother to bud (continuous
line) and from bud to mother (dotted line) as a function of the mother’s age (in generations)
for different QCMs. C-D. Total number of aggregates and total aggregate volume inside the
mother cell (top) and inside the daughter cell (bottom) as a function of the mother’s age (in
generations) for different QCMs. E. Probability of inheritance of at least one aggregate by
the daughter cell at the end of cell division as a function of the mother’s age (in generations)
for different QCMs. F. Probability of inheritance of the largest aggregate by the daughter
cell, when in presence of aggregates, as a function of the mother’s age (in generations) for
different QCMs. Error bars correspond to the Standard error. In all simulations δt = 0.5,
τm = 800 min., τd = 8000 min., all other parameters were set to the values in Table S1.
Results averaged over 1024 realizations.
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