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Supplementary Note 
 

Preliminary assembly and sequence filtering 
 
We obtained 164,574,481 100 nt long read pairs with average insert size of 234 bp as 
estimated post-assembly using samtools1. All reads mapping on the grape genome with a 
maximum of three mismatches were eliminated. We then removed 0.5% of reads and the 
remaining were used to build a preliminary Plasmopara viticola assembly using ABySS2. 
Several k-mer lengths were tested and the k=60 that, produced the best N50 (11kbp), was 
selected. This preliminary assembly (198Mbp) still likely contained sequences not coming 
from P. viticola, as suggested by the GC content distribution (Supplementary Fig. S1), 
which is clearly bimodal and the length of the assembly, since the estimated genome size 
is around 100Mb. To remove sequences not belonging to the P. viticola genome, we 
focused on scaffolds longer than 1,000 nucleotides and followed the flowchart indicated in 
Supplementary Fig. S2 and consisting in: 

1) Genes predictions were obtained using Augustus3 after iterative training on bona 
fide and well predicted Plasmopara sequences, obtaining over 60,000 gene 
predictions. 

2) Protein sequences were searched using BLAST against the non-redundant (nr) 
NCBI database and taxonomy information about the hits were recorded. 

3) Each scaffold was assigned to one of several taxonomic categories depending on 
hits obtained by blastp. For instance, a scaffold with all hits belonging to 
Viridiplantae was assigned to the plant class, while one with hits towards 
Stramenopiles only was assigned to the putative Plasmopara class. Chimeric 
scaffolds were also found and those containing regions with homology to 
Stramenopiles were split by hand on the basis of the coverage profile over their 
length and the blastp alignments (e.g. Supplementary Fig. S3). A scaffold was 
considered chimeric when at least two non-overlapping and significant hits to 
different taxonomic groups were found. 

4) Scaffolds with no homologies in the blastp analysis and scaffolds for which no gene 
predictions were retrieved using Augustus were analyzed using the same strategy 
as above but using blastn of the entire scaffold sequence against the nt database. 
The scaffolds with no homology to database sequences were tentatively assigned 
to the P. viticola assembly because they might represent sequences specific of this 
organism.  

5) After this pipeline, we obtained a preliminary assembly containing 36,533 scaffolds 
larger than 1,000 bp and a total length of 110 Mb. The GC content distribution 
changed to unimodal, as expected for a single genome (Supplementary Fig. S1).  

The original reads were then mapped on this preliminary assembly, likely containing most 
of the reads coming from P. viticola. Mapping reads were retained and used for a second 
assembly. 

Final Assembly 
 
For the final assembly, we used Ray4 and ABySS2 with several k-mer lengths for a total of 
17 runs. We hypothesized that our P. viticola inoculum could be composed of a pool of 
different haplotypes. In such case, reads coming from variable genomic regions can easily 
be considered as different genomic regions by the assembler, resulting in a high artificial 
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redundancy of the output assembly. The magnitude of the problem depends on how the 
assembler will consider slightly different sequences. We studied this issue by running an 
analysis whereby gene finding is performed on each of the 17 assemblies with the same 
parameters. Gene sequences from the same assembly were then clustered by sequence 
homology such that clusters contained sequences sharing at least 98% identity and no 
more than 5% length difference. The number of clusters is then compared to the original 
number of predicted genes to obtain a measure of the degree of redundancy in the 
assembly. We observed a very different behavior of the two genome assemblers. In 
particular, ABySS tends to build scaffolds that are much more redundant than Ray 
(Supplementary Fig. S4) probably because of the sensitivity to small differences in the 
reads.  

Considering that we likely have a pool of haplotypes, we focused on Ray 
assemblies, which are less affected by the redundancy problem. It might be that ABySS is 
able to reconstruct more precise sequences, but in doing so it also assembles multiple 
times the same genomic region from different strains, inflating the genome size and the 
number of genes. Among the Ray assemblies, we selected R69 based on assembly 
statistics. In this way we were able to assemble 57,890 scaffolds. The level of 
fragmentation of the assembly may be caused by the short insert size coupled with 
potentially long repeat regions present in the genome (Supplementary Fig. S5). The 
coverage distribution (Supplementary Fig. S6) turned out to be multimodal, suggesting 
the presence of multiple haplotypes in the starting material. 

Gene finding and annotation 
 
The P. viticola genome assembly was obtained in different steps since filtering of the input 
reads was necessary given the heterogeneous nature of the starting material. We trained 
parameters for the gene predictor Augustus3 on the preliminary ABySS assembly (k=60) in 
the following way: 
 

1) Unique core proteins from three Phytophthora species were selected following the 
analysis reported by Haas et al.5 for a total of ~7,000 proteins. 

2) These proteins were aligned to our assembly using Scipio6. 
3) Scaffold regions corresponding to the most significant alignments (N=1,572) were 

extracted, translated in a suitable format and used for training the Augustus gene 
prediction model. 

4) Predicted proteins were extracted and blasted against the P. infestans genome. 
Those with highly similar hits (>80% identity) and less than 10% difference in length 
(N=1,546) were retained for a second round of training. 

5) The previous protein set was partitioned into train (N=1,046, 585 multiexonic) and 
test sets. The test set was further partitioned into mono- and multi-exonic (222 and 
278 sequences, respectively) to test Augustus performances separately for the two 
classes of genes. 

6) Augustus parameters were estimated from the training set and the performances 
were evaluated on the test set (Supplementary Table S2). 

7) Gene prediction was run with the estimated parameters on the entire assembly 
giving ~60,900 genes. 
 

Once the final assembly was obtained, Augustus was re-trained to improve the parameters 
over a set of bona fide sequences and taking advantage of i) homologies with sequences 
from other oomycetes and ii) RNA-Seq data of P. viticola sporangia and P. viticola infected 
plants. Intron and coding sequence (CDS) hints for Augustus were generated from 
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proteins using Exonerate software with default parameters7. RNA-Seq was used to 
produce intron hints running the bam2hints script available in Augustus, after aligning 
RNA-Seq reads using bowtie2 with no mismatches allowed in the seed region8. 
 
The procedure undertaken was the following: 
 

1) Starting from the parameters obtained on the preliminary assembly, we ran 
Augustus over the new assembly including intron and CDS hints from protein and 
RNA-Seq alignments. Gene predictions were extracted and their protein sequences 
were blasted against a database of 12 oomycetes (Pythium, Hyaloperonospora and 
Phytophthora species). The blast was filtered by e-value (maximum 0.0001) and on 
the basis of i) alignment coverage of the query by the first blast alignment (minimum 
90%) and ii) a maximum 5% difference in length between the predicted protein and 
the first blast hit. We obtained 2,853 gene predictions for training Augustus. 

2) The sequences obtained as described above were partitioned into a training (2,091 
gene predictions of which 1,172 are multi-exonic) and a test (762 gene predictions 
of which 402 multi-exonic) set. 

3) Parameters of the Augustus gene model were estimated using the above training 
set (performances on the test set are indicated in Supplementary Table S2). 

4) Parameters were re-trained using the whole (train+test) dataset. 
5) Augustus was run on the final assembly using hints from RNA-Seq and protein 

sequences as in the first step to obtain the final set of Augustus gene predictions. 
 

GlimmerHMM9 was trained using trainGlimmerHMM on the entire set of predictions (2,853 
sequences) used for Augustus, and returned 24,641 predictions. 

GeneID10 was run exploiting available parameters for P. infestans 
(http://genome.crg.es/software/geneid/). This program returned a large fraction of very 
small gene predictions with respect to the others (Supplementary Fig. S10). 

As different gene finders employ different algorithms and often rely on different gene 
models, we integrated three of them to improve the genome annotation (Augustus3, 
GlimmerHMM9 and geneID10). The final gene predictions were obtained by combining 
information coming from available oomycete proteins and from our own RNA-seq data. 

After filtering out proteins shorter than 30 amino acids, we obtained 38,284 gene 
predictions corresponding to 38,298 proteins for the presence of some alternative 
transcripts, and that represents our draft P. viticola proteome. Of these, 14,792 are 
supported by both homology with other Oomycete proteins (20,354 supported gene 
predictions) and reads from RNA-seq (18,335 supported gene predictions), therefore we 
estimate the size of the proteome to be in line with P. halstedii, around 20,000 proteins. 
KAAS11 and Argot212,13 were used together with extensive blast analysis against available 
databases to provide functional classification of the predicted proteins. Ortholog 
classification of the predicted P. viticola proteins was made using Inparanoid14 followed by 
QuickParanoid (http://pl.postech.ac.kr/QuickParanoid/). Using this strategy we obtained 
the pan-genome phylogenetic profile matrix for 15 Oomycetes.  

Merging protein coding gene predictions 
 
The three gene prediction programs that we used are all based on different algorithms and 
therefore generate different predictions. Nevertheless, the overlapping between the 
outputs is generally high and in this situation a selection of the predicted sequences that 
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overlap significantly was necessary. Gene prediction mergers are available, but tend to re-
estimate the parameters, while we need to select one sequence per locus, and selection 
has to be made on the basis of some objective quantity, preferably related to the quality of 
the gene prediction. For that task we implemented a strategy that takes into account (i) 
evolutionary information in the form of alignments with available oomycete proteins, and 
(ii) organism specific information in the form of alignments de novo transcripts built from 
RNA-Seq data produced in this work. The strategy used was the following and it is 
available as a java program upon request: 

1) All predicted proteins were searched using BLAST against: 
a)  a database of oomycete proteins. These alignments were used to assign to 

each protein an “evolutionary” score, calculated as: ܵா௩௢ ൌ
ሺ௅ೌ೗೔ି௚ሻൈ௅ೌ೗೔
௅೜ൈ௅೑್೓

, where 
L stands for length and the subscripts ali, q and fbh indicate the alignment, 
the query and the first BLAST hit, respectively. g indicates the number of 
gaps in the BLAST alignment. Alignments used for calculating the score are 
only those with e-value smaller than e-5. The evolutionary score therefore 
approaches 0 in case of short alignment length or small coverage of the first 
BLAST hit, while it is 1 when the alignment of the two sequences cover their 
entire length. The score can be seen as a measure of how close in terms of 
length (and therefore also gene structure, i.e. intron/exons) is the predicted 
protein with respect to the most similar protein from other oomycetes.  

b) the set of de novo transcripts was built using Cufflinks15. The alignments with 
transcripts were used to calculate an “expression” score ܵா௫௣	with the same 
formula used for the evolutionary score.  

2) The evolutionary and expression scores were integrated as ܵ ൌ ሺଵାௌಶೡ೚ሻൈ൫ଵାௌಶೣ೛൯ିଵ

ଷ
, 

such that S ranges from 0 to 1. This score will be used as the basis for selecting the 
“best” prediction when multiple of them overlap.  

3) Predictions coordinates were used to build a graph where each prediction was a 
node, and edges connect predictions that were on the same strand and that overlap 
for more than 25% of their length (calculated on the shortest prediction). Connected 
components in this overlap graph correspond to (partially) overlapping gene 
predictions and we wanted to extract the best one on the basis of the above score.  

4) Each connected component in the overlap graph was processed using an iterative 
procedure as it follows: 

a) To get the node with highest degree in a cluster (i.e. the gene prediction that 
is overlapped with the largest number of gene predictions), let’s call it A; 

b) To check the score of its first neighbors (nodes connected to A): if A’s score 
is smaller of at least one of the neighbors scores, remove A from the graph; if 
A’s score is the maximum among its neighbors, remove all of them; 

c) If the cluster still exists or it is split into two or more smaller clusters, repeat 
from (a) for the remaining clusters. Else if only one node remains from the 
cluster or if all the nodes previously belonging to the cluster are now isolated, 
move to the next cluster. 

 
At the end of this procedure, we obtained a list of gene predictions that were considered 
the best within an overlapping cluster, on the basis of the integrated score taking into 
account evolutionary and expression information. In case of alternative and overlapping 
transcripts, we ended up with the transcript better conforming to other proteins in the 
oomycetes and/or to the transcript that has been assembled from RNA-Seq data. Non 
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overlapping alternative transcripts were treated as if they were independent gene 
predictions but remains associated to their original parent gene and therefore it can 
happen that more than one transcript for the same gene was present in the final selected 
predictions.  

Naming conventions 
 
All gene predictions have been named by adding the suffix PVITvX to a progressive 
number. PVITvX_T followed by the parent gene progressive number indicates the gene 
transcript. If multiple transcripts for the same gene have been selected, the additional 
transcripts have .1 (.2 and so on) appended to the transcript ID. CDSs have been named 
accordingly as PVITvX_CDS plus the progressive number of the parent transcript for a 
final set of 38,298 genes (Supplementary Table 3). 
 
Ribosomal and transfer RNA genes 
 

Ribosomal genes (rRNA) were annotated using RNAmmer16, using the eukaryotic model 
and all remaining parameters as default. We were able to find a gene for the 5S rRNA on 
scaffold-25542 and a gene coding for the 28S rRNA on scaffold-7390 (Supplementary 
Table S4). Both sequences retrieved as first blast hit a gene from the oomycetes with 
more than 95% identity (Supplementary Table S5). Transfer RNA genes (tRNA) genes 
were identified with tRNA-scanSE17 with default settings (Supplementary Table S6). We 
found at least one tRNA for every amino acid, in addition to one selenocystein and two 
suppressor tRNAs. We also found 64 pseudo-tRNA genes. 

Estimation of the degree of completeness of the assembly 
 

To measure the degree of completeness of our genome assembly, we considered four 
different tests:  

1. The total size of the assembly is ~83 Mb and estimations of P. viticola genome size 
using Feulgen staining18 indicate a size of ~110 Mb; therefore, our genome assembly 
should account for about 75% of the total genome size.  

2. After ortholog classification, we estimated the oomycete core genome excluding P. 
viticola to be composed of 1,299 genes among the sequenced oomycete species of which 
1,054 also contain P. viticola sequences; therefore, the “coding” assembly should be 
~81% complete. A similar conclusion was reached when testing the degree of reduction of 
the size of the core genome when adding the biotrophs in our dataset (Supplementary 
Fig. S11). P. halstedii, representing the most deeply sequenced genome among the 
biotrophs, misses more or less 15% of the genes that are in the core genome of the non-
biotrophs. This can be considered as a first approximation as the reduction caused by the 
biotrophic life style. Since adding P. viticola determines a reduction of 30-35% of the core 
genome, the assembly should be estimated at ~80%. 

3. We downloaded all P. viticola sequences available in the NCBI nucleotide database 
(N=726) and clustered them by homology to get a non-redundant dataset (N=288) and 
blasted them against our genome assembly to detect their presence. At 95% identity level 
cut-off, we obtained a hit for 228 sequences, corresponding to ~84% of the total.  
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4. We performed a BUSCO19 analysis to assess the completeness (Supplementary Table 
S9). We obtained 73% complete BUSCO orthologs while this percentage is much higher 
(over 93%) for P. halstedii and P. infestans. Most of them are single copy, and the 
duplicated percentage of our assembly is well in line with the P. halstedii’s one, while the 
P. infestans BUSCO orthologs are duplicated in almost 7% of the cases. When summing 
up the complete and fragmented BUSCO orthologs our assembly covers 87.3% of the 303 
sequences. 

All the tests performed seem to indicate that our genome assembly is about 75% to 87.2% 
complete taking into account the genome size. 

We also performed an estimation of the true protein number in P. viticola (Supplementary 
Fig. S12). We studied the relationship among the number of proteins in the proteome and 
the number of proteins that we assigned to an ortholog group, and found it to be almost 
linear. Therefore, we built a regression model excluding P. viticola from the analysis and 
we then used the model parameters to predict the total number of proteins in this 
organism. By approximating the degree of completeness of our genome to 80%, we 
obtained a 95% probable estimate in the range 12,952-19,330 proteins, which is in 
agreement with the 18,335 sequences for which we detect gene expression in our RNA-
Seq libraries. 

Ortholog classification and oomycete core genome 
 

We identified ortholog groups from 15 oomycete species including P. viticola 
(Supplementary Table S7). The comparisons of pairs of genomes were performed using 
Inparanoid20, and the pairwise outputs were integrated with QuickParanoid 
(http://pl.postech.ac.kr/QuickParanoid/). We obtained 16,517 ortholog clusters and among 
them 6,124 that are present in at least 10 species. P. viticola proteins fall in 6,552 clusters, 
for a total of 10,133 proteins. As a comparison, Plasmopara halstedii proteins are found in 
7,003 ortholog groups, for a total of 9,233 proteins. The oomycete core genome is formed 
by genes shared by the 15 oomycete species included in the analysis and is partitioned 
into 1,054 groups for a total of 50,018 proteins (3,238 from P. viticola). Of these, 312 
contained exactly one protein per species and were used for phylogenetic analysis. The 
size of the core genome is quite small because the organisms used to obtain it are 
phylogenetically very diverse; they all belong to the oomycetes, but they are spread over 
two orders, Pythiales (Pythium spp.) and Peronosporales. The Peronosporales in our 
dataset are moreover from different families: Peronosporaceae (P. viticola and H. 
arabidopsidis) and the Phytophthora genus (which is not assigned to any Family). The 
core genome calculated with Pythophthora genomes only is consistently larger, comprising 
4,530 ortholog groups. The KEGG annotation of P. viticola was used to get the most 
represented categories in the core genome (Supplementary Table S8). The distribution of 
the size of each ortholog cluster suggests the existence of two large families of protein 
clusters, the first comprising proteins belonging to clusters with approximately less than 
ten proteins (i.e. the accessory genome), and the second one represented by groups with 
15 proteins in average, therefore containing the core genes, in addition to most of the 
remaining housekeeping genes and expanded gene families (Supplementary Fig. S13). 
The presence/absence profile analysis provides support for the topology of the 
phylogenetic tree obtained using ML methods over an alignment produced by 
concatenating the 312 proteins found to be present in single copy in all analyzed 
genomes.  
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Phylogenetic analyses 

Phylogenetic analyses of the oomycete dataset were performed taking advantage of 312 
core ortholog groups containing a single protein per genome. We selected these proteins 
because core proteins that are present in a single copy are less prone to errors in ortholog 
assignments that might negatively affect the phylogenetic reconstruction. Once the 312 
proteins were concatenated, they were aligned using MAFFT21 using parameters 
optimized for very long sequences. We obtained an alignment of more than 202,000 
positions. This alignment was filtered with Gblocks22, since it has been shown that 
removing divergent and ambiguously aligned regions from alignments considerably 
improve phylogenetic reconstructions23. The filtered alignment still had 78,868 aligned 
positions 48% of which are perfectly conserved in all of the species under analysis and the 
remaining are partitioned into 27,340 patterns. Phylogenetic trees were built using 
PhyML24 and RAxML25. PhyML and RAxML returned identical topologies with slightly 
different bootstrap values and branch lengths (Supplementary Fig. S14). The topology 
obtained was in agreement with the one reported in Sharma et al.26 and McCarthy et al.27 
suggesting that taxonomical refinement of the oomycetes might be necessary because the 
molecular information obtained during the last studies strongly suggests that Plasmopara 
should be placed within the Phytophthora clade. This is also supported by full-proteome 
comparisons, indicating that the distributions of identity percentage of the first blast hit are 
not very different for Phytophthora-Phytophthora, Plasmopara-Plasmopara or Plasmopara-
Phytophthora comparisons (Supplementary Fig. S15). 

Comparative genomics of effector proteins 
 
We grouped the RxLR effectors into RxLR and RxLR-like families. Proteins that possess 
the distinctive RxLR motif (defined as a match to the motif R[A-Z]LR) within 60 amino 
acids from a signal peptide cleavage site (SP) and those missing the SP but having the 
RxLR occurrence and the additional and characteristic motif EER (defined by the regular 
expression [ED][ED][RK]) within 150 amino acids are grouped in the RxLR family 
(Supplementary Fig. S16) .  

We opted for this rule because gene predictions can be partial and could therefore 
miss the N-terminal where the SP is located (Supplementary Fig. S17). To further reduce 
the false positives, we calculated the probability of each RxLR occurrence by shuffling the 
protein sequence for 2,000 times and counting the number of times that an RxLR was 
found. Only motifs with a probability smaller than 0.05 in the shuffled sequences were 
further considered (Supplementary Table S10). Code for performing this analysis is 
available upon request.  

However, we might expect that the RxLR motif is slightly different in different 
oomycete groups (Supplementary Fig. S18). Pseudoperonospora cubensis for instance 
has effectors with homology to P. infestans RxLR effectors that carry a QxLR motif. These 
proteins resulted to be localized in the host plant nucleus, strongly pointing towards a role 
in pathogenesis28. Similarly, Albugo candida has experimentally verified effectors with a 
RXL[KQ] motif, while in Pythium species the RxLR motif is considered to be absent29. For 
this reason, we also considered and included alternative RxLR motifs in our study. 

We classified as RxLR-like the effectors that share homology to RxLR proteins 
identified through regular expression matching. As baits for retrieving homologs, we used 
the proteins with secretion signal + RxLR motif within 60 residues (+EER motif within 150), 
together with those with secretion signal and RxLR or RxLR and EER within 150 residues, 
for a total of 1,100 proteins, coming from all oomycetes considered in this work. These 
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were blasted against the oomycete database using blastp. The blast output was filtered 
and only alignments with an e-value  e-5 and id*qcovs  5,000 were retained. The latter 
threshold allows using both the information coming from the difference in length among 
query and subject, and the homology. All the 15,876 oomycetes proteins retrieved in such 
way were then blasted all-against-all. The output was filtered and parsed to prepare it as 
an input to the MCL algorithm to detect RxLR communities using as edge weights –
log10(e-value). The e-value was replaced by e-200 when equal to 0 to avoid taking the 
logarithm of zero. After filtering at e-value  0.01, the blast graph still contained 15,646 
proteins. The MCL algorithm was run multiple times, using increasing inflation parameter 
values. Since this parameter controls the granularity of the resulting clustering, scanning a 
range of values allows exploring the cluster structure of the homology graph more in detail. 
When running the MCL with an inflation parameter of 2, 2.5, 3 and 4, we obtained 555, 
630, 696 and 764 RxLR clusters respectively, indicating a wide diversification of this gene 
family in oomycetes. 

We analyzed the MCL output in terms of the presence of i) signal peptide and ii) 
canonical and alternative RxLR motifs using an extended regular expression 
([QRK]xL[KR]) together with relaxed rules for the distance from the signal peptide. Since 
all “rules” for RxLR identification are based on the features of a few Phytophthora 
genomes, the identification of these effectors in other genera/families might require 
relaxed constraints. On the opposite, it is known that RxLR motifs are combined to a wide 
range of protein domains that are found in non-effector proteins; therefore, we had to be 
cautious with the retrieval of homologous proteins that likely contains false positive 
effectors simply sharing a domain with effectors. For this reason, we only focused on the 
RxLR-like characterized by the presence of canonical or alternative RxLR sequence 
motifs. The association of the RxLR motif (or variants thereof) with known protein domains, 
was explored by building a co-occurrence graph of Pfam domains with the RxLR signature 
(Supplementary Fig. S19). We selected P. viticola RxLR-like effectors as those proteins 
still in a multi-protein cluster at the most stringent clustering (I=4), for a total of 802 
proteins (gene set called RxLR-like All). Of these, 40 also have a predicted signal peptide 
for secretion together with one (22 sequences) or more occurrences of the RxLR (variant) 
together with an EER occurrence within 150 residues (gene set called RxLR-like Motifs). 
We also found that 193 proteins in the RxLR-like All set are positive to signal peptide 
prediction, corresponding to a 5.7 fold enrichment with respect to the total proteome (p-
value=0.0).  
 Crinkler (CRN) proteins have been defined on the basis of the presence of 
characteristic motifs, whose function is, however, still unknown. The well-known LFLAK 
signature as identified by meme on 430 CRN sequences from Haas et al.5 is considered to 
be a hallmark of this family of effectors. Presence of the LFLAK motif (from residue 50 in 
Supplementary Fig. S20a) has been previously used for the identification of Crinklers in 
Phytophthora species5. However, this motif is conserved when considering Phytophthora 
species but not when including more sequences and other organisms5. Certain variability 
exists also within the LFLAK motif of previously annotated Phytophthora Crinklers. 
Therefore, when additional species are considered, we can expect an increased variability 
of the signature also in this case. In addition to the LFLAK, other sequence motifs can be 
present in Crinkler proteins, such as the so-called VVP motif (Supplementary Fig. S20b), 
which is usually localized downstream of the former. In Haas et al. 5 CRN proteins were 
classified by building a PSI-blast profile and an HMM from only 16 previously identified 
CRNs. However, the small number of proteins used for training might give a model over 
fitted on those sequences. This would be a problem if the constrains governing the 
evolution of a distinctive motif might change depending on the species considered; as in 
the case of RxLR effectors, this can be expected given the phylogenetic distance among 
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some of the organisms considered in this work. Since our dataset comprised several non-
Phythophthora species, we tried to improve the CRN identification strategy: we tried to 
align the 430 CRN sequences identified in Haas et al.5 to build a more general HMM 
model, but the alignments were of very low quality, making the building of a meaningful 
HMM impossible using the full sequences. We decided therefore to use the information 
contained in shared sequence motifs and their combination to implement an alternative 
classification strategy not requiring the global alignment of all the sequences. Since we 
have seen that the LFLAK motif, probably the most conserved one, has itself some 
inherent variability, we speculated that maybe a correct classification of these proteins 
might come from integrating profiles of presence and absence of several sequence motifs 
instead of focusing on only one or two of them by assuming they are universal. Variability 
of the motifs has moreover to be modeled in a more satisfactory way than with regular 
expressions, where the alternatives at some position all have the same weight. We 
decided to let MEME discover conserved motifs in a dataset of bona fide CRN proteins 
and then we used them to identify novel CRNs. MEME was run on the whole dataset of P. 
infestans CRN proteins asking for 10 motifs of 30 residues (-mod zoops, allowing for zero 
or one motif per sequence). MEME was able to find 9 motifs. The motifs are encoded as 
log probability matrices, where each ij cell indicates the probability of finding residue j at 
position i of the sequence motif. We used these 9 motif models to scan all oomycetes 
proteomes using a sliding window approach where we consider each position of a window 
as evolving independently from the remaining such that the score of each window is the 
sum of the log probabilities at each position in the model. The score of a sequence is then 
the maximum score over all the windows. We calculated two matrices of motif 
probabilities, one for bona fide CRN proteins, and the other for 17,700 P. infestans 
proteins to be used as negative cases (the Crinklers still present in this dataset are a small 
fraction of the total and should not affect the training procedure). Once the score matrices 
are ready, we train a Support Vector Machine in Matlab to provide the classification. SVM 
models require training on a positive dataset. We therefore selected the 200 best scoring 
CRN sequences. The best performances were obtained when the input matrices were re-
scaled to the range [0 1] and then log10 transformed. Cross-validation with an equal 
number of randomly sampled negative cases allowed to estimate the error rate of the 
model. For 100 times we built a different negative dataset by randomly sampling the 
17,700 negative sequences, and we trained the SVM model, testing its performances by 
cross-validation. The error was estimated each time using 100 repetitions where 70% of 
the data (35% from the positive and 35% from the negative dataset) was used for training 
and the remaining 30% for validation. At each run of the procedure, the data was sampled 
randomly from the positive and negative dataset. The SVM models achieved a cross-
validation average error of 0.0095, indicating that wrong classifications occurs in less than 
1 case in 100 (Supplementary Fig. S21). The model predicted 13 additional CRN proteins 
from the negative dataset, 8 of which are indeed annotated as Crinklers but were not 
included in the CRN dataset from Haas et al.5. The same procedure was run with 
probability matrices corresponding to different MEME runs to identify the best motif length 
for classification. We tested motif widths of 5, 10, 15 and 30. The SVM classifier using the 
latter data showed the best performances and was selected for further analysis on all 
oomycetes that were considered in this work. Since Crinklers are secreted, the presence 
of the signal peptide can be used a posteriori to further increase the stringency of the 
classification or to calculate an enrichment of predicted CRNs in secreted proteins that can 
give an external validation. 

The strength of the SVM-based classification scheme is that it does not depend on 
the presence of one or a few well defined motif, but on the combined presence/absence of 
several motifs, and therefore it should allow making better inferences with respect to a 
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rigid regular expression. For instance, A. euteiches possesses [FL]xLYLALK and P. 
ultimum has LxLYLARK motifs that are considered LFLAK variants and should therefore 
be considered bona fide CRN motifs. These instances would be missed using simple 
regular expressions based on Phytophthora Crinkler proteins, and a regular expression 
encoding all the variability would become extremely unspecific. On the contrary, the 
probability matrix approach allows a better representation of the variability of the motifs in 
a position specific way and therefore should improve the identification of marginal 
similarities. Some divergence from the most probable motif is tolerated and variants are 
scored on the basis of their probability. Calculation of the probability clearly poses a 
problem concerning the threshold to consider a motif to be present. With our approach we 
train a model with bona fide Crinkler proteins and we let it find out CRNs among new 
proteins, without the need for specifying thresholds. Partially conserved motifs are 
moreover combined with others increasing the probability that the model will correctly 
classify more proteins.  

To provide a more classical result, we also searched for CRN using the widely used 
regular expression approach. The regular expressions used were L[A-Z]L[FY]LAK and 
[IVM]HVL[VI]VVP for the LFLAK and VVP motifs, respectively. 

Genome analysis of Pythium ultimum revealed that the YxSLK motif was enriched 
in the secreted proteins with respect to the full genome.  32 out of 44 members identified 
in P. ultimum genome were induced from 2- to 40-fold during Arabidopsis infection29. The 
motif is constrained between residues 61-80. As previously, we define a YxSLK group 
containing proteins with an occurrence of the regular expression Y[A-Z][ST][LV][KR] (when 
indicated, within the N-terminal 100 residues of the protein and together with a signal 
peptide). This extended regular expression derives from a reanalysis of the motif found by 
MEME when the input sequences are all the proteins annotated as belonging to “Family 3” 
in Lévesque et al.29 (Supplementary Fig. S22). Additional non default parameters were “-
protein -w 5 -nmotifs 20 -mod zoops -minsites 10”. MEME30 analysis returned a motif 
corresponding to the YxSLK pattern ranking 9th over 20 requested motifs of length 5.  This 
YxSLK pattern appears to be present in 36 out of the 51 “Family 3” sequences, while 
some of the motifs ranking higher are present in almost all of the sequences. P. viticola 
has the largest number of members of this class among the biotrophs, comparable to the 
Pythium species, but much lower than Phytophthora species (Supplementary Table S14). 

Randomization of the sequences positive for one of the regular expressions r for m 
times allowed to count the number n of occurrences of the pattern r given a random 
distribution of residues and therefore to discern the occurrences observed by chance (e.g. 
for compositional biases in the protein sequence). For all motif searches using regular 
expressions, we calculated the significance of the occurrences found and we considered 
further only those significant at 0.05. The empirical p-value was calculated as: ݌ ൌ ௡ାଵ

௠
. 

Apoplastic effectors were identified by exploiting available HMM models from 
Pfam31 (http://pfam.xfam.org/), as indicated in Supplementary Table S15. The scanning 
was made using HMMER32 with a threshold of e-6 on the “E-value seq” field. 

 
Gene expression profiling 

We performed an infection of Vitis vinifera cv. ENTAV115 with P. viticola (isolate 
‘PvitFEM01’) and harvested non-infected and infected plants at five different time points (0, 
24, 48, 72, 96 and 168 hours post-infection, hpi) with 20-25 plants in two replicates each. 
Each replicate corresponded to an independent infection experiment. We also collected 
sporangia of P. viticola from infected material at late time points (96 and 168 hpi). The 
non-infected plants, infected ones and the sporangia were pooled to obtain three samples 
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called C, I and S, respectively. After RNA extraction using the Spectrum plant total RNA kit 
(http://www.sigmaaldrich.com/) we built the RNA-Seq libraries using the TruSeq RNA 
library prep kit (www.illumina.com) following the manufacturer’s instructions. We 
performed a paired-end RNA-Seq (PE 2x100) from libraries C, S, I and duplicate libraries 
of non-infected and infected tissues collected at 0, 24, 48, 72, 96 and 168 hpi. In total, 25 
libraries were sequenced on a HiSeq 2500 platform (www.illumina.com).  The number of 
reads obtained for each library ranged from 20.5 to 97 million reads whereas the absolute 
number of reads mapping to P. viticola and V. vinifera genomes reached 68.5 million in the 
non-infected 72 hpi library (Supplementary Table S17). Interestingly, only 49 reads from 
the library C mapped concordantly on the P. viticola genome draft assembly, indicating 
that if a contamination from grape DNA still exists in our draft assembly, it is not significant. 
Sequences obtained from the pooled libraries were used for the validation of the gene 
prediction and supported the P. viticola transcript annotation. Reads of the pooled libraries 
aligned on P. viticola draft assembly using TopHat with no mismatches detected 14,011 
loci in library I (corresponding to a total of 15,253 predicted genes), 17,024 loci in library S 
(18,293 genes). In total, if all genes predicted were combined we validated the expression 
of 17,314 loci (18,335 genes).  

Differential expression analysis of P. viticola and V. vinifera transcriptomes was 
performed using TopHat followed by cufflinks, cuffmerge and then cuffdiff15,33. TopHat was 
run with option –N 0 (number of mismatches) using the reads from the different libraries 
independently. Cufflinks was run using the reads accepted by TopHat, to estimate gene 
expression abundances of the transcripts annotated in the gff file provided as input. 
Options were as default except that we applied corrections for multiple mapping and 
composition bias of fragments (options -u -b). The transcripts.gtf files produced for each 
library by cufflinks were then merged for V. vinifera and P. viticola separately using 
cuffmerge. The merged.gtf transcripts were used as an input to cuffdiff to evaluate 
differential expression. The transcripts returned by cufflink programs are a combination of 
annotated ones, present in the annotation file provided during the run, and a certain 
number of newly discovered transcripts that span genomic regions not covered by any 
annotated transcript in the provided gtf file. Here we focus on the former.  

Genes significantly changing their expression level during infection in Vitis vinifera 
were identified using cuffdiff with the option –time-series, such that every time-point is 
compared to the previous one. We detected 740 differentially expressed genes (DEG) (at 
FDR ≤ 0.001). The list showed no overlapping at all with the DEGs identified with respect 
to the control libraries (whereby all gene expression levels are tested against the t0 time 
point). No NBARC domain containing genes were detected as differentially expressed with 
the time series option while 116 of them come out as DEGs when comparing the infected 
and the control libraries. The enrichment analysis revealed that genes responding to 
stimulus are the most differentially expressed (Supplementary Table S28). 

Transcriptional profiling of P. viticola during infection 

We detected the expression of 18,335 P. viticola genes at all time points comprising 1,061 
transcripts coding for proteins with a predicted signal peptide. We detected only few reads 
mapping on the P. viticola genome at 24 and 48 hpi (Supplementary Table S19). Given 
the small number of reads from P. viticola in the two first time points, we analyzed the 
differential expression of genes starting at 72 hpi. Although it is not possible to perform a 
differential gene expression at early time points we, nevertheless, identified the most 
induced P. viticola genes at those time points. At 24 hpi we detected gene expression for 
3,680 P. viticola genes. However, using cufflinks we found only 192 genes with expression 
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levels classified as significantly different from 0, which is clearly an effect of the low 
number of P. viticola reads in this sample. Using our GO annotation of the P. viticola 
proteome (Supplementary Table S1), we detected enrichment of several GO categories 
at FDR 0.05 (Supplementary Table S19), indicating an active metabolic activity of P. 
viticola during the early phase of infection coupled with stress response activities that are 
likely a consequence of the first defense barriers put in place by the plant. We also 
detected a significant enrichment in proteins with predicted signal peptide both considering 
the transcripts significantly different from zero (19/192 vs 1061/18335, p-value=1.5 e-2) 
and the entire set of transcripts expressed at 24 hpi (270/3680, p-value= 1.6 e-

5)(Supplementary Table S19). A similar situation concerning induced metabolic 
processes and enrichment of proteins containing a signal peptide was observed at 48 hpi, 
indicating that metabolic activity is high at these stages of infection as well as protein 
secretion (Supplementary Table S19).  

At 24 hpi, we detected the expression of 1 out 68 CRN, 10 out of 57 RxLR-regexp 
(4 with signal peptide), 259 out of 802 RxLR-like (56 with a predicted secretion signal) and 
56 out of 308 YxSLK (8/87 with signal peptide) effectors. Our data suggest that CRN are 
rather deployed at later time points during the infection and subsequently kept expressed 
at high level (Supplementary Fig. S23). With 32% of the transcripts detected at 24 hpi, 
the RxLR-like group is the most represented effector group at this time point, followed by 
the YxSLK effectors. We also detected significant expression of many transcripts 
corresponding to proteins with a predicted signal peptide, but not classified as effectors, 
that were grouped together according to the expression profiles (Supplementary Fig. 
S23). Our analysis indicates that the RxLR expressed at 24 hpi are enriched for the 
presence of the Pfam model Pkinase and Pkinase-Tyr (protein phosphorylation) and to a 
lesser extent EF-hand (calmodulin), zf-C3HC4 and zf-RING (ubiquitination), LRR. The 
latter is particularly interesting as it is a domain known for its presence in plant resistance 
genes. We find this domain in a total of 111 P. viticola proteins of which four are RxLR 
homologs that do not possess canonical or alternative RxLR occurrences 
(Supplementary Fig. S24). Besides their identification in several oomycetes, no 
information about their putative role is available. Interestingly 15 of these genes are 
expressed at 24 hpi and some of them have their maximum expression level at this time, 
representing promising effector candidates for further studies (Supplementary Fig. S25). 
The YxSLK effectors expressed at 24 hpi are enriched in Reprolysin (a zinc 
metalloprotease) and other peptidases, as the apoplastic effectors. Genes coding for 
proteins not classified as effectors but expressed at 24 hpi and with a predicted signal 
peptide are enriched in specific domains such as glyco-hydrolase, Cu-oxidase, 
thioredoxin, pkinase and jacalin. 

The libraries obtained for the 24 hpi and 48 hpi contained too few reads from P. 
viticola. Nonetheless, we were able to detect 1,284 DEGs from the remaining contrasts; 
538 of these genes were also expressed at 24 hpi, indicating that some of the most early 
expressed genes also change their expression level at later time points. We exploited the 
GO functional annotation of the P. viticola genome obtained using Argot212, to assess 
functional enrichment (Supplementary Table S21) and identified several processes (FDR 
 0.01). We observed an enrichment of processes that are related to development of 
anatomical structures and likely to germination, biosynthesis of the germ tube, hyphae and 
the haustorium. We also detected an enrichment of catabolic activities, such as glycolysis, 
fatty acid beta-oxidation using acyl-CoA dehydrogenase, tryptophan catabolism, 
proteolysis, indicating an active metabolism of P. viticola during the infection.  
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Agrobacterium infiltration assays and qRT-PCR 

The coding regions, including the start codon (ATG), of P. viticola effectors PVITv1003209, 
PVITv1005727, PVITv1018092, PVITv1020941, PVITv1016922, PVITv1021061, 
PVITv1008294, PVITv1008311 were amplified from cDNA of sporangia (prepared with 
SuperScript VILO cDNA synthesis kit from ThermoFisher Scientific) using the primers 
indicated in Supplementary Table S35. The PCR was performed using the Phusion high-
fidelity DNA polymerase (ThermoFisher Scientific) following the manufacturer’s 
instructions and cloned in the pENTR/D-TOPO vector (ThermoFisher Scientific). After 
verification of the sequences by Sanger sequencing the open reading frame without the 
signal peptide was amplified by PCR and restored by adding an ATG in frame. Both cDNA 
version with (+sp) or without (sp) signal peptide where then recombined using the 
Gateway technology in the pK7WG2D binary vector. As a control for the infiltration assays, 
the MCS of the vector pBluescrit SK(+) was amplified and also inserted in the pK7WG2D 
binary vector and called “empty vector”. After verification of the correct cloning by Sanger 
sequencing the vectors were introduced in Agrobacterium tumefaciens GV3101. The 
infiltration assays were carried out in sterile conditions as described in Zottini et al.34 on 
Vitis vinifera cv. Sultanina and Vitis riparia in vitro grown plants. The phenotype of plants 
was visualized and photographed one week after infiltration. After taking a picture the leaf 
was then stained using Trypan blue as described in Roetschi et al.35. The experiment was 
repeated ten times with 20-25 plants at each experiment. Infiltrated leaves were also flash 
frozen in liquid nitrogen and the RNA extracted using the Spectrum plant total RNA kit 
(http://www.sigmaaldrich.com/). After reverse transcription of one g of RNA using the 
SuperScript VILO cDNA synthesis kit (ThermoFisher Scientific), the real-time PCR on the 
effector and GFP was performed using the 2x SYBR green qPCR master mix 
(www.bimake.com) on a ViiA7 real time PCR system (ThermoFisher Scientific). The fold 
induction of RxLR_ PVITv1008311 normalized to the house keeping gene F_PveIF1b was 
calculated using the comparative Ct method36. The same real-time PCR conditions were 
used to measure RxLR_ PVITv1008311 expression levels in planta during the infection 
time course on Pinot Noir ENTAV115 as well as in sporangia in Figure 3a and 3b. 

Metabolism 
 
We studied the P. viticola metabolic abilities by assigning KEGG orthologs groups to 
proteins using KAAS11. This analysis was in addition performed for H. arabidopsidis (the 
closest biotroph) and P. infestans (the closest hemibiotroph), to characterize 
commonalities and differences. Maple37 was used to compare the metabolic networks of 
the three organisms at once (Supplementary Table S26). 

sRNAome and degradome 

To identify sRNAs from P. viticola we first filtered the sRNA reads by mapping them on the 
grapevine genome and then on an ensemble of bacterial genomes to remove most 
contaminants. The 19-30 nt sRNAs that passed this filtering step were then mapped on 
the P. viticola genome. The reads mapping uniquely on our draft P. viticola assembly with 
100% identity over the entire length of the read were further considered. sRNA target 
predictions were performed using SeqTar38.  We first explored regulation of P. viticola 
transcripts by endogenous sRNAs. To detect sRNA targets, we ran SeqTar using the 21-nt 
long sRNAs perfectly mapping on the P. viticola draft assembly, the P. viticola transcripts, 
and PARE reads obtained from a pool of the time points at which we performed sRNA. All 
parameters were default, except a 100 shuffling of the sRNAs to calculate the significance 
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level of the number of mismatches of an sRNA on a given transcript. The SeqTar output 
was filtered at mismatch p-value0.001, valid peak height p-value10-10 and binding score 
p-value0.001. After applying the above filters, we obtain 68 putative regulations, 
implemented by 65 different sRNAs on 39 transcripts (Supplementary Table S32). 

To detect P. viticola-V. vinifera cross-regulations, we ran SeqTar38 using 21-nt long 
sRNAs perfectly mapping on the P. viticola draft assembly, grapevine transcripts as 
targets, and a degradome library obtained from a pool of all of the infected time points at 
which we performed sRNA sequencing. All parameters were default, except that a 100 
shuffling of the sRNAs was used to calculate the significance level of the number of 
mismatches of an sRNA on a given transcript. The SeqTar output was filtered at mismatch 
p-value0.001, valid peak height p-value 10-10 and binding score p-value0.001. After 
applying the above thresholds, we obtained 344 putative regulations of grapevine 
transcripts, implemented by 318 different P. viticola sRNA sequences on 296 different Vitis 
transcripts (Supplementary Table S33 and S34).  

We also explored the miRNA-mRNA regulatory network in V. vinifera. The analysis 
was performed as for P. viticola; the output was filtered to retain only predictions with p-
value mismatch0.001, p-value binding score0.001 and p-value of the number of valid 
reads10-10. After filtering we retained 1,662 putative regulations for 1,327 sRNAs that 
regulate in total 889 Vitis genes. Among the putative regulators, we detected nine known 
miRNAs (Supplementary Table S31).  
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Supplementary figures 

 

Supplementary Figure S1. GC content distribution for the original and the taxonomy-
filtered assemblies. 
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Supplementary Figure S2. Strategy implemented to filter out sequences not coming from 
P. viticola.   
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Supplementary Figure S3. Example of a chimeric scaffold.  

The first part of the scaffold codes for three proteins with homology to Stramenopiles and it 
is therefore likely part of the P. viticola genome. The average coverage of this region is 
well above 100 (y axis is in log10 scale). The remaining 1,500 nucleotides have a much 
lower coverage and homology to plant sequences. Therefore, the scaffold was included in 
the P. viticola assembly after deleting the low coverage region.  
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Supplementary Figure S4. Clustering sequences that share more than 98% identity and 
have lengths not differing by more than 5% identified groups of unique sequences.  

The number of genes considered as redundant (a). The ratio of the number of unique 
sequences and the number of predicted genes indicates that the coding genome is highly 
redundant in ABySS assemblies (from A60 to A95), as this ratio is only 0.6-0.7, while for 
Ray assemblies (From R21 to R69) this ratio is close to 1 (b).  
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Supplementary Figure S5. Length distribution of P. infestans repeat regions  

Most repeats (80%) are below 500 nucleotides, but still there are over 12,000 repeats 
longer than that. The data was obtained from Haas et al.5. 
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Supplementary Figure S6. Coverage per nucleotide of the final assembly.  

The shape of the distribution is likely the result of different haplotypes of P. viticola 
contained in the inoculum used for infection (see supplemental note for statistics about the 
final assembly). 
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Supplementary Figure S7. Schematic representation of the assembled P. viticola 
mitochondrial genome.  

The outer layer corresponds to the predicted genes, while the inner one indicates the 
scaffolds used for assembly. The tRNAs are indicated by the abbreviation “trn”, followed 
by the letter corresponding to the amino acid bound and the recognized codon. 
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Supplementary Figure S8: Variability in the mitochondrial apocytochrome b gene 
sequence. 

The variability was obtained by mapping DNA reads and retrieving SNPs using mpileup in 
samtools. Entropy of each position of the gene was calculated by extracting all possible 
nucleotides found in the original reads and plotted to show the existence of multiple 
“haplotypes” or polymorphisms. A single amino acid change, G143A, in the 
apocytochrome b protein is known to confer resistance to fungicides acting as Quinone 
outside Inhibitors (QoI). The mitochondrial assembly of ‘PvitFEM01’ revealed an Alanine at 
amino acid position 143. The variability at that position is moderate and always 
corresponds to silent changes. This indicates that the haplotypes that were sequenced are 
all resistant to QoI fungicides. 
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Supplementary Figure S9: Base composition at 42 mitochondrial positions with an 
entropy above 0.5 bits.  

All of them are outside annotated genes (protein coding, tRNAs or RNAs). Empty slices 
stand for Ns. 
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Supplementary Figure S10. Length distribution of the transcripts predicted by three gene 
finders. 

Note that the Y axis has been broken two times to include the maximum peaks of the 
selection and GeneID distributions. GeneID outputs gene predictions that are on average 
shorter than those provided by GlimmerHMM and Augustus, with over 28,000 predictions 
shorter than 70 nucleotides (38% of all predictions Vs <1% and <0.1‰ respectively for 
GlimmerHMM and Augustus).  
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Supplementary Figure S11. The degree of shrinkage of the core genome when one of 
the biotroph species is added to the genome dataset can give information about the 
estimated completeness of the P. viticola genome.  

Y-axis is the size of the core genome when the indicated biotroph is added to the dataset, 
with respect to the size when it is absent. By definition, the core genome can only 
decrease when adding more genomes. Since there are four biotrophs in the dataset, we 
compared the effect of adding one of them with what happens when we add P. viticola 
(PVIT). On the left (a) the core genome is calculated for all Phytophthora species 
considered in this work. The middle panel (b) shows the same but the reference core 
genome size is the one from Pythium species only. On the right (c) the core genome for all 
the oomycetes (without biotrophs) is used. The addition of the proteome of H. 
arabidopsidis (HARA) or A. laibachii (ALA) causes the core proteome size to shrink of 
about 30-35% with respect to Phytophthora and of 30% with respect to Pythium. P. viticola 
has a larger effect on the core proteome size. The most complete biotroph genome is the 
P. halstedii (PHAL) one, which seems to indicate that the biotrophs still have 80-85% of 
the genes present in Phytophthora hemi-biotrophic species. This suggests that our draft 
genome and the ones of A. laibachii and H. arabidopsidis might miss an additional 20% of 
the genes. 

 

  



Supplementary information. Brilli et al. 

 

26 
 

 

 

Supplementary Figure S12. An estimate of the “true” protein number in P. viticola.  

Linear regression of the number of proteins classified into one of the orthologous groups 
through the Inparanoid analysis, and the size of the full proteome for all oomycetes. The 
adjusted squared correlation coefficient for the fit is 0.79 when the intercept parameter is 
set to zero and 0.83 when the intercept is included in the model. P. viticola was removed 
from the analysis and we use the parameters for estimating the likely number of proteins in 
the P. viticola genome. 
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Supplementary Figure S13: Summary of the orthology analysis.  

(a) Number of orthologous groups (OG) containing the indicated species (PHAL: 
Plasmopara halstedii, ALA: Albugo laibachii, PVE: Pythium vexans, PHYSO: Phytophthora 
sojae, PHYRA: Phytophthora ramorum, PHYCI: Phytophthora cinnamomi, PHYIN: 
Phytophthora infestans, PHYCA: Phytophthora capsici, PIR: Pythium irregulare, PIW: 
Pythium iwayamai, PAG1: Pythium aphanidermatum, PAR: Pythium arrhenomanes, 
PUG3:  Pythium ultimum, HARA: Hyaloperonospora arabidopsidis, PVIT: Plasmopara 
viticola). (b) Number of proteins of one species assigned to an OG. (c) Number of species 
per OG (for instance category 15 contains the sensu strictu “core” proteins of the 
Oomycetes). (d) Distribution of the number of proteins per OG in log-log scale. (e) Detail of 
the distribution of the number of proteins per OG in the range 2 to 50 proteins. There are 
635 groups with more than 30 proteins and 14 with more than 500. The largest OG has 
2,632 proteins. 
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Supplementary Figure S14. Maximum likelihood phylogenetic trees built with RAxML and 
PhyML. 

Evolutionary model is indicated. Equilibrium amino acid frequencies for the model were the 
empirical ones and rate heterogeneities are accounted for with a gamma distribution 
whose shape parameter was calculated during the phylogenetic reconstruction process. 
(PHAL: Plasmopara halstedii, ALA: Albugo laibachii, PVE: Pythium vexans, PHYSO: 
Phytophthora sojae, PHYRA: Phytophthora ramorum, PHYCI: Phytophthora cinnamomi, 
PHYIN: Phytophthora infestans, PHYCA: Phytophthora capsici, PIR: Pythium irregulare, 
PIW: Pythium iwayamai, PAG1: Pythium aphanidermatum, PAR: Pythium arrhenomanes, 
PUG3:  Pythium ultimum, HARA: Hyaloperonospora arabidopsidis, PVIT: Plasmopara 
viticola). 
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Supplementary Figure S15.  Full proteome comparisons.  

The identity percentage of the first blast hit for whole proteome comparisons performed 
using blastp (--max_target_seqs=1) is plotted. The blast output was filtered at e-value e-20 

and a histogram was built with the threshold passing alignments. To better appreciate the 
similarity among the two Plasmopara species (PHAL, PVIT) and Phytophthora infestans 
(PINF), we also performed the analysis for the latter vs Phytophthora sojae (PSO). The 
comparison of the two Plasmopara is not different from the comparisons Plasmopara-
Phytophthora infestans. 
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Supplementary Figure S16. Distribution of the distance and position of the signal peptide 
cleavage site in oomycete species. 

(a) Distribution of the distance dividing the signal peptide cleavage site, as predicted by 
Signal-P39 and the RxLR occurrence identified through match to the regular expression. 
(b) Distribution of the position of the secretion signal peptide cleavage site for proteins in 
(a) Data for Pythium, Phytophthora spp. and the biotrophs P. viticola, H. arabidopsidis and 
A. laibachii are indicated in the left, middle and right columns, respectively. A shorter 
distance between the cleavage site and the RxLR motif is specific to Pythium species 
suggesting differences in the machinery or the secretion system.  
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Supplementary Figure S17. As expected, some of the RxLR variants also have a biased 
localization towards the N-terminal of the proteins.  

In the title of each plot we indicate the motif and the number of occurrences over all the 
RxLR-like. When plotting the start position of motifs found over the whole RxLR-like 
dataset we recover the background distribution (compare dashed red with green), in 
agreement with the presence of a lot of false positive RxLR through the homology search 
only. When adding constrains for selecting effector proteins we consistently reduce the 
number of candidates and we select proteins with a biased localization of the motifs, 
indicating a functional role for the motif. No motif has however a bias as strong as the 
canonical RxLR motif. Abundances were divided by the total in each data series. 
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Supplementary Figure S18. Clustering of the motif abundances for RxLR-like where the 
occurrence of the motif is associated to a signal peptide prediction (with no constrains on 
their relative position or the presence of additional motifs).  

We normalized the counts for an organism by the total number N of proteins assigned to 
orthologous groups by Inparanoid for that organism. We applied this normalization 
because it is much more robust to differences in the gene prediction methods than the raw 
number of proteins in a draft genome that can be partial or comprise many putative 
proteins, as in the P. viticola case (see Supplementary Fig. S12). Plotted values are 
log10 of the ratio among the motif counts and N, standardized by row. The clustering of 
the rows defines two groups: RxLR-rich and RxLR-poor organisms, respectively. In more 
or less all organisms the preferred motif is the RxLR, but other motifs can be abundant as 
well, especially in organisms where this is not expected, as the Phytophthora, where the 
focus has been mainly on RxLR proteins and nothing is known about the putative effectors 
with variant motifs. The two Plasmopara species behave quite differently. P. viticola is 
placed in the RxLR-rich group; P. halstedii is instead placed in the effector-poor group, 
mainly for the presence of a small number of canonical RxLR. Distance used for the 
clustering was the Euclidean, single-linkage clustering method. (PHAL: Plasmopara 
halstedii, ALA: Albugo laibachii, PVE: Pythium vexans, PHYSO: Phytophthora sojae, 
PHYRA: Phytophthora ramorum, PHYCI: Phytophthora cinnamomi, PHYIN: Phytophthora 
infestans, PHYCA: Phytophthora capsici, PIR: Pythium irregulare, PIW: Pythium iwayamai, 
PAG1: Pythium aphanidermatum, PAR: Pythium arrhenomanes, PUG3:  Pythium ultimum, 
HARA: Hyaloperonospora arabidopsidis, PVIT: Plasmopara viticola). 
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Supplementary Figure S19.  Graphical representations of the occurrences of Pfam 
domains in RxLR-like proteins.  

A total of 1,182 RxLR-like proteins possessing a signal peptide and the variants associated to an EER were 
considered (Supplementary Table S10) and indicated in (a) with a red square. Only 387 proteins have a hit 
in the Pfam database at the threshold used (e-value0.0001), confirming that most of the putative RxLR 
proteins have no known domains. Pfam does not contain a model for the well-known WY domain of RxLR 
proteins. We built it from 721 WY domains annotated in Boutemy et al.40 by using hmmbuild and weighting 
sequences using the Henikoff simple filter (--wblosum)(b). The corresponding sequence logo is shown in (c). 
We found that the WY domain is present in 368 sequences out of 721 (e-value0.0001). The RXLR_pfam 
(PF16810) domain is able to recover only 70 of these proteins. The input regexp-defined RxLR from 
Phytophthora is much higher, therefore the RxLR HMM is not able to detect a significant number of RxLR 
proteins, even in the genome of species used to build the model. This confirms that the RxLR are rapidly 
evolving, both in terms of sequence divergence and of domain arrangements. 
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Supplementary Figure S20.  Sequence logo of the LFLAK domain and VVP motif of CRN 
proteins  

(a) MEME was run on a set of 430 CRN proteins as annotated by Haas et al. 5. 
Conservation of the LFLAK motif appears lower than what shown in Haas et al. 5 because 
the present analysis included 430 unaligned bona fide Crinkler proteins while only 16 were 
considered in previous studies. (b) Sequence logo of the VVP motif in Crinkler sequences. 
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Supplementary Figure S21. Crinkler classification using SVM.  

a, b and c are the input log10 probability matrices for motifs. Each column corresponds to 
a motif of length 30 found by MEME. Each row corresponds to a P. infestans protein 
sequence. d) The error distribution was estimated using 100 cross validations for each of 
100 different training sets, as explained in the supplementary note. The SVM model 
returned a wrong classification for most of the CRN not used for training. We explored this 
issue in more detail and we concluded that their classification is very difficult because they 
are often pseudogenes missing portions of the sequence containing the motifs used for 
the classification. e) length distributions of the proteins from the starting dataset of Crinkler 
proteins, partitioned into three classes: the 200 proteins used for training the models, the 
69 Crinkler proteins not used for training and correctly classified by the SVM model and  
the 148 Crinkler proteins missed by the algorithm. Proteins with wrong classification by the 
SVM tend to be shorter than the remaining and they likely miss motifs/domains that might 
be important for classification. f) The fraction of proteins annotated as pseudogenes in the 
three groups defined above, showing that over 80% of the proteins of the non-identified 
CRNs are indeed annotated as pseudogenes.  
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Supplementary Figure S22.  Sequence logo of the YxSLK motif found by MEME in all 
Pythium ultimum “Family 3” proteins.  

The surrounding region is also shown. a) When asking MEME for motifs ranging from 4 to 
12 residues (ranking 6th). b) when asking MEME for motifs of width exactly 5 residues 
(ranking 9th). Sequence logos were produced by MEME 30.  
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Supplementary Figure S23: Hierarchical clustering of effector gene expression profiles  

Only transcripts for which we detected expression in at least one time point were plotted. 
Expression values in FPKM were log10 transformed.  

 

  

SignalP+not known effector 
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Supplementary Figure S24.  Word cloud highlighting recurrent terms in protein domains 
found in Plasmopara viticola apoplastic, YxSLK and secreted proteins. 

 

P. viticola genes having their maximum expression level at 24 hpi were searched against 
the pfamA database using hmmscan (using default parameters). The Pfam models with a 
significant hit (at domain e-value0.0001) were used to build a word cloud to highlight the 
recurrent terms. For similar Pfam accessions, we remove the numeric code. Hydrolase 
and peptidase (trypsin, peptidase, reprolysin, Cu-oxidase, astacin…) functions are over-
represented in the apoplastic, YxSLK and secreted proteins. All of these evidences 
indicate that P. viticola makes heavy deployment of degradative enzymes at the very 
beginning of the infection. The RxLR-like group is instead enriched in Protein kinase 
activity therefore suggesting that P. viticola also interfere with phosphorylation (cascades) 
in the plants. 
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Supplementary Figure S25. Differential expression of 15 genes with a significant hit for 
the LRR Pfam model. On the left the row standardized matrix used for building the 
dendrogram, and on the right the actual FPKM values. 

15 of the 111 genes with a significant hit for the LRR Pfam model in P. viticola are 
expressed at 24 hpi after infection and some of them have their maximum expression level 
at this stage. Two groups of sequences expressed at 24 hpi emerges: one with expression 
peak at 24 hpi that then are down regulated, and one with delayed expression that 
increases after 48 hpi. 
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Supplementary Figure S27. Sulphur assimilation pathway in P. viticola. 

 

The gene ID number for the enzymes in this pathway in P. viticola, P. infestans (PITG), and 
H. arabidopsidis (Hpa) genomes are indicated. They are considered absent if not found in 
the respective genome assemblies.  



Supplementary information. Brilli et al. 

 

42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

S
u

p
p

le
m

en
ta

ry
 F

ig
u

re
 S

28
. I

nc
om

pl
et

e 
m

et
ab

ol
ic

 m
od

ul
es

 in
 P

. v
iti

co
la

. 

Th
e 

en
zy

m
es

 p
re

se
nt

 i
n 

P
. 

vi
tic

ol
a 

ge
no

m
e 

an
d 

th
e 

co
rre

sp
on

di
ng

 g
en

e 
nu

m
be

rs
 a

re
 

in
di

ca
te

d 
in

 g
re

en
. T

he
 e

nz
ym

es
 m

is
si

ng
 a

re
 in

di
ca

te
d 

in
 re

d.
  

 



Supplementary information. Brilli et al. 

 

43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S29. Metabolic modules found in P. viticola but missing in H. 
arabidopsidis and P. infestans. 

The enzymes present in P. viticola genome and the corresponding gene numbers are 
indicated in green.  
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Supplementary Figure S30. Normalized (RPM) P. viticola small RNA read counts per 
library. 

The normalized values in RPM were calculated from raw counts by multiplying raw counts 
by 106/N were N is the total number of reads mapped on the P. viticola genome from the 
same library. 
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Supplementary Figure S31. General functions of genes generating sRNAs of different 
lengths in P. viticola. 

Two well-defined groups of sequences are defined: one (highlighted in green) containing 
genes mainly associated with sRNAs of 24 to 26 nucleotides and another (in red) 
containing genes mainly associated with 21-22 nt long sRNAs. Pfam domains associated 
to the proteins in the clusters were retrieved and the list obtained was used to generate 
the word cloud using genes2WordCloud (http://www.maayanlab.net/). The green group is 
strongly enriched in Ubn2 (gag-polypeptide of LTR copia-type) and Rvt (Reverse 
transcriptase (RNA-dependent DNA polymerase)), while the red one is more 
heterogeneous and contains several different domains not related to mobile elements. 
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Supplementary Figure S32: Secondary sRNA coverage and length distribution plot of ten 
P. viticola genes producing sRNAs.  

Plots in (a) correspond to the secondary sRNA coverage, expressed as log10 of the RPMs 
for a certain nucleotide position, after summing the abundances of sRNAs of all lengths. 
Counts from different libraries were normalized to RPM values and then all RPMs were 
summed to give the plotted values. The RPMs of reads mapping on the complementary 
strand of the transcript are plotted after reversing the sign of the abundances. Plots in (b) 
are the length distributions of the corresponding sRNAs.  sRNAs mapping on the negative 
strand are placed below the x-axis. PVITv1_T004916, T024389 and T012549 have been 
previously identified as CRN effectors, which are confirmed as strong secondary sRNA 
producers, similar to what has been observed in P. infestans41. PVITv1_T019844 is a pol-
like protein, therefore related to transposable elements. The presence of sRNAs 
originating from both strands strongly suggests that these transcripts are first processed by 
RNA-dependent RNA polymerases and then likely sliced by a Dicer-like mechanism. 
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Supplementary Figure S33. Secondary sRNA coverage and length distribution of sRNAs 
produced by CRN genes.  

The Crinkler genes are mostly associated with 21/22 nt long sRNAs. The secondary sRNA 
coverage is indicated on left panels, the length distributions on the right. 
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Supplementary Figure S34. Abundance and length distribution of secondary sRNAs 
produced by YxSLK effector genes.  

The sRNA coverage is indicated on left panels, the length distributions on the right. 
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Supplementary Figure S35. sRNA coverage and length distribution of secondary sRNAs 
produced by RxLR effector genes. 

 

The sRNA coverage is indicated on left panels, the length distributions on the right for the 
RxLR effector genes (a). PVITv1_T024389 is an RXLR-like and the same time also a 
CRN, and has a peculiar pattern of sRNAs, almost only of 21/22 nt, with a periodicity of 
40-60 nucleotides between consecutive peaks (b). 
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Supplementary Figure S36.  RNA secondary structure of PVITv1_T024389. 

The hairpins were colored to indicate the sRNA coverage expressed as raw number of 
reads in all libraries. The secondary structure shows similarities to polycistronic sRNA 
precursor. 
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Supplementary Tables 
 

Supplementary Table S1. See attached Excel file “GO annotation of P. viticola 
proteome”. 

 

Supplementary Table S2. Evaluation of performances of the preliminary and final 
Augustus parameters. 

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Supplementary Table S3. Counts of selected gene predictions.  

 

 

 

 

 

 

 
aThe prediction is supposed “Supported” when there are evidences supporting the gene 
model, for instance, a significant alignment with proteins from oomycetes and/or with 
available transcripts built using cufflinks with our own RNA-Seq data. We used the L>30 
dataset for all analyses. RNA-Seq data here refer to the pooled library and not the time-
course.  
b After a second round of filtering to remove potential contaminations, the final number of 
genes is 38,298. 

 

           Objective     Sensitivity Specificity 
Preliminary   

Nucleotide (multi) 0.97 0.745 
Exon (multi) 0.87 0.68 
Gene (multi) 0.755 0.465 

Nucleotide (mono) 0.999 0.826 
Exon (mono) 0.959 0.497 
Gene (mono) 0.94 0.61 

Final   
Nucleotide (multi) 0.981 0.835 

Exon (multi) 0.838 0.713 
Gene (multi) 0.604 0.43 

Nucleotide (mono) 0.993 0.889 
Exon (mono) 0.864 0.557 
Gene (mono) 0.831 0.639 

Predictionsa N 

L>50 Supported 22,527
Not supported 6,177 

 Total L>50 28,704

L<50 Supported 6,393 
Not supported 51,939

 Total (L>0) 87,036

L>30 
Supported 25,663
Not supported 
Filtered (2nd round)b

13,505
-870 

 Total L>30 38,298
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Supplementary Table S4. Result of the RNAmmer run on Plasmopara viticola scaffolds. 

Gene Scaffold Start End Strand First 2 Blast Hits (% identity)a 
 
5S 

 
Scaffold-25542 

 
32 

 
148 

 
+ 

 
Aphanomyces astaci (96%), Albugo laibachii (96%) 

28S Scaffold-7390 618 4268 - Phytophthora megasperma (96%), P. parasitica (96%) 
 

a The first hits are always from P. viticola when taking into account partial alignments. The 
first hits from different species were obtained because the blast e-value is much smaller 
for these long alignments than for the short perfect matches shared with available P. 
viticola sequences (see also Supplementary Table S5). 

 

Supplementary Table S5. Available 28S ribosomal RNA gene sequences were retrieved 
using as a query the predicted Plasmopara viticola 28S rRNA gene. 

Description Max score Total score Query cover  
(scaffold-7390) 

E value Id Accession 

P. vit.  isolate AR 160 LSU rib. RNA gene, partial 1749 1749 22% 0 100% AY035524.2
P. vit.  strain TxI 28S rib. RNA gene, partial 1736 1736 21% 0 100% HM628762.1 
P. vit.  strain TxIV 28S rib. RNA gene, partial 1687 1687 21% 0 99% HM628770.1 
P. vit.  strain MI 28S rib. RNA gene, partial 1674 1674 21% 0 99% HM628772.1 
P. vit.  LSU rib. RNA gene, partial 1489 1489 18% 0 99% AY273978.1 
P. vit.  strain UASWS SG1 28S rib. RNA gene, complete  1417 1417 17% 0 100% EF426546.1 
P. vit.  haplotype 6 28S rib. RNA gene, partial 1297 1297 16% 0 100% JF897850.1 
P. vit.  strain 318 28S rib. RNA gene, partial 1291 1291 16% 0 99% KM279688.1 
P. vit.  strain 295 28S rib. RNA gene, partial 1291 1291 16% 0 99% KM279686.1 
P. vit.  isolate ZH1TZ 28S rib. RNA gene, partial 1291 1291 16% 0 100% KF160820.1 
P. vit.  haplotype 5 28S rib. RNA gene, partial 1291 1291 16% 0 99% JF897849.1 
P. vit.  strain 307 28S rib. RNA gene, partial 1286 1286 16% 0 100% KM279687.1 
P. vit.  isolate XT1CP 28S rib. RNA gene, partial 1286 1286 16% 0 99% KF160829.1 
P. vit.  isolate ZS2TZ 28S rib. RNA gene, partial 1284 1284 16% 0 99% KF160821.1 
P. vit.  isolate BX2FS 28S rib. RNA gene, partial 1280 1280 16% 0 100% KF160831.1 
P. vit.  isolate SH4YQ 28S rib. RNA gene, partial 1275 1275 16% 0 99% KF160846.1 
P. vit.  haplotype 2 28S rib. RNA gene, partial 1264 1264 16% 0 99% JF897853.1 
P. vit.  isolate AR391 LSU rib. RNA gene, partial 1260 1260 15% 0 100% AY250173.1 
P. vit.  haplotype 4 28S rib. RNA gene, partial 1253 1253 16% 0 99% JF897855.1 
P. vit.  haplotype 8 28S rib. RNA gene, partial 1253 1253 16% 0 99% JF897852.1 
P. vit.  haplotype 3 28S rib. RNA gene, partial 1247 1247 16% 0 99% JF897854.1 
P. vit.  haplotype 7 28S rib. RNA gene, partial 1247 1247 16% 0 99% JF897851.1 
P. vit.  isolate HV225 LSU rib. RNA gene, partial 1245 1245 15% 0 99% AY250174.1 
P. vit.  isolate XH4CP 28S rib. RNA gene, partial 1236 1236 16% 0 99% KF160848.1 
P. vit.  haplotype 1 28S rib. RNA gene, partial 1218 1218 16% 0 98% JF897848.1 
P. vit.  isolate CY5YQ 28S rib. RNA gene, partial 1214 1214 16% 0 98% KF160838.1 
P. vit.  isolate HM5YQ 28S rib. RNA gene, partial 1197 1197 16% 0 98% KF160847.1 
P. vit.  isolate CH4YQ 28S rib. RNA gene, partial 1181 1181 16% 0 97% KF160837.1 
P. vit.  isolate YB4YQ 28S rib. RNA gene, partial 970 970 16% 0 92% KF160842.1 
P. vit.  ITS 1, 5.8S rib. RNA gene, and ITS 2, complete 246 246 3% 1.00E-65 100% DQ665668.1 
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Supplementary Table S6. Plasmopara viticola tRNA genes predicted by tRNAScan-SE.  

 

Scaffold# Start End Score Strand Name   Scaffold# Start End Score Strand Name
Alanine            5343 884 954 26.35 - Glu_100_tRNA 
3448 10676 10748 47.94 + Ala_76_tRNA   5343 129 201 58.3 - Glu_101_tRNA 
7207 35 106 58.66 - Ala_118_tRNA   5343 2775 2846 52.18 - Glu_97_tRNA 
8544 296 368 66.08 - Ala_125_tRNA   5343 2414 2486 28.74 - Glu_98_tRNA 
9115 1 72 42.76 + Ala_131_tRNA   6287 364 436 50.79 - Glu_113_tRNA 
12323 436 508 32.32 + Ala_156_tRNA   11147 385 456 38.53 - Glu_140_tRNA 
13109 89 161 39.98 + Ala_159_tRNA   11147 10 82 67.83 - Glu_141_tRNA 
15606 437 509 27.75 + Ala_177_tRNA   11385 277 349 47.6 + Glu_145_tRNA 
19475 394 465 58.16 - Ala_203_tRNA   11694 375 447 57.56 - Glu_151_tRNA 
24294 30 125 56.96 - Ala_234_tRNA   11694 1 73 67.82 - Glu_152_tRNA 
32332 31 102 50.2 + Ala_279_tRNA   12198 325 396 45.05 + Glu_154_tRNA 
33956 30 101 66.36 - Ala_288_tRNA   15598 202 270 32.76 - Glu_176_tRNA 
40072 71 142 53.15 - Ala_318_tRNA   17072 356 428 52.4 - Glu_192_tRNA 
42292 246 318 60.71 - Ala_324_tRNA   21668 607 679 40.65 + Glu_221_tRNA 
43939 136 207 63.15 - Ala_333_tRNA   22433 340 411 58.11 + Glu_226_tRNA 
45463 133 204 63.65 + Ala_336_tRNA   22881 402 470 36.3 - Glu_228_tRNA 
47648 7 79 57.61 - Ala_345_tRNA   26305 665 737 58.81 - Glu_242_tRNA 
50705 26 97 63.46 - Ala_355_tRNA   26305 358 430 46.55 - Glu_243_tRNA 
51237 324 396 49.1 - Ala_360_tRNA   26305 50 122 47.73 - Glu_244_tRNA 
58083 168 240 53.71 - Ala_383_tRNA   26716 1760 1831 37.95 + Glu_247_tRNA 
Arginine            26716 2139 2206 53.66 + Glu_248_tRNA 
310 18855 18926 30.32 - Arg_14_tRNA   27798 380 452 50.49 - Glu_253_tRNA 
16194 469 540 60.13 - Arg_181_tRNA   27798 73 145 50.93 - Glu_254_tRNA 
17303 1 73 67.11 - Arg_194_tRNA   28119 80 152 61.51 - Glu_257_tRNA 
20362 18 90 71.29 - Arg_211_tRNA   29909 6 78 50.98 + Glu_264_tRNA 
20973 30 119 62.5 - Arg_216_tRNA   30523 237 309 53.13 - Glu_268_tRNA 
21176 2 74 62.15 + Arg_217_tRNA   32925 336 408 50.9 - Glu_282_tRNA 
21505 35 107 50.81 - Arg_219_tRNA   33239 276 348 68.38 - Glu_283_tRNA 
21587 1 65 50.05 + Arg_220_tRNA   37879 322 388 37.09 - Glu_305_tRNA 
21962 369 441 68.33 + Arg_224_tRNA   39604 405 477 44.71 - Glu_313_tRNA 
26077 1 73 70.63 + Arg_240_tRNA   39604 24 96 58.47 - Glu_314_tRNA 
31008 429 501 62.15 - Arg_271_tRNA   47415 10 82 41.81 + Glu_342_tRNA 
33311 535 602 50.57 - Arg_286_tRNA   52979 19932 20005 32.19 + Glu_368_tRNA 
34855 33 104 52.88 - Arg_291_tRNA   54055 10 82 53.96 + Glu_373_tRNA 
1821 147 218 58.86 + Arg_32_tRNA   55385 572 644 64.07 - Glu_377_tRNA 
42326 1 73 68.33 - Arg_325_tRNA   55385 139 210 63.55 - Glu_378_tRNA 
1821 10368 10439 42.37 - Arg_34_tRNA   56546 219 290 44.98 + Glu_380_tRNA 
47436 922 989 50.57 - Arg_344_tRNA   56686 290 358 45.92 - Glu_381_tRNA 
48243 471 543 70.63 + Arg_346_tRNA   61488 124 195 56.43 - Glu_392_tRNA 
48752 50 122 53.59 - Arg_347_tRNA   Glutamine          
58435 172 245 59.49 + Arg_384_tRNA   2020 2565 2636 67.98 - Gln_43_tRNA 
61106 510 579 46.55 + Arg_391_tRNA   2250 2156 2227 27.02 + Gln_52_tRNA 
2234 2996 3068 52.17 - Arg_51_tRNA   16924 385 456 59.83 - Gln_188_tRNA 
2675 2958 3030 71.29 + Arg_62_tRNA   16924 217 288 44.66 - Gln_189_tRNA 
3146 1075 1147 75.82 + Arg_72_tRNA   Glycine          
3146 1858 1930 75.82 + Arg_73_tRNA   294 19704 19775 54.18 + Gly_13_tRNA 
4549 1 73 70.63 + Arg_87_tRNA   1103 2930 3001 56.08 + Gly_24_tRNA 
Asparagine            1103 3821 3893 52.17 + Gly_25_tRNA 
2306 20985 21052 31.14 + Asn_58_tRNA   1103 4177 4248 64.44 + Gly_26_tRNA 
7207 959 1029 63.94 - Asn_117_tRNA   1821 10693 10764 55.03 - Gly_33_tRNA 
11163 1700 1772 60.7 - Asn_144_tRNA   4721 3425 3505 30.5 - Gly_92_tRNA 
16759 1 64 51.1 - Asn_186_tRNA   5873 23 93 49.44 + Gly_106_tRNA 
19481 558 630 78.23 - Asn_204_tRNA   6287 1134 1206 54.59 - Gly_111_tRNA 
24235 837 909 70.86 + Asn_232_tRNA   11158 233 304 42.97 + Gly_142_tRNA 
Aspartic 
acid 

           20437 116 186 56.99 - Gly_212_tRNA 

2207 1750 1822 59.25 - Asp_48_tRNA   21909 125 196 62.38 + Gly_223_tRNA 
19557 367 438 66.24 - Asp_205_tRNA   32410 187 258 56.47 + Gly_280_tRNA 
Cysteine            41282 221 292 60.7 - Gly_322_tRNA 
2890 421 492 45.29 + Cys_71_tRNA   50086 12 90 20.04 + Gly_353_tRNA 
5548 3205 3276 67.58 + Cys_105_tRNA   53847 220 290 46.28 + Gly_372_tRNA 
8439 676 747 68.73 + Cys_123_tRNA   60152 1 68 42.08 + Gly_390_tRNA 
14797 226 296 50.23 - Cys_171_tRNA   Histidine          
16297 8 79 69.92 - Cys_182_tRNA   324 22 93 51.84 + His_15_tRNA 
23457 3 74 73.15 - Cys_229_tRNA   10592 9 80 29.42 + His_137_tRNA 
31320 61 132 49.86 - Cys_273_tRNA   Isoleucine          
31602 62 134 66.47 - Cys_276_tRNA   357 29390 29463 75.2 + Ile_16_tRNA 
39540 2 73 68.96 - Cys_311_tRNA   357 31907 31980 69.47 - Ile_17_tRNA 
51690 1282 1353 47.84 - Cys_362_tRNA   2485 359 444 34.02 + Ile_59_tRNA 
51690 995 1066 57.27 - Cys_363_tRNA   8679 2506 2578 69.26 + Ile_128_tRNA 
Glutamic 
acid 

           16045 245 317 51.69 + Ile_179_tRNA 

2151 117 189 40.51 - Glu_44_tRNA   16045 737 809 52.6 + Ile_180_tRNA 
2207 2057 2129 54.27 - Glu_47_tRNA   16970 211 283 64.48 + Ile_190_tRNA 
2207 860 932 44.61 - Glu_49_tRNA   22494 120 192 69.03 + Ile_227_tRNA 
2207 129 201 52.24 - Glu_50_tRNA   27809 190 262 58.97 - Ile_255_tRNA 
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Table S6. continued 
Scaffold# Start End Score Strand Name Scaffold# Start End Score Strand Name

38367 62 134 61.1 + Ile_309_tRNA   52413 4 75 66.7 - Pro_364_tRNA 
42609 201 273 56.25 - Ile_326_tRNA   Selenocysteine        
53251 1 64 45.17 - Ile_369_tRNA   48832 93 164 64.15 + SeC_349_tRNA 
59892 252 323 54.19 - Ile_389_tRNA   Serine        

Leucine         60 10866 10945 35.08 + Ser_1_tRNA 
60 15630 15710 34.7 - Leu_4_tRNA   60 13215 13295 47.47 + Ser_2_tRNA 
87 523 603 53.24 - Leu_7_tRNA   60 14228 14308 43.34 + Ser_3_tRNA 

433 3756 3836 35.79 + Leu_18_tRNA   69 6392 6472 56.73 + Ser_6_tRNA 
3309 2317 2402 36.03 + Leu_74_tRNA   103 13192 13272 30.63 - Ser_9_tRNA 
4067 3497 3578 42.34 + Leu_81_tRNA   262 10002 10078 25.59 + Ser_12_tRNA 
4380 1646 1727 47.31 - Leu_86_tRNA   2890 136 208 33.49 + Ser_70_tRNA 
8270 426 510 45.76 - Leu_122_tRNA   4721 20836 20916 53.78 - Ser_90_tRNA 

13562 505 586 51.82 + Leu_161_tRNA   4730 4623 4703 48.02 - Ser_94_tRNA 
17280 554 635 44.94 + Leu_193_tRNA   5171 365 444 47.18 - Ser_96_tRNA 
17506 168 247 50.08 - Leu_195_tRNA   5912 1836 1915 46.48 + Ser_109_tRNA 
28962 256 341 29.85 + Leu_260_tRNA   7581 1054 1134 69.12 + Ser_119_tRNA 
31987 196 277 53.8 - Leu_277_tRNA   7799 218 303 60.46 + Ser_120_tRNA 
33531 168 249 39.83 - Leu_287_tRNA   8925 696 776 69.9 + Ser_129_tRNA 
35213 242 327 34.54 - Leu_293_tRNA   11507 281 360 63.63 - Ser_147_tRNA 
36959 171 250 38.55 - Leu_297_tRNA   13575 215 295 58.58 + Ser_162_tRNA 
37234 520 601 50.55 - Leu_299_tRNA   14036 2 82 62.04 + Ser_164_tRNA 
37469 3 88 34.54 - Leu_303_tRNA 14036 389 469 71.48 + Ser_165_tRNA 
39789 278 357 55.11 - Leu_315_tRNA   20529 1334 1407 39.02 - Ser_213_tRNA 
40231 446 531 34.54 - Leu_319_tRNA   20529 776 849 39.02 - Ser_214_tRNA 
40984 164 243 44.08 - Leu_321_tRNA   20529 218 291 39.02 - Ser_215_tRNA 
43846 61 135 40.98 - Leu_332_tRNA   23843 399 479 75.57 - Ser_230_tRNA 
44929 220 301 53.96 - Leu_335_tRNA   26230 166 246 54.47 - Ser_241_tRNA 
46622 321 398 44.12 - Leu_340_tRNA   28062 72 152 67.66 - Ser_256_tRNA 
48793 53 132 42.91 + Leu_348_tRNA   29386 388 460 33.22 - Ser_263_tRNA 
53298 237 316 47.98 - Leu_371_tRNA   33254 413 484 63.23 - Ser_284_tRNA 
55112 219 298 43.6 + Leu_376_tRNA   38002 56 135 64.53 - Ser_306_tRNA 
59025 270 346 41.87 + Leu_387_tRNA   41364 137 217 55.09 - Ser_323_tRNA 
Lysine         43076 110 190 76.42 + Ser_327_tRNA 

582 5674 5746 67.51 + Lys_20_tRNA   49083 58 129 62.87 - Ser_350_tRNA 
1366 5386 5458 55.4 - Lys_27_tRNA   49196 1 78 54.56 - Ser_351_tRNA 
3461 4591 4662 64.25 + Lys_77_tRNA   50852 158 229 74.14 - Ser_357_tRNA 
6287 749 821 50.98 - Lys_112_tRNA   Stop        
6802 292 363 73.45 - Lys_116_tRNA   20123 267 339 58.91 - Sup_209_tRNA 
8563 516 587 59.75 + Lys_127_tRNA   54787 90 176 37.34 - Sup_375_tRNA 

13918 1708 1779 50.08 - Lys_163_tRNA   Threonine        
24755 103 175 65.22 + Lys_236_tRNA   5456 4023 4094 67.03 - Thr_103_tRNA 
27000 405 476 57.37 - Lys_249_tRNA   5456 3777 3847 59.51 - Thr_104_tRNA 
31567 210 282 64.23 + Lys_274_tRNA   6802 608 679 47.42 - Thr_115_tRNA 
34691 252 324 79.06 + Lys_290_tRNA   9072 406 477 56.38 - Thr_130_tRNA 
37018 33 105 77.58 + Lys_298_tRNA   9548 628 699 76.55 - Thr_132_tRNA 
39938 236 308 58.75 - Lys_317_tRNA   9548 314 385 69.39 - Thr_133_tRNA 
59621 262 323 43.74 + Lys_388_tRNA   9548 1 67 56.27 - Thr_134_tRNA 

Methionine         10734 199 270 61.38 - Thr_138_tRNA 
2771 2573 2645 49.84 - Met_67_tRNA   11674 1 61 36.54 - Thr_150_tRNA 
2771 2371 2443 66.96 - Met_68_tRNA   13411 337 408 61.33 - Thr_160_tRNA 
6393 601 673 74.9 - Met_114_tRNA   14827 1 68 53.61 + Thr_172_tRNA 
9650 1911 1982 51.86 - Met_135_tRNA   15564 486 557 53.44 + Thr_174_tRNA 

15598 276 344 34.22 - Met_175_tRNA   15688 448 514 64.24 + Thr_178_tRNA 
18721 206 278 69.66 - Met_201_tRNA   16794 39 110 74.6 - Thr_187_tRNA 
18721 4 75 66.52 - Met_202_tRNA   22125 1 65 46.3 - Thr_225_tRNA 
25289 154 226 59.36 + Met_237_tRNA   30251 508 580 68.15 - Thr_266_tRNA 
25289 358 430 76.52 + Met_238_tRNA   30251 213 284 69.3 - Thr_267_tRNA 
25779 138 209 50.7 - Met_239_tRNA   36122 68 138 57.19 - Thr_295_tRNA 
27505 164 236 63.72 + Met_251_tRNA   37281 247 318 68.28 + Thr_301_tRNA 
29047 284 355 70.47 + Met_261_tRNA   37322 162 233 65.64 - Thr_302_tRNA 
29047 837 908 70.47 + Met_262_tRNA   37734 129 200 72.76 - Thr_304_tRNA 
35621 12 84 72.51 + Met_294_tRNA   43298 129 200 69.83 + Thr_328_tRNA 
37277 144 215 54.62 - Met_300_tRNA   43663 393 464 72.49 - Thr_329_tRNA 
38821 238 309 58.54 + Met_310_tRNA   43663 81 152 65.02 - Thr_330_tRNA 

Phenylalanine         45639 677 741 46.3 + Thr_337_tRNA 
150 6164 6236 56.34 + Phe_11_tRNA   45786 236 307 70.4 + Thr_338_tRNA 
4601 6710 6782 57.76 + Phe_88_tRNA   47185 1 62 50.86 - Thr_341_tRNA 

16350 74 146 64.5 - Phe_183_tRNA   53268 1 67 56.24 - Thr_370_tRNA 
27135 343 445 61.2 + Phe_250_tRNA   Tryptophan        
30575 233 310 31.35 - Phe_269_tRNA   11158 589 659 48.75 + Trp_143_tRNA 
31602 243 315 73.67 - Phe_275_tRNA   11670 567 638 59.26 - Trp_148_tRNA 
32202 87 173 35.69 - Phe_278_tRNA   16637 163 234 64.55 + Trp_185_tRNA 
36868 161 232 64.2 - Phe_296_tRNA  17047 399 469 54.98 - Trp_191_tRNA 
43843 607 676 57.19 + Phe_331_tRNA  30046 323 394 74.55 - Trp_265_tRNA 
57502 84 156 69.73 + Phe_382_tRNA  Tyrosine        

Proline        982 3893 3995 74.35 + Tyr_22_tRNA 
1949 1419 1490 44.38 + Pro_36_tRNA  19825 209 311 48.27 - Tyr_206_tRNA 
1949 2367 2438 44.38 + Pro_37_tRNA  21869 77 157 58.67 - Tyr_222_tRNA 
1949 3414 3484 49.67 + Pro_38_tRNA  24097 50 152 42.39 - Tyr_231_tRNA 
1949 398 469 41.87 - Pro_40_tRNA  28817 273 332 38.8 + Tyr_258_tRNA 
2579 3405 3476 53.47 - Pro_61_tRNA  30955 6 108 73.08 + Tyr_270_tRNA 
4254 487 557 40.77 + Pro_83_tRNA  31189 77 136 31.22 + Tyr_272_tRNA 
4254 1171 1241 40.77 + Pro_84_tRNA  34553 77 136 37.3 + Tyr_289_tRNA 
4254 1482 1552 24.84 + Pro_85_tRNA  Valine        
5873 456 530 63.26 - Pro_107_tRNA  103 13599 13671 52.42 - Val_8_tRNA 
5879 9589 9667 25.52 + Pro_108_tRNA  103 12737 12809 58.74 - Val_10_tRNA 

14125 1 65 55.06 - Pro_168_tRNA  1454 11010 11082 63.72 + Val_28_tRNA 
18211 293 364 60.01 + Pro_197_tRNA  1593 1155 1227 42.98 + Val_29_tRNA 
24249 400 471 70.89 - Pro_233_tRNA  1593 1497 1568 56.06 + Val_30_tRNA 
24749 1 64 46.06 + Pro_235_tRNA  1593 2089 2160 59.08 + Val_31_tRNA 
27682 511 582 59.67 + Pro_252_tRNA  3466 134 204 51.51 + Val_78_tRNA 
28916 234 305 61.63 - Pro_259_tRNA  10787 4381 4450 30.56 - Val_139_tRNA 
32849 101 172 63.25 - Pro_281_tRNA  11434 445 516 34.68 + Val_146_tRNA 
33254 69 140 66.74 - Pro_285_tRNA  12269 836 906 51.51 - Val_155_tRNA 
39917 76 147 61.11 - Pro_316_tRNA  14065 147 219 65.8 - Val_167_tRNA 
50064 3 71 31.01 - Pro_352_tRNA  16361 215 287 54.44 - Val_184_tRNA 
51037 229 300 69.1 - Pro_358_tRNA  56115 515 584 30.56 + Val_379_tRNA 
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Supplementary Table S7. List of species names and abbreviations for the organisms 
composing the “oomycetes dataset” used in the comparative analyses. 

Full Name Abbre Taxonomy ID Full Taxonomy 

Plasmopara viticola PVIT 143451 Stramenopiles; Oomycetes; Peronosporales; Peronosporaceae;  
Plasmopara halstedii PHAL 4781 Stramenopiles; Oomycetes; Peronosporales; Peronosporaceae; 
Hyaloperonospora arabidopsidis HARA 27295 Stramenopiles; Oomycetes; Peronosporales; Peronosporaceae;  
Pythium aphanidermatum PAG1 65070 Stramenopiles; Oomycetes; Pythiales; Pythiaceae 
Pythium arrhenomanes PAR 82932 Stramenopiles; Oomycetes; Pythiales; Pythiaceae 
Pythium irregulare PIR 36331 Stramenopiles; Oomycetes; Pythiales; Pythiaceae 
Pythium iwayamai PIW 115417 Stramenopiles; Oomycetes; Pythiales; Pythiaceae 
Pythium ultimum PUG3 65071 Stramenopiles; Oomycetes; Pythiales; Pythiaceae 
Pythium vexans PVE 42099 Stramenopiles; Oomycetes; Pythiales; Pythiaceae 
Phytophthora sojae PHYS

O
67593 Stramenopiles; Oomycetes; Peronosporales 

Phytophthora ramorum PHYR
A

164328 Stramenopiles; Oomycetes; Peronosporales 
Phytophthora capsici PHYC

A
4784 Stramenopiles; Oomycetes; Peronosporales 

Phytophthora infestans PHYIN 4787 Stramenopiles; Oomycetes; Peronosporales 
Phytophthora cinnamomi PHYCI 4785 Stramenopiles; Oomycetes; Peronosporales 
Albugo laibachii ALA 653948 Stramenopiles; Oomycetes; Albuginales; Albuginaceae 

 

 

 

Supplementary Table S8. The 10 most represented KEGG categories in the core 
genome of the oomycetes.  

KEGG category Fractiona N 
01110 Biosynthesis of secondary metabolites 0.063 43 
03010 Ribosome 0.044 30 
01120 Microbial metabolism in diverse 
environments 0.032 22 

03040 Spliceosome 0.026 18 
01200 Carbon metabolism 0.025 17 
00230 Purine metabolism 0.022 15 
01230 Biosynthesis of amino acids 0.022 15 
00190 Oxidative phosphorylation 0.021 14 
03013 RNA transport 0.019 13 
00240 Pyrimidine metabolism 0.018 12 

 
aOne P. viticola protein per cluster was taken, the KEGG categories recorded and then 
counted for all of them. The fraction is calculated over the proteins with KEGG annotations 
(N=680 after excluding those mapped to very broad categories, e.g. Metabolism). 
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Supplementary Table S9. BUSCO analysis 

 

** estimated, as Complete=Single Copy + Duplicated 
a BUSCO version 3 

b BUSCO version 1 

 

Supplementary Table S10. Summary of the output of the search of occurrences of the 
two regular expressions R[A-Z]LR and [DE][DE][RK], for the RxLR and the often 
associated EER.  

Speciesa Rb R+Ec R+Ec  
(150) 

S+Rd P Enrichment  
S in R 

S+R 
(60) 

S+R+Ee S+R+Ee 
(60,150) 

PVIT 493 73 33 31 1.37E-03 24 15 12 
ALA 134 21 9 17 8.51E-05 8 6 1 

HARA 186 56 23 38 2.41E-10 23 19 9 
PHYCA 356 142 40 135 0.00E+00 70 66 54 
PHYCI 441 164 54 149 0.00E+00 94 77 60 
PHYIN 430 206 37 266 0.00E+00 200 158 140 
PHYRA 271 117 31 140 0.00E+00 58 67 42 
PHYSO 508 195 43 246 0.00E+00 137 108 94 
PAG1 131 37 9 45 0.00E+00 21 10 1 
PIR 174 44 15 50 1.78E-15 24 8 0 
PIW 197 49 14 54 0.00E+00 32 11 7 

PUG3 207 55 14 30 8.77E-07 16 8 3 
PVE 115 23 10 32 2.42E-10 7 7 0 
PAR 146 33 15 39 1.32E-13 16 6 2 

PHAL 148 44 16 29 1.01E-07 14 16 7 
aPVIT: Plasmopara viticola, ALA: Albugo laibachii, HARA: Hyaloperonospora arabidopsidis, PHYCA: 
Phytophthora capsici, PHYCI: Phytophthora cinnamomi, PHYIN: Phytophthora infestans, PHYRA: 
Phytophthora ramorum, PHYSO: Phytophthora sojae, PAG1: Pythium aphanidermatum, PIR: Pythium 
irregulare, PIW: Pythium iwayamai, PUG3:  Pythium ultimum, PVE: Pythium vexans, PAR: Pythium 
arrhenomanes, PHAL: Plasmopara halstedii. 
bR indicates the number of RxLR occurrences 
cE the number of EER occurrences (considered only when associated to the presence of an RxLR, indicated 
by R+E).   
dS indicates the presence of a signal peptide for secretion as predicted by SignalP. Since the RxLR is often 
positionally constrained. 
eWe also counted how many times the occurrences are within certain ranges (indicated in parenthesis). For 
instance, column S+R+E (60,150) corresponds to the counts of proteins having the signal (S), the RxLR 
within 60 aa from the predicted cleavage site and and EER within 150 aa from the end of the RxLR. This is 
the most stringent definition and it is often adopted in Phytophthora genomic studies. All counts refer to 
RxLR occurrences with a p-value<0.05 calculated using shuffling of the protein sequences.  

SPECIES Complete Single 
copy 

Duplicated Fragmented Complete + 
Fragmented 

Missing Number 
of 

eukaryote 
proteins 

Phytophthora 
infestans 

93.00% 86.10% 6.90% 1.30% 94.30% 5.70% 303a

Plasmopara halstedii 93.40% 90.80% 2.60% 3.00% 96.40% 3.60% 303a 

Plasmopara viticola 
(Yin et al. 2017) 

84% 38%** 46% 6% 90% 9.50% 429b 

Plasmopara viticola 
(this work) 

73.00% 70.00% 3.00% 14.20% 87.20% 12.80% 303a 
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Supplementary Table S11. Focus on sequences with a single occurrence of the RxLR 
motif or one of its variants. 

 
 

a Fraction of non-canonical sites with respect to the total in a certain organism. 

 

 

  

      Species RxLR RxLK KxLR KxLK QxLR QxLK TOT ALT/TOTa 

A. laibachii 1 0 0 0 1 0 2 0.50 

P. aphanidermatum 3 0 2 1 0 0 6 0.50 

P. arrhenomanes 1 0 2 0 3 0 6 0.83 

P. irregulare 3 1 0 1 4 0 9 0.67 

P. iwayamai  9 0 0 1 2 0 12 0.25 

P. ultimum 4 0 0 1 0 0 5 0.20 

P. vexans 0 0 1 0 1 0 2 1.00 

P. capsicii 71 8 0 4 2 0 85 0.16 

P. cinammomi 80 14 5 2 3 0 104 0.23 

P. infestans 189 14 4 3 8 0 218 0.13 

P. ramorum 47 15 0 3 4 0 69 0.32 

P. sojae 121 5 8 8 0 0 142 0.15 

P. halstedii 2 5 1 2 0 0 10 0.80 

P. viticola FEM 16 0 1 0 4 1 22 0.27 

H. arabidopsidis 6 0 0 2 1 3 12 0.50 

TOT 553 62 24 28 33 4 704 0.21 
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Supplementary Table S12.  Counts of oomycetes sequences containing single or multiple 
RxLR occurrences within the RxLR-like set in addition to the signal peptide and the EER 
occurrence within 150 residues.  

 RxLR RxLK KxLR KxLK QxLR QxLK TOT ALT/TOTa

RxLR-like motif has unique occurrence 553 62 24 28 33 4 704 0.21

Most N-terminal when there are more variants 315 35 31 26 16 13 436 0.28
a Fraction of non-canonical sites with respect to the total in a certain organism. 

 

 

 

 

Supplementary Table S13. Output of the SVM classification: number of CRN proteins per 
genome and number of CRN proteins also predicted to be secreted.  

 

 

 

 

 

 

 

 

 

 
aPVIT: Plasmopara viticola, ALA: Albugo laibachii, HARA: Hyaloperonospora 
arabidopsidis, PHYCA: Phytophthora capsici, PHYCI: Phytophthora cinnamomi, PHYIN: 
Phytophthora infestans, PHYRA: Phytophthora ramorum, PHYSO: Phytophthora sojae, 
PAG1: Pythium aphanidermatum, PAR: Pythium arrhenomanes, PIR: Pythium irregulare, 
PIW: Pythium iwayamai, PUG3:  Pythium ultimum, PVE: Pythium vexans. 
bThe CRN classification is performed without using the information about the presence of 
the signal peptide.  
cS, proteins with signal-peptide predicted by SignalP.  
dThe P column is the probability of random sampling as many secreted sequences. The 
probability is calculated using the binomial cumulative distribution function with the number 
of trials equal to the number of proteins predicted to be CRN, number of successes the 
number of CRN proteins also having a signal peptide, and the probability of success in the 
null hypothesis given by the number of proteins predicted as being secreted over the total 
number of genes.  

 

Speciesa # CRNb # CRN+Sc Pd 

PVIT 40 5 3.06E-03
ALA 2 0 - 

HARA 23 8 1.01E-05
PHYCA 64 14 8.01E-05
PHYCI 13 2 8.15E-02
PHYIN 260 48 7.62E-05
PHYRA 21 5 2.97E-02
PHYSO 68 10 4.61E-02
PAG1 5 1 6.50E-02
PAR 4 0 - 
PIR 2 1 7.18E-03
PIW 2 1 6.36E-03

PUG3 4 0 - 
PVE 3 0 - 



Supplementary information. Brilli et al. 

 

59 
 

Supplementary Table S14. CRN proteins identified by scanning protein sequences with 
regular expression. 

Speciesa # Lb # L+Vc # S+Ld # S+L+V Pe 

PVIT 45 7 5 1 5.56E-03 
ALA 6 2 0 0 na 

HARA 20 0 11 0 6.93E-10 
PHYIN 155 76 41 20 1.27E-08 
PHYCA 71 24 15 6 7.78E-05 
PHYCI 11 4 2 1 5.30E-02 
PHYRA 15 6 2 0 2.54E-01 
PHYSO 84 43 13 7 2.12E-02 
PAG1 8 0 1 0 1.53E-01 
PAR 8 0 1 0 1.10E-01 
PIR 2 0 0 0 na 
PIW 5 0 0 0 na 

PUG3 6 1 0 0 na 
PVE 3 0 0 0 na 

 

aPVIT: Plasmopara viticola, ALA: Albugo laibachii, HARA: Hyaloperonospora arabidopsidis, PHYIN: 
Phytophthora infestans, PHYCA: Phytophthora capsici, PHYCI: Phytophthora cinnamomi, PHYRA: 
Phytophthora ramorum, PHYSO: Phytophthora sojae, PAG1: Pythium aphanidermatum, PAR: Pythium 
arrhenomanes, PIR: Pythium irregulare, PIW: Pythium iwayamai, PUG3:  Pythium ultimum, PVE: Pythium 
vexans. 
bL=LFLAK motif 
cV=VVP motif,  
dS, proteins with signal-peptide predicted by SignalP.  
eThe P column contains the p-value of the enrichment in secreted proteins in the group of proteins with a 
LFLAK motif. All counts refer to LFLAK motifs with occurrence p-value0.05. 
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Supplementary Table S15. YxSLK were assigned by scanning protein sequences using 
the regular expression Y[A-Z][ST][LV][KR]. 

Speciesa # YxSLK  
occurrencesb 

# YxSLK 
Secreted c 

Enrichment 
in Secretedd 

PVIT 308 (194) 25 (13) 7.48E-05 
ALA 153 (86) 9 (4) 2.06E-01 
HARA 164 (75) 14 (9) 1.45E-01 
PHYCA 291 (153) 45 (30) 2.65E-06 
PHYCI 315 (168) 36 (22) 1.42E-02 
PHYSO 450 (261) 61 (33) 1.02E-03 
PHYIN 297 (146) 43 (21) 1.87E-02 
PHYRA 263 (131) 46 (35) 2.24E-03 
PIR 216 (86) 39 (26) 2.32E-06 
PUG3 180 (90) 18 (10) 7.16E-03 
PIW 217 (89) 27 (18) 8.14E-03 
PAG1 182 (75) 31 (13) 1.34E-04 
PVE 180 (76) 25 (14) 5.01E-03 
PAR 231 (108) 26 (15) 9.73E-03 

  

aPVIT: Plasmopara viticola, ALA: Albugo laibachii, HARA: Hyaloperonospora arabidopsidis, PHYCA: 
Phytophthora capsici, PHYCI: Phytophthora cinnamomi, PHYSO: Phytophthora sojae, PHYIN: Phytophthora 
infestans, PHYRA: Phytophthora ramorum, PIR: Pythium irregulare, PUG3:  Pythium ultimum, PIW: Pythium 
iwayamai, PAG1: Pythium aphanidermatum, PVE: Pythium vexans, PAR: Pythium arrhenomanes. 
bThe numbers in parenthesis indicate the number of YxSLK occurrences within 100 residues from the 
translation start site of the protein. 
cThe term Secreted corresponds to proteins for which SignalP 39 predicted a signal peptide.  
dThe p-value indicating if and in what degree the YxSLK group from an organism is enriched in secreted 
proteins. P. viticola has the largest number of members of this class among the biotrophs, comparable to the 
Pythium species, but much lower than Phytophthora species.  
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Supplementary Table S16. Pfam models used to define families of apoplastic effectors. 
For all models, for inclusion, we used a threshold of 1E-06 on the “e-value seq” field in the 
HMMER output. 

Class Pfam name Pfam model ID 
Cystatins Cystatin PF00031 
  Elicitin PF00964 

Serine protease inhibitor Kazal_1 PF00050 
Kazal_2 PF07648 

Necrosis inducing proteins NPP1 PF05630 

CBEL PAN_1 PF00024 
PAN_4 PF14295 

  PcF PF09461 

Transglutaminase 
Transglut_C PF00927 
Transglut_core PF01841 
Transglut_N PF00868 

Glucanase inhibitor Trypsin PF00089 
 

 

Supplementary Table S17: Number of read pairs (in millions) obtained in the different 
libraries and mapping on P. viticola and V. vinifera genomes. 

  Non-infected (hpi)   Infected (hpi)    Pooled libraries  

 
0 24 48 72 96 168 24 48 72 96 168 Non‐infected (C)  Infected (I)  Sporangia (S) 

Total in RNAseq library 63.9  81.4 74.3  91.6  86.8  84.8  80.3  97.6  81.1  97.9 86.6  30.5  20.5  23.5 

Mapping on Plasmopara viticola 
genome 

‐  ‐  ‐  ‐  ‐  ‐ 
 

‐  1.2  2.0  6.8  8.9 
 

‐  0.7  11.6 

Mapping on Vitis vinifera genome 48.4  62.7 30.6  68.5  65.4  64.3    62.3  63.1  59.7  67.8 56.9    14.6  12.9  0.1 

 

  

 

Supplementary Table S18. See attached Excel file “P. viticola differentially expressed 
genes during infection”. 
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Supplementary Table S19.  Plasmopara viticola cellular processes enriched genes 
detected as having gene expression significantly different from 0 at 24 and 48 hpi.  

GO terma Term #q #ref p FDR 

At 24 hpi      
0009058 bios. p. 71 2549 1.9E-08 2.9E-06 
0016051 carbohydrate bios. p. 6 102 1.7E-03 4.2E-02 
0019752 carboxylic acid metabolic p. 17 470 1.3E-04 5.6E-03 
0006519 cell. amino acid and derivative metabolic p. 12 356 2.0E-03 4.7E-02 
0044249 cell. bios. p. 70 2445 8.6E-09 2.4E-06 
0034637 cell. carbohydrate bios. p. 6 91 9.7E-04 2.5E-02 
0006073 cell. glucan metabolic p. 5 39 1.2E-04 5.6E-03 
0042180 cell. ketone metabolic p. 17 481 1.7E-04 6.5E-03 
0034645 cell. macromolecule bios. p. 55 1864 7.3E-08 8.6E-06 
0033692 cell. polysaccharide bios. p. 5 49 3.5E-04 1.2E-02 
0044264 cell. polysaccharide metabolic p. 5 52 4.6E-04 1.4E-02 
0044267 cell. protein metabolic p. 63 2163 1.9E-08 2.9E-06 
0006631 fatty acid metabolic p. 5 62 1.0E-03 2.6E-02 
0010467 gene expression 50 1327 1.5E-10 6.2E-08 
0009250 glucan bios. p. 5 39 1.2E-04 5.6E-03 
0044042 glucan metabolic p. 6 59 9.2E-05 5.4E-03 
0009059 macromolecule bios. p. 57 1883 2.1E-08 2.9E-06 
0006082 organic acid metabolic p. 17 472 1.4E-04 5.6E-03 
0043436 oxoacid metabolic p. 17 470 1.3E-04 5.6E-03 
0000271 polysaccharide bios. p. 5 58 7.6E-04 2.0E-02 
0010608 Posttranscr. Reg. of gene expression 6 79 4.6E-04 1.4E-02 
0019538 protein metabolic p. 69 2709 5.3E-07 4.9E-05 
0006164 purine nucleotide bios. p. 6 81 5.2E-04 1.5E-02 
0009152 purine ribonucleotide bios. p. 6 78 4.3E-04 1.4E-02 
0032268 Reg. of cell. protein metabolic p. 8 134 2.9E-04 1.1E-02 
0051246 Reg. of protein metabolic p. 8 149 5.9E-04 1.7E-02 
0006417 Reg. of translation 6 66 1.7E-04 6.5E-03 
0046686 resp. to cadmium ion 6 25 5.2E-07 4.9E-05 
0010035 resp. to inorganic substance 7 40 5.9E-07 4.9E-05 
0010038 resp. to metal ion 6 30 1.7E-06 1.1E-04 
0050896 resp. to stimulus 24 758 5.8E-05 3.7E-03 
0006950 resp. to stress 19 552 1.1E-04 5.6E-03 
0009260 ribonucleotide bios. p. 6 86 7.2E-04 2.0E-02 
0006412 translation 45 418 3.7E-26 3.0E-23 
0006414 translational elongation 9 82 9.4E-07 7.0E-05 
At 48 hpi      
0065007 biological reg. 329 1592 3.7E-12 9.4E-11 
0009058 biosynthetic proc. 527 2549 2.0E-17 1.5E-15 
0005975 carbohydrate metabolic proc. 114 552 1.6E-05 1.6E-04 
0009056 catabolic proc. 278 1225 2.9E-15 1.4E-13 
0030154 cell differentiation 51 172 1.0E-07 1.3E-06 
0006519 cell. amino acid and derivative metabolic proc. 113 356 2.8E-17 1.8E-15 
0044249 cell. biosynthetic proc. 513 2445 3.2E-18 3.0E-16 
0016043 cell. component organization 211 904 2.1E-13 7.8E-12 
0019725 cell. homeostasis 35 100 1.2E-07 1.4E-06 
0034645 cell. macromolecule biosynthetic proc. 358 1864 3.0E-09 4.2E-08 
0044267 cell. protein metabolic proc. 472 2163 4.3E-20 5.4E-18 
0051234 establishment of localization 258 1461 1.0E-04 9.3E-04 
0045184 establishment of protein localization 102 362 3.2E-12 9.2E-11 
0010467 gene expression 395 1327 6.9E-45 1.3E-42 
0006091 generation of precursor metabolites and energy 38 107 2.2E-08 3.0E-07 
0042592 homeostatic proc. 41 134 6.8E-07 7.4E-06 
0051179 localization 270 1556 2.2E-04 1.9E-03 
0009059 macromolecule biosynthetic proc. 362 1883 2.3E-09 3.3E-08 
0033036 macromolecule localization 123 476 1.5E-11 3.4E-10 
0006996 organelle organization 135 526 2.9E-12 9.0E-11 
0008104 protein localization 111 407 3.8E-12 9.4E-11 
0019538 protein metabolic proc. 553 2709 4.7E-17 2.5E-15 
0015031 protein transport 102 361 2.7E-12 9.0E-11 
0050789 reg. of biological proc. 297 1461 1.7E-10 3.1E-09 
0065008 reg. of biological quality 82 279 3.6E-11 7.5E-10 
0032535 reg. of cell. component size 18 59 8.6E-04 7.1E-03 
0050794 reg. of cell. proc. 278 1384 1.8E-09 2.7E-08 
0010468 reg. of gene expression 123 501 4.6E-10 7.5E-09 
0040029 reg. of gene expression, epigenetic 8 17 1.1E-03 8.6E-03 
0060255 reg. of macromolecule metabolic proc. 143 595 1.1E-10 2.0E-09 
0019222 reg. of metabolic proc. 160 671 1.9E-11 4.2E-10 
0009628 resp. to abiotic stimulus 53 176 3.4E-08 4.3E-07 
0009719 resp. to endogenous stimulus 23 74 1.3E-04 1.2E-03 
0009605 resp. to external stimulus 29 93 1.8E-05 1.7E-04 
0050896 resp. to stimulus 171 758 4.0E-10 6.8E-09 
0006950 resp. to stress 119 552 1.4E-06 1.4E-05 
0006350 transcription 109 514 7.5E-06 7.6E-05 
0006412 translation 195 418 1.1E-55 4.2E-53 
0006810 transport 257 1456 1.1E-04 9.6E-04 
aGO annotation is available for 173 of these genes and a total of 14,816 genes in the proteome. The latter was used as 
the reference annotation in the analysis. Abbreviations: cell.=cellular; p.=process; resp.=response; bios.=biosynthesis; 
Posttranscr.=posttranscriptional.  
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Supplementary Table S20. Gene Ontology (GO) annotation of RxLR-like genes 
expressed at 24 hpi.  

GO term Ontology Description #q #ref p FDR 

0030554 F adenyl nucleotide binding 23 1909 5.2E-05 5.5E-04 
0032559 F adenyl ribonucleotide binding 21 1809 1.5E-04 1.2E-03
0005524 F ATP binding 21 1787 1.3E-04 1.1E-03
0016798 F hydrolase activity, acting on glycosyl bonds 6 215 4.0E-04 2.8E-03
0004553 F hydrolase activity, hydrolyzing O-glycosyl compounds 6 208 3.4E-04 2.5E-03
0016301 F kinase activity 19 831 3.1E-08 1.1E-06
0001882 F nucleoside binding 23 1916 5.5E-05 5.5E-04
0000166 F nucleotide binding 28 2422 2.4E-05 3.8E-04
0016773 F phosphotransferase activity, alcohol group as acceptor 19 678 1.3E-09 7.2E-08
0004672 F protein kinase activity 17 530 1.1E-09 7.2E-08
0004674 F protein serine/threonine kinase activity 13 394 5.4E-08 1.5E-06
0001883 F purine nucleoside binding 23 1912 5.3E-05 5.5E-04
0017076 F purine nucleotide binding 27 2169 9.6E-06 2.1E-04
0032555 F purine ribonucleotide binding 25 2069 2.8E-05 3.8E-04
0032553 F ribonucleotide binding 25 2069 2.8E-05 3.8E-04
0016740 F transferase activity 24 2530 9.3E-04 5.7E-03
0016746 F transferase activity, transferring acyl groups 7 312 5.1E-04 3.3E-03
0016772 F transferase activity, transferring phosphorus-containing groups 20 1630 1.1E-04 9.6E-04
0043412 P macromolecule modification 21 1578 2.6E-05 6.7E-04
0006796 P phosphate metabolic process 22 1402 1.6E-06 7.3E-05
0006793 P phosphorus metabolic process 22 1402 1.6E-06 7.3E-05
0016310 P phosphorylation 21 1125 1.9E-07 1.7E-05
0043687 P post-translational protein modification 20 1295 5.1E-06 1.9E-04
0006468 P protein amino acid phosphorylation 19 748 6.1E-09 1.1E-06
0006464 P protein modification process 20 1434 2.0E-05 6.1E-04
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Supplementary Table S21: Gene Ontology (GO) categories enrichment of differentially 
expressed genes (DEGs) in Plasmopara viticola 

 

GO term GO Description # in # in p-value FDR

0016043 P cellular component organization 95 886 5.7E-10 1.7E-07 
0048869  cellular developmental process 40 269 6.8E-09 1.0E-06 
0009653  anatomical structure morphogenesis 33 209 2.9E-08 2.9E-06 
0032502  developmental process 59 510 4.6E-08 3.5E-06 
0032501  multicellular organismal process 49 454 3.7E-06 2.1E-04 
0009056  catabolic process 101 1171 4.6E-06 2.1E-04 
0048856  anatomical structure development 45 408 4.9E-06 2.1E-04 
0003774 F motor activity 39 241 9.2E-10 1.8E-07 
0016818  hydrolase activity, acting on acid anhydrides, in P-containing 

h d id
91 950 1.9E-07 9.4E-06 

0016462  pyrophosphatase activity 91 949 1.8E-07 9.4E-06 
0017111  nucleoside-triphosphatase activity 87 932 9.1E-07 3.6E-05 
0005730 C nucleolus 38 161 1.0E-14 2.2E-12 
0043232  intracellular non-membrane-bounded organelle 123 1166 1.0E-11 7.3E-10 
0043228  non-membrane-bounded organelle 123 1166 1.0E-11 7.3E-10 
0031974  membrane-enclosed lumen 53 388 7.8E-10 4.2E-08 
0043233  organelle lumen 52 382 1.2E-09 4.4E-08 
0070013  intracellular organelle lumen 52 382 1.2E-09 4.4E-08 
0031981  nuclear lumen 47 340 4.3E-09 1.3E-07 
0015630  microtubule cytoskeleton 50 415 1.2E-07 3.1E-06 
0044422  organelle part 149 1748 1.3E-07 3.1E-06 
0044430  cytoskeletal part 57 512 2.6E-07 5.6E-06 
0005856  cytoskeleton 63 597 4.4E-07 8.6E-06 
0044446  intracellular organelle part 142 1730 1.6E-06 2.8E-05 
0005929  cilium 15 67 1.9E-06 3.1E-05 
0042995  cell projection 21 127 3.8E-06 5.8E-05 
0030529  ribonucleoprotein complex 43 397 1.2E-05 1.7E-04 
0032991  macromolecular complex 142 1868 5.2E-05 7.0E-04 
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Supplementary Table S22. FPKM values of Plasmopara viticola secreted genes 
differentially expressed during infection. 

P. viticola  
gene ID 

24 hpi 48 hpi 72 hpi 96 hpi 168 hpi 
Effector 
family 

Description 

PVITv1021061 101,819 126,359 32,185 33,569 0.00 RxLR-R 
PVITv1001084 618.71 337.70 954.19 200.19 232.07 - 
PVITv1012062 536.78 262.06 60.64 155.48 51.70 - 
PVITv1035002 236.86 74.22 633.26 520.49 467.85 - 
PVITv1005727 130.02 223.86 91.14 133.14 48.51 - elicitin-like INF6 
PVITv1006535 47.92 8.65 16.25 3.10 4.68 - 
PVITv1030766 46.47 54.22 199.26 234.34 301.00 - glycoside hydrolase, putative 
PVITv1005799 41.00 88.18 601.70 261.49 285.12 - glycoside hydrolase, putative 
PVITv1003492 39.74 153.92 91.42 114.16 35.26 RxLR-R 
PVITv1032354 33.85 84.13 126.64 201.68 87.91 - 
PVITv1020539 32.32 46.15 201.11 165.66 229.49 - cysteine protease family C01A, putative 
PVITv1013162 23.69 63.32 219.20 212.53 214.63 - 
PVITv1006070 21.86 26.69 12.44 25.82 8.95 YXSLK conserved hypothetical protein 
PVITv1022382 21.02 70.73 29.57 54.19 26.26 - conserved hypothetical protein 
PVITv1016618 18.99 26.37 175.70 102.06 144.62 - callose synthase, putative 
PVITv1019732 18.85 1.45 1.51 116.40 101.73 - glycoside hydrolase, putative 
PVITv1020466 17.44 14.64 87.56 54.44 118.82 - cysteine protease family C01A, putative 
PVITv1030481 15.23 0.00 97.44 53.96 82.34 - conserved hypothetical protein 
PVITv1035979 14.34 0.00 31.62 25.71 29.61 - protease inhibitor Epi7 
PVITv1013878 14.24 44.56 313.59 181.00 366.07 - conserved hypothetical protein 
PVITv1004487 11.86 0.00 81.84 30.47 91.65 - cutinase, putative 
PVITv1022330 10.05 48.95 470.29 427.00 567.39 - glucan 1,3-beta-glucosidase, putative 
PVITv1020375 8.64 12.24 225.85 113.22 166.94 - 
PVITv1036266 7.55 7.16 6.42 12.72 4.35 RxLR-H 
PVITv1008311 4.60 0.00 9.98 9.83 17.82 RxLR-H 

PVITv1002158 3.69 35.09 15.26 27.33 13.20 - 60S ribosomal export protein NMD3, putative 
PVITv1011616 2.50 0.61 1.74 2.75 12.66 - phospholipid-transporting ATPase, putative 
PVITv1018231 1.75 5.10 73.78 74.13 87.10 - mucin-like protein 
PVITv1033458 0.00 1.71 2.50 6.70 2.40 - 
PVITv1017335 0.00 0.00 3.37 1.27 12.90 - 
PVITv1015244 0.00 0.00 7.07 6.35 8.42 - 
PVITv1025503 0.00 0.00 7.83 5.72 8.43 - mucin-like protein 
PVITv1020385 0.00 5.10 3.51 10.72 4.09 - 
PVITv1000022 0.00 0.00 7.23 11.12 7.18 - glycoside hydrolase, putative 
PVITv1021406 0.00 0.00 17.34 2.12 8.35 - conserved hypothetical protein 
PVITv1026328 0.00 0.00 18.10 2.49 10.04 - sporangia induced conserved hypothetical protein 
PVITv1005240 0.00 1.58 22.18 0.87 7.06 - conserved hypothetical protein 
PVITv1015025 0.00 0.00 10.93 9.60 11.81 - uridine kinase 
PVITv1033929 0.00 0.00 10.52 11.66 10.62 - conserved hypothetical protein 
PVITv1016178 0.00 0.00 19.35 14.39 5.56 - 
PVITv1024386 0.00 0.00 15.03 11.85 12.77 - conserved hypothetical protein 
PVITv1015555 0.00 19.19 7.39 10.74 3.43 - carbohydrate esterase, putative 
PVITv1026360 0.00 1.49 11.18 5.01 23.48 - endoglucanase, putative 
PVITv1003147 0.00 3.91 16.45 19.31 8.56 - 
PVITv1002840 0.00 7.27 29.48 4.63 11.48 - similar to sexually induced protein 3 
PVITv1002288 0.00 0.00 0.00 29.95 32.95 - glycoside hydrolase, putative 
PVITv1007968 0.00 0.00 31.52 17.53 24.68 - 
PVITv1024576 0.00 0.00 37.19 7.00 42.04 - conserved hypothetical protein 
PVITv1019683 0.00 0.00 43.85 11.82 31.66 - conserved hypothetical protein 
PVITv1016506 0.00 0.00 34.36 23.75 30.23 - hypothetical protein 
PVITv1037885 0.00 45.59 13.42 23.53 5.96 - glucanase inhibitor protein, putative 
PVITv1003338 0.00 14.82 16.33 46.63 17.81 - 
PVITv1018548 0.00 0.00 25.67 38.69 37.17 - glycoside hydrolase, putative 
PVITv1025849 0.00 7.56 26.81 19.77 52.61 - 
PVITv1020618 0.00 13.65 9.57 31.23 57.79 - glucan 1,3-beta-glucosidase, putative 
PVITv1037902 0.00 0.00 61.82 12.63 40.07 - conserved hypothetical protein 
PVITv1023922 0.00 0.00 44.07 27.97 43.77 - methylmalonate semialdehyde dehydrogenase  
PVITv1029873 0.00 3.48 3.09 54.12 56.27 - conserved hypothetical protein 
PVITv1000935 0.00 10.41 89.37 13.46 4.53 - 
PVITv1007159 0.00 0.00 74.51 13.62 46.73 - conserved hypothetical protein 
PVITv1013252 0.00 0.00 67.76 38.79 54.69 - 
PVITv1001768 0.00 33.00 21.99 13.79 93.67 - 
PVITv1016009 0.00 0.46 142.71 3.30 38.66 - conserved hypothetical protein 
PVITv1029584 0.00 58.71 34.38 79.22 24.92 - 
PVITv1028723 0.00 67.57 44.48 71.74 32.80 - conserved hypothetical protein 
PVITv1010696 0.00 0.00 74.37 91.87 61.87 - putative GPI-anchored serine rich elicitin  
PVITv1016027 0.00 147.68 54.50 113.28 46.55 - 
PVITv1017517 0.00 15.88 182.99 84.50 126.75 - conserved hypothetical protein 
PVITv1030765 0.00 0.00 158.87 153.80 101.44 - carbohydrate-binding protein, putative 
PVITv1004978 0.00 0.00 267.52 67.21 174.76 - conserved hypothetical protein 
PVITv1027001 0.00 16.18 471.71 67.34 130.09 - 
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Supplementary Table S23. See attached Excel file “FPKM values of P. viticola secreted 
and non-secreted genes expressed during infection”. 

 

 

Supplementary Table S24. Effectors tested by Agrobacterium infiltration assays. 

Effector gene ID Symptoms on 
V. vinifera 

Symptoms on 
V. riparia 

Effector type 

 
PVITv1003209 

 
None 

 
None 

 
elicitin-like protein 

PVITv1005727 None None elicitin-like INF6 
PVITv1018092 None None Elicitin 
PVITv1020941 None None Crinkler 
PVITv1016922 None None Crinkler 
PVITv1021061 None None RxLR 
PVITv1008294 None None RxLR 
PVITv1008311 None Hypersensitive response RxLR 

 

 

Supplementary Table S25. Similarity search of the RxLR effector PVITv1_T008311 in the 
two other P. viticola genomes. 

Query Subject Identity AlignLen Qend Sstart E-value 

PVITv1_T008311 vs INRA-PV221 (Dussert et al., 2016)               

PVITv1_T008311 gi|1047461013|gb|MBPM01000113.1| 99.46 1308 1308 126397 0 

PVITv1_T008311 gi|1047461013|gb|MBPM01000113.1| 76.97 330 325 169749 5.00E-44 

PVITv1_T008311 gi|1047461013|gb|MBPM01000113.1| 78.87 265 271 133158 2.00E-42 

PVITv1_T008311 gi|1047461013|gb|MBPM01000113.1| 78.47 274 280 139834 9.00E-42 

PVITv1_T008311 gi|1047458994|gb|MBPM01001806.1| 99.85 689 1308 1 0 

                  

PVITv1_T008311 vs PvitFEM01 (this work)               

PVITv1_T008311 scaffold-5149 100  1308  1308  8731  0 

PVITv1_T008311 scaffold-5149 78.87  265  271  1643  3E‐42 

PVITv1_T008311 scaffold-73 76.97  330  325  8478  6E‐44 

                  

PVITv1_T008311 vs JL-7-2 (Yin et al., 2017)               

PVITv1_T008311 MTPI01000176.1 99.9  994  1308  38702  0 

PVITv1_T008311 MTPI01000176.1 100  173  226  39020  4E‐86 

PVITv1_T008311 MTPI01000176.1 78.49  265  271  31922  2E‐40 

PVITv1_T008311 MTPI01000176.1 100  37  292  38848  2E‐10 

PVITv1_T008311 MTPI01000890.1 77.81  329  325  34110  7E‐49 
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Supplementary Table S26. See attached Excel file “KEGG modules significantly enriched 
or lost in P. viticola”. 

 

Supplementary Table S27. P. infestans KEGG orthologs in P. viticola isolates	

     Blastn hits to find 
KEGG Module Pathway 

description 
P. infestans  

KEGG gene ID 
Orthologs in

P. viticola  INRA-PV221 
Orthologs in P. 
viticola JL-7-2 

M00531,M00615 Nitrogen 
metabolism 

PITG_13013 None None 

M00176,M00616 Sulphur 
assimilation 

 

PITG_19263,PITG_18187 None None 

M00027 GABA shunt PITG_01909 None None 

M00028 
(M00016,M00031) 

 

Ornithine 
biosynthesis 

PITG_12053 None None 

M00036 (M00088) Leucine 
degradation 

PITG_00747 gi|1047460988|gb|MBPM01000132.1| MTPI01000061.1 

M00051 Uridine 
monophosphate 

biosynthesis 

PITG_09635,PITG_09576 None None 

M00307 Pyruvate oxidation PITG_03277, PITG_19161, 
PITG_06108, PITG_11929, 

PITG_00458, 
PITG_15359,PITG_18935, 

PITG_19802 

gi|1047460982|gb|MBPM01000136.1|, 
gi|1047461157|gb|MBPM01000003.1|, 
gi|1047461135|gb|MBPM01000019.1| 

MTPI01001062.1 
MTPI01000086.1 
MTPI01000266.1 

 

Supplementary Table S28. See attached Excel file “FPKM values and GO term 
enrichment analysis of Vitis vinifera genes differentially expressed during infection”. 
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Supplementary Table S29. RNA silencing proteins encoded in P. viticola genome. 

 

Gene 
name 

Predicted 
protein 

Protein domains Number 
of genes 

P. viticola  
Gene ID 

PvRDR RNA-dependent 
RNA polymerase 

RdRP (pfam05183), Helicase_C (pfam00271), DEXDc 
(cd00046), SSL2 (COG1061) 

1 PVITv1_T028224 

PvAGO Argonaute Piwi_ago-like (cd04657) 2 PVITv1_T036365 

  Piwi_ago-like (cd04657), ArgoN (pfam16486), 
PAZ_argonaute_like (cd02846), ArgoL1 (pfam08699), 

PLN03202 (PLN03202) 

 PVITv1_T027285 

PvDRB dsRNA-binding DSRM (cd00048), WW (smart00456) 1 PVITv1_T024270 
PvHEL RNA helicase DEADc (cd00268), HELICc (cd00079), DEXDc 

(smart00487) 
7 PVITv1_T035436 

  DEADc (cd00268), DEXDc (smart00487)  PVITv1_T015528 

  P-loop_NTPase super family (cl21455), Helicase_C 
(pfam00271), SrmB (COG0513) 

 PVITv1_T001847 

  DEADc (cd00268), Helicase_C (pfam00271), SrmB 
(COG0513) 

 PVITv1_T002627 

  Helicase_C (pfam00271), SrmB (COG0513)  PVITv1_T022767 

  DEADc (cd00268), HELICc (cd00079), PTZ00424 
(PTZ00424) 

 PVITv1_T018212 

  P-loop_NTPase super family (cl21455), HELICc 
(cd00079), cas3_core (TIGR01587) 

 PVITv1_T033892 

PvHDAC Histone deacetylase Arginase_HDAC super family (cl17011), PTZ00063 
(PTZ00063) 

5 PVITv1_T026116 

  HDAC_classII_2 (cd11599)  PVITv1_T019080 

  Arginase_HDAC super family (cl17011)  PVITv1_T034379 
  Arginase_HDAC super family (cl17011)  PVITv1_T028430 
  Arginase_HDAC super family (cl17011), PTZ00063 

(PTZ00063) 
 PVITv1_T007443 

PvBRD Bromodomain Bromodomain (cd04369), PHD_SF super family (cl22851) 1 PVITv1_T006879 
PvHMET SET (Su(var)3-9, 

Enhancer-of-zeste, 
Trithorax) 

SET (smart00317), FYRN (pfam05964), FYRC super 
family (cl02651) 

7 PVITv1_T027418 

  SET (smart00317), AWS (smart00570), PostSET 
(smart00508) 

 PVITv1_T002061 

  SET (smart00317)  PVITv1_T031084 

  SET (smart00317), AWS (smart00570), PKc_like super 
family (cl21453), AWS (smart00570), RRM_SF super 

family (cl17169) 

 PVITv1_T003751 

  SET (smart00317), PHD2_NSD (cd15565), PHD3_NSD 
(cd15566), PHD_SF super family (cl22851) 

 PVITv1_T019885 

  SET (smart00317)  PVITv1_T031084 
  SET (smart00317), PHD_SF super family (cl22851), AWS 

(smart00570) 
 PVITv1_T014932 

PvCRD Chromodomain CHROMO (cd00024) 4 PVITv1_T029424 

  Chromo (pfam00385)  PVITv1_T008234 
  DEXDc (cd00046), Chromo (pfam00385), CHROMO 

(smart00298), DEXDc (smart00487) 
 PVITv1_T037120 

  Chromo (pfam00385)  PVITv1_T015441 

PvRNaseIII Ribonuclease III RIBOc (cd00593) 1 PVITv1_T011751 

PvDCL Dicer-like Twice RIBOc (cd00593), Dicer_dimer super family 
(cl04028) 

2 PVITv1_T038441 

  DEAD (pfam00270), HELICc (smart00490), Dicer_dimer 
super family (cl04028), MPH1 (COG1111) 

 PVITv1_T003331 
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Supplementary Table S30. Effector genes associated with sRNAs.  

Effector  
categorya 

N unique  
sRNAs 

Total N 
reads 

N genes
N genes 

with 
sRNAs 

Genes 

RxLR 240 21,147 202 3 PVITv1_T021061, T000764, T024389 
 

Crinkler 416 119,424 285 13 PVITv1_T028898, T016878, T035967, 
T025173, T003247, T030506, T020941, 
T020942, T012549, T024389, T002897, 
T004916, T004903 

YxSLK 8 200 308 5 PVITv1_T006273, T006256, T005164, 
T012793, T010063 

a26 genes containing sRNAs mapping perfectly and uniquely on effector. For the RxLR the following variants were 
considered: RxLR+EER, SignalPeptide+RxLR+EER, SignalPeptide +RxLR-like(homology). For the CRN-like the 
following variants were considered: LFLAK+VVP, SignalPeptide +LFLAK, SVM. In particular, PVITv1_T024389 is 
present in both the CRN (it contains the LFLAK) and the RxLR (by homology) lists, and appeared to be a strong sRNA 
producer. 

 

Supplementary Table S31. See attached Excel file “Degradome analysis of V. vinifera 
genes targeted by V. vinifera sRNAs”. 

Supplementary Table S32. See attached Excel file “Degradome analysis of P. viticola 
genes targeted by P. viticola sRNAs”. 

Supplementary Table S33. See attached Excel file “Degradome analysis of V. vinifera 
genes targeted by P. viticola sRNAs”. 

Supplementary Table S34. See attached Excel file “Degradome analysis of P. viticola 
genes targeted by V. vinifera sRNAs”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary information. Brilli et al. 

 

70 
 

Supplementary Table S35. Oligonucleotide sequences. 

 

Name Sequence (5’-3’) Purpose 
   
F_PVITv1T003209_+sp_CACC CACCATGGCAAAACTTTTCGTTGT Agroinfiltration Elicitin 
F_PVITv1T003209_Dp_CACC CACCATGCACGACGGAGACGATGAC “ 
R_PVITv1T003209 TTACGCTAGGATAGCGGC “ 
F_PVITv1T005727_+sp_CACC CACCATGAATCTATGCTTGACCATCG Agroinfiltration Elicitin 
F_PVITv1T005727_Dp_CACC CACCATGAACGATTGTTCAGCAATTCAG “ 
R_PVITv1T005727 TTAATCAGCACCACGAAAATTG “ 
F_PVITv1T018092_+sp_CACC CACCATGAACATCTTCTACGCTGTC Agroinfiltration Elicitin 
F_PVITv1T018092_Dp_CACC CACCATGGAACCTTGCCCTCAAGATG “ 
R_PVITv1T018092 TCAAAAGCTACGAAAAGAGTATG “ 
F_PVITv1T020941 CACCATGAAGGACGCGATTGC Agroinfiltration Crinkler 
R_PVITv1T020941 TCAAGTGACGGTTGAC “ 
F_PVITv1T016922 CACCATGATAGTAATGTGTGGTGAAGAAAAAG Agroinfiltration Crinkler 
R_PVITv1T016922 TCAGAGTGATTGCGTAAGCG “ 
F_PVITv1T021061_+sp_CACC CACCATGCAGCGCAAATGGC Agroinfiltration RxLR 
F_PVITv1T021061_Dp_CACC CACCATGCTGTGCTGTGGTG “ 
R_PVITv1T021061 CTACTCGTCCACCAAGATATAAC “ 
F_PVITv1T008294_+sp_CACC CACCATGCGCGGAAGTACG Agroinfiltration RxLR 
F_PVITv1T008294_Dp_CACC CACCATGACTGCAATCGGAAAATCTCG “ 
R_PVITv1T008294 CTAATTGCCGCCGCTC “ 
F_RxLR_PVITv1T008311_+sp_CACC CACCATGCGTGGTGCGTATTAC Agroinfiltration RxLR 
F_RxLR_PVITv1T008311_Dp_CACC CACCATGTCTGACCGTCAGCTCC “ 
R_RxLR_PVITv1T008311 TTACAAAGCTTTGTCAGTCC “ 
F_pSKMCS_CACC CACCTAATACGACTCACTATAGGGC Agroinfiltration Empty vector 
R_pSKMCS TGACCATGATTACGCCAAGC “ 
>FqRT_PVITv1T008311 CGCCTCCAAAATTGAAGGTCG qRT-PCR RxLR_PVITv1T008311 
>RqRT_ PVITv1T008311 GTTGGAAGACTGATTGTGCCG “” 
F_qRTGFPpK7WG2D GACCACTACCAGCAGAACACC qRT-PCR GFP 
R_qRTGFPpK7WG2D AGCTCGTCCTTCTTGTACAGC  
F_PveIF1b_ PVITv1_T004162 ACAACGGTGCAAGGCTTAGC qRT-PCR house-keeping gene eiF1b 

R_ PveIF1b_ PVITv1_T004162 ACTCGCGAATGTTAGTCCGC “ 
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