
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This manuscript applies Mendelian Randomization (MR) to understand the impact of several risk 

factors on complex traits. The authors employ a few variations on MR to get better estimates of 

the causal effects - 1) detection and removal of outlier SNPs that may be indicative of pleiotropy 

2) integration of multiple independent SNPs into a better estimate of the MR statistic and 3) 

conditional analysis to control for other covariates. I found it to be an interesting paper to read, 

relevant to current approaches in MR and GWAS, but not exceptionally novel given related work - 

rather a collection of variations that hopefully improve the results, but need some greater 

demonstration.  

 

One major omission in this work is a demonstration of the improvement by each of these 

variations, or a comparison to other related approaches (such as Pickrell et al). The reader needs 

to be shown that these are better methods for getting more accurate estimates of causal 

relationships, and to use for future studies. This ideally would include comparison to results from 

randomized trials (if quantitative results are available), and simulation analysis. This is important 

to understanding the contribution.  

 

A particular place where more analysis would help is in the analysis of HEIDI-outlier. They 

acknowledge it is not a "fail-safe" but the reader is left with little sense of how many pleiotropic 

effects (or what types/effect sizes) would escape detection. The mention a false positive rate of 

0.01 given their lax p-value threshold, but more importantly, what is the false negative rate?  

 

Even though the reverse causality tests generally revealed smaller effect sizes, they did find a 

reasonable number of hits even a strict FWER - this merits more explanation. Do these indicate 

false positives (more than the p-values would indicate, and thus potentially aren't calibrated), or 

are they suggesting these are actually true reverse effects (in addition to the forward effects?)?  

 

Other comments:  

 

Can this be explained a little further (from Online Methods): "where there is a significant difference 

between bxy estimated at an instrument i (i.e. bxy(i)) and bxy estimated at the SNP that shows 

the strongest association with exposure in the third  

quintile of the bˆxy distribution" -- why the third quintile?  

 

The wording of this sentence is a bit convoluted: "We have previously shown that the power of MR 

could be greatly improved by a flexible analysis of summary-level GWAS data for exposure (e.g. 

risk factor) and outcome (e.g. disease) from two samples of large sample size (summary-data-

based MR, SMR), and applied the SMR method to test if the effects of genetic variants on a 

phenotype are mediated by gene expression"  

 

"estimate the effect of a risk factor on disease conditioning on the genetic values of other risk 

factors" - For a general audience should define "genetic value" the first time it's used.  

 

In the following sentences, they seem to contradict themselves. First saying there is likely 

mediation, then saying they can't really distinguish. I would tone down the first sentence: 

"suggesting that the marginal effects of HDL-c on diseases were likely to be mediated or driven by 

the covariate risk factors because of the complex bidirectional causative associations between 

HDL-c and the other risk factors as illustrated in Supplementary Fig. 9. It is difficult to distinguish 

the direction of mediation, i.e. whether HDL-c is a mediating (model I: other risk factors -> HDL-c 

-> disease) or driving (model II: HDL-c -> other risk factors -> disease) factor (Supplementary 

Fig. 13)."  

 



I would normally say that MR *uses* instrumental variables, not that MR *is* an instrumental 

variable. (from Introduction)  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors proposed three summary-data-based methods in this manuscript: 1) to estimate and 

test the mediation effect of risk factor on disease status (b_{xy}) using multiple genetic variants 

as instruments, an extension of their previous SMR method 2) to detect outliers in the estimates of 

mediation effect which are likely caused by pleiotropy, i.e. not by mediation / causality 3) to 

estimate and test the mediation effect conditional on other risk factorss. They applied their 

methods to multiple GWAS summary association data set to test for causal relationships between 

pairs of traits and diseases. Overall, I find the methods robust and useful addition to the 

community. However, more simulations and more rigorous analyses of real data are needed to 

demonstrate the robustness of their methods and validity of their conclusions.  

 

Major comments:  

 

1) The authors developed GSMR to meta-analyze the estimates of effect of risk factor on disease 

status from multiple SNPs (b_{zx,i}) in a fixed-effect framework. This method models correlation 

between SNPs (LD) in the variance, and therefore is able to provide an unbiased and efficient 

estimate of the mediation effect. However, although the authors claim that their method can 

account for remaining LD after clumping, all of their simulations are based on independent SNPs – 

SNPs were drawn independently from the binomial. It would greatly strengthen the manuscript if 

the author could perform simulations where the SNPs are not entirely independent from each other 

and then show that their method is still unbiased in the presence of LD.  

 

2) In the null simulation to test the unbiasedness of GSMR, the authors did not include any 

pleiotropic / direct effect of genetic effect on the disease status. For example, it could be the case 

that b_{xy} is zero, but multiple b_{zy} is not zero for both the exposure and the disease status 

at some of the SNPs. This could, in principle, results in bias estimate of b_{xy}, in the scenario 

where there is LD among the SNPs – the estimate of b_{xy,i} at each SNPs are likely non-zero 

and highly correlated. It would greatly strengthen the manuscript if the authors could perform 

simulations where there is indeed pleiotropic / direct effect of genetic variants on the disease 

status. Also, although the authors demonstrated that the power of GSMR is not significantly 

affected by HEIDI-outlier filtering, an assessment of HEIDI-outlier in detecting the SNPs with 

pleiotropic effect would be very helpful.  

 

3) The authors showed that their method is more powerful than Egger regression. However, this is 

not an entirely fair comparison, since Egger regression accounts for pleiotropy by incorporating an 

intercept term in the second regression step, effectively estimating two parameters instead of one 

as the case for GSMR. It’s curious whether GSMR is still more powerful than Egger regression 

when there is indeed pleiotropy. Again, all the simulations performed in this study (as described in 

supplementary note) do not seem to make the assumption that there is indeed pleitropy. An 

explanation of why GSMR is more powerful than Egger regression would also be helpful.  

 

4) In the absence of LD, the inverse-variance weighted approach to estimate the mediation effect 

should be equivalent to the GSMR approach (as shown by the equations at the top of page 23) and 

Egger regression. It’s curious to me why GSMR has more power than IVW. An explanation would 

be helpful.  

 

5) The authors analyzed many diseases that are case-control traits, which are often studied on 

ascertained samples, i.e. more cases are collected than in the general population to increase the 

chance of detecting the causal variants. The exposures, which are quantitative traits, on the other 

hand, are more likely studied on randomly collected (i.e. not ascertained) samples. The mismatch 



between the two types of samples will likely induce an overestimate of the mediation effect. The 

authors should elaborate more on how ascertainment could bias their causal inference.  

 

6) It’s not clear whether the authors removed genetic variants in the HLA region before their 

analyses. If the author included SNPs in the HLA, an explanation would be helpful.  

 

Minor comments:  

 

1) The authors estimate b_{xy} by meta-analyzing b_{xy,i} of each SNP under a fixed-effect 

framework. Another approach is to assume the true b_{xy} has a distribution, i.e. a random-effect 

framework. It’s curious whether using a random-effect framework would be more appropriate as 

each SNP in the GWAS is likely tested under different sample sizes.  

 

2) The authors showed that reverse causation likely exist for BMI and T2D although the effect of 

T2D on BMI is much smaller. It’s worth noting here that the sample sizes of GWASs on BMI and 

T2D are very different. Therefore, there can be biases in the number of GWS selected (e.g. 

number of GWAS for BMI likely larger than the number of GWS for T2D) in the estimation b_{xy}, 

which can in turn results in biases in b_{xy} in both the forward and reverse direction. The 

authors should discuss this as potential bias of their analyses.  

 

3) It would be helpful to provide an estimate of the remaining LD (e.g. the LD score) after 

applying the clumping step in real data analyses.  

 

4) I would run the causal inference methods described in citation 16 to confirm / support the 

findings discovered in this manuscript.  

 

5) Adjusting for heritable covariates could induce bias in GWAS (see Aschard et al. AJHG 2015). 

Since most of the GWAS summary association data are likely adjusted for covariates, this could 

induce biases in estimating b_{xy}. Similarly, applying conditional analyses using summary data 

could result in false causative association as well.  

 

 

Reviewer #3 (Remarks to the Author):  

 

Zhu et al. propose the method GSMR to estimate "causal" (with assumptions) relationships 

between traits from GWAS summary statistics. They extend their previous SMR statistic to 

estimate and test a Mendelian Randomization across multiple correlated instruments. They 

propose an outlier test to identify and remove SNPs that deviate from the overall MR trend, as well 

as a novel conditional analysis. Because the method only requires summary-level data, it was 

applied to a large number of risk factors and disease traits. They observe a causal effect of BMI on 

many traits (including, interestingly, overall disease count), as well as intriguing causal inferences 

between height, educational attainment and other traits.  

 

Overall, the work aims to address a specific and important problem, proposes multiple methods, 

and describes interesting results. The manuscript is concise and easy to read. The conditional 

GSMR idea, in particular, is novel and informative. However, given that MR is now a mature 

research area with many competing methods, it is not clear what advance these methods offer 

over the most cutting-edge work, which is not cited or discussed very extensively. Moreover, there 

are some issues with the SMR statistic and the simulation framework that left me unconvinced 

about the validity of the method. The results are interesting and of potential value to the field, but 

there are too many methodological gaps in the current form.  

 

# Major Comments  

 

* Recent MR methodology should be cited and compared to more thoroughly. Several methods to 



deal with correlated instrumental variables exist, of which weighted generalized linear regression 

(Burgess et al. Stat Med 2016 [PMID 26661904]) appears to be very similar in spirit to GSMR. 

What is the advance of this approach over the methods described in Burgess et al. and what is the 

relative performance of the methods? The approach of Pickrell et al. Nat Genet 2016 - perhaps the 

most recent high-profile MR paper - is cited but GSMR needs to be put in context to the causal 

inference in that paper (which analyzes many of the same traits) or compared by simulation. The 

same comments apply to the HEIDI outlier test: multiple summary-based sensitivity approaches 

are discussed in, for example, (Burgess et al. Epi 2017 [PMID 27749700]). How does HEIDI-outlier 

compare to those approaches?  

 

* The derivation for var(b_xy) is approximate (pg.22) and is not well calibrated, casting doubt on 

the calibration of the subsequent statistics. Consider the following R snippet as a quick example:  

 

set.seed(0)  

chisqzy = rchisq(10e4,df=1,ncp=0)  

chisqzx = rchisq(10e4,df=1,ncp=0)  

smrstat = chisqzy * chisqzx / (chisqzy + chisqzx)  

cat( mean(pchisq(smrstat,1) < 0.05) , '\n' )  

 

In this null simulation 10% of statistics come up as significant at P<0.05. Only after substantially 

increasing the non-centrality parameter for one of the traits does the empirical \alpha start to 

approach 5%. This is a serious problem that the reader should be made aware of and I did not find 

any discussion of it in the manuscript. Especially since the actual causal estimate is identical to 

existing methods (Fig S16) so all of the power is coming from this variance estimator. This is the 

fundamental statistic used in all other tools so poor calibration has implications for all of the 

results. Please include a discussion of this issue and recommendation for how to avoid bias, and 

assure the reader that mis-calibration is not the reason GSMR performs better than existing 

methods.  

 

* All of the simulations in Supp Note 1 use independent SNPs drawn from a binomial distribution 

so the impact of LD is never actually evaluated. An LD correlation matrix is described in the 

Supplement ("In addition, we simulated 5,000 individuals in sample #3 (n3) to calculate LD 

correlation matrix.") but should only be contributing noise if the SNPs come from independent 

distributions. Please include thorough simulations with realistic population LD and reference panels 

(as in Supp Note 3 for example).  

 

* The GSMR method is presented as a generalization of MR that accounts for LD, and so I had 

expected it to be applied to most/all SNPs in the data. However, only genome-wide significant 

SNPs with highly strict LD pruning were used. It's not at all clear why these restrictions are 

necessary and they severely undercut the novelty of the approach since the remaining SNPs are 

nearly free of LD. Why throw away so much data? Given that this is such a key methodological 

point, I urge the authors to clearly explain and justify how SNPs should be selected for inclusion in 

the analysis to maximize power (this could be addressed using realistic LD simulations suggested 

in the previous comment).  

 

* There's also a broader question of what advantages this approach has over cross-trait LD-score 

regression (which was run on all pairs of traits anyway). The paper of Bulik-Sullivan et al. 2015 

Nat Genet showed that cross-trait LDSC is asymptotically equivalent to the 2SLS Mendelian 

randomization estimate from the same set of variants, and confounding from pleiotropy affects 

both methods. So is there a clear advantage to using the GSMR statistics? Are there any instances 

where GSMR results are significantly different from cross-trait LDSC results? Is GSMR expected to 

have better power for certain disease architectures? I can see how the bi-directional GSMR 

approach gives you additional insights into causality, but is this better than running a sort of "bi-

directional" LDSC on the top X% of SNPs from each trait?  

 



# Minor Comments  

 

* For HEIDI-outlier please explain why the third quintile is used to define b_xy(top) and how the 

choice of quintile impacts the power and calibration of the method. Can the authors guarantee that 

using HEIDI-outlier to remove poor fitting SNPs and then running GSMR is always over-

conservative?  

 

* The multi-trait conditioning requires h^2 and r^2 over the targeted SNPs, but uses LDSC 

estimates which are from all common variants. Is there a misspecification if the distribution of 

effect sizes is something like spike + slab and top hits have different h^2 and r^2 from the rest of 

the variants?  

 

* The reverse GSMR statistics being less significant than forward GSMR is used as evidence of little 

pleiotropy: "Second, if the results were driven by pleiotropy, we would expect the estimates of bxy 

from reverse GSMR comparable with those from GSMR, which is not what we observed". However, 

is this not strongly effected by differences in power between the two studies determining which 

instruments get selected? The GIANT and Edu traits are some of the largest GWAS in existence so 

it's not entirely surprising that associations in the reverse direction are weaker and may not be 

sufficient to rule out pleiotropy or reverse-causality.  

 

 

 



Reviewers'	comments:	
	
We	thank	the	constructive	comments	from	the	three	reviewers,	which	have	significantly	
improved	our	manuscript.	We	have	responded	to	all	the	reviewers’	comments	point-by-point	
below	in	this	document	(in	blue)	and	have	highlighted	all	the	relevant	changes	in	yellow	in	the	
revised	manuscript.		
	
During	the	revision	process,	we	updated	our	multi-trait-based	conditional	method	to	account	for	
potential	sample	overlaps	among	data	sets.	We	have	re-run	the	conditional	analyses	using	the	
updated	method.	The	results	remain	mainly	unchanged.	
	
Reviewer	#1	(Remarks	to	the	Author):	
	
This	manuscript	applies	Mendelian	Randomization	(MR)	to	understand	the	impact	of	several	risk	
factors	on	complex	traits.	The	authors	employ	a	few	variations	on	MR	to	get	better	estimates	of	
the	causal	effects	-	1)	detection	and	removal	of	outlier	SNPs	that	may	be	indicative	of	pleiotropy	
2)	integration	of	multiple	independent	SNPs	into	a	better	estimate	of	the	MR	statistic	and	3)	
conditional	analysis	to	control	for	other	covariates.	I	found	it	to	be	an	interesting	paper	to	read,	
relevant	to	current	approaches	in	MR	and	GWAS,	but	not	exceptionally	novel	given	related	work	-	
rather	a	collection	of	variations	that	hopefully	improve	the	results,	but	need	some	greater	
demonstration.		
	
One	major	omission	in	this	work	is	a	demonstration	of	the	improvement	by	each	of	these	
variations,	or	a	comparison	to	other	related	approaches	(such	as	Pickrell	et	al).	The	reader	needs	
to	be	shown	that	these	are	better	methods	for	getting	more	accurate	estimates	of	causal	
relationships,	and	to	use	for	future	studies.	This	ideally	would	include	comparison	to	results	from	
randomized	trials	(if	quantitative	results	are	available),	and	simulation	analysis.	This	is	important	
to	understanding	the	contribution.	
	
Re:	We	thank	the	reviewer	for	the	suggestion.	We	have	compared	GSMR	with	the	prevailing	
methods	that	use	GWAS	summary	data	to	infer	causality,	e.g.	the	inverse-variance	weighted	(IVW)	
Mendelian	Randomisation	(MR)	method,	linear	regression	based	MR	method	(i.e.	MR-Egger),	and	
the	Pickrell	maximum	likelihood	method	(Pickrell	2016	Nat	Genet).	
	
Previous	studies	have	shown	by	theory	and	simulation	(Burgess	et	al.	2013	Genet	Epidemiol;	
Bowden	et	al.	2015	Int	J	Epidemiol)	that	MR-IVW	is	equivalent	to	MR-Egger	with	intercept	0.	
	
The	Pickrell	methods	are	not	based	on	the	MR	framework.	One	method	is	to	use	the	correlation	in	
effect	sizes	of	a	set	of	top	associated	SNPs	on	exposure	and	outcome	to	assess	the	genetic	overlap	
(referred	to	as	Pickrell-Cor).	Note	that	Pickrell-Cor	is	similar	to	MR-Egger	in	the	absence	of	
pleiotropy	despite	that	Pickrell	et	al.	use	a	Bayesian	approach	to	select	SNPs.	Pickrell	et	al.	further	
exploit	the	asymmetry	of	correlation	(the	correlation	computed	from	SNPs	associated	with	the	
exposure	is	different	from	that	computed	from	SNPs	associated	with	the	outcome)	to	infer	
causality	by	a	maximum	likelihood	approach	(referred	to	as	Pickrell-ML).	
	
In	the	previous	version	of	our	manuscript,	we	performed	simulation	to	compare	GSMR	with	MR-
Egger	and	MR-IVW	and	showed	that	GSMR	was	more	powerful	than	MR-Egger	and	MR-IVW	
especially	when	the	number	of	independent	instruments	was	large.	This	is	because	GSMR	
accounts	for	the	sampling	variance	in	both	𝑏#$ 	and	𝑏#%	where	𝑏#$ 	is	the	effect	size	of	a	SNP	on	
exposure	and	𝑏#%	is	the	effect	size	of	the	SNP	on	outcome	whereas	both	MR-Egger	and	MR-IVW	
assume	that	𝑏#$ 	is	estimated	without	error.	
	
In	the	revised	manuscript,	we	have	performed	additional	simulation	to	compare	GSMR	with	the	
Pickrell	methods	(Supplementary	Fig.	3).	Result	shows	that	the	power	of	Pickrell-Cor	is	slightly	



lower	than	that	of	MR-Egger	because	Pickrell-Cor	does	not	account	for	the	sampling	variance	in	
both	𝑏#$ 	and	𝑏#% .The	Pickrell-ML	method	tests	for	the	asymmetry	of	the	associations	so	that	the	
power	is	limited	(not	comparable	with	the	other	methods).	
	
Furthermore,	GSMR	has	the	advantage	of	accounting	for	correlations	between	SNPs	in	long-range	
linkage	disequilibrium	(LD)	(Price	et	al.	2008	AJHG)	although	the	generalized	MR-IVW	method	
(Burgess	et	al.	2012	Stat	Med)	also	takes	LD	into	account.	Our	new	simulation	shows	the	GSMR	is	
more	powerful	than	the	generalized	MR-IVW	method	again	because	the	generalized	MR-IVW	
approach	assumes	that	𝑏#$ 	is	estimated	without	error	(Supplementary	Fig.	3).	
	
In	addition,	we	have	shown	by	additional	simulation	that	in	the	presence	of	pleiotropy	the	
estimate	of	causal	effect	from	GSMR	(with	HEIDI-outlier	filtering)	is	unbiased	whereas	there	is	a	
small	bias	in	the	estimate	from	MR-Egger	(Supplementary	Fig.	4)	that	is	thought	to	be	free	of	
confounding	from	pleiotropy.	
	
We	have	further	applied	MR-Egger	and	the	Pickrell	methods	to	real	data.	Consistent	with	the	
results	from	simulation,	the	estimates	from	MR-Egger	and	the	Pickrell	approaches	are	less	
significant	than	those	from	GSMR	(Supplementary	Table	7	and	Supplementary	Fig.	22).	
	
We	have	added	the	new	analyses	and	results	to	the	main	text	(pages	4	and	5),	Supplementary	
Figures	3	and	4,	Supplementary	Table	7	and	Supplementary	Note.	
	
Regarding	to	the	evidence	from	randomised	controlled	trials	(RCTs),	there	are	a	number	of	
examples	where	the	causal	associations	identified	by	our	analysis	have	been	confirmed	by	RCTs.	
These	examples	are	BMI	->	T2D	(Look	AHEAD	Research	Group	2010	Archives	of	Internal	
Medicine),	LDL	->	CAD	(Baigent	et	al.	2005	Lancet),	and	SBP	->	CAD	(Collins	et	al.	1990	Lancet),	
which	have	been	mentioned	these	studies	in	the	main	text	(pages	7,	8	and	9).	We	have	also	
indicated	in	Supplementary	Table	6	whether	any	of	our	significant	results	has	been	observed	in	
a	previous	observational	study	or	confirmed	by	a	RCT.	
	
A	particular	place	where	more	analysis	would	help	is	in	the	analysis	of	HEIDI-outlier.	They	
acknowledge	it	is	not	a	"fail-safe"	but	the	reader	is	left	with	little	sense	of	how	many	pleiotropic	
effects	(or	what	types/effect	sizes)	would	escape	detection.	The	mention	a	false	positive	rate	of	
0.01	given	their	lax	p-value	threshold,	but	more	importantly,	what	is	the	false	negative	rate?	
	
Re:	We	thank	the	reviewer	for	pointing	out	this.	
	
The	false	positive	rate	of	detecting	horizontal	pleiotropy	is	not	important	because	even	if	a	true	
causal	signal	is	falsely	detected	as	pleiotropy	and	eliminated	from	the	analysis,	it	will	only	affect	
the	power	rather	than	the	false	positive	rate	or	biasedness	of	the	GSMR	analysis.	We	chose	a	
threshold	of	0.01	because	if	there	is	no	pleiotropy,	only	1%	of	the	valid	instruments	will	be	
removed	by	chance,	resulting	in	little	loss	of	power.	On	the	other	hand,	this	is	a	relatively	low	p-
value	threshold	for	the	heterogeneity	test	ensuring	a	relatively	high	power	to	detect	pleiotropic	
outliers.		
	
The	power	of	detecting	pleiotropy	depends	on	the	sample	sizes	and	the	deviation	of	a	pleiotropic	
effect	from	the	causal	model.	We	have	performed	additional	simulation	(based	on	a	causal	model	
with	pleiotropy)	to	quantify	the	power	of	detecting	the	pleiotropy	effects	(Supplementary	Fig.	
4a).	There	are	certainly	pleiotropic	SNPs	(especially	those	with	small	effect	sizes)	not	detected	by	
HEIDI-outlier.	Nevertheless,	those	undetected	pleiotropic	effects	do	not	seem	to	bias	the	GSMR	
estimate	as	demonstrated	in	our	additional	simulation	(Supplementary	Fig.	4b).	
	
We	have	commented	on	this	in	the	revised	manuscript	(page	5)	and	added	the	new	simulation	
results	in	Supplementary	Figure	4.	



	
Even	though	the	reverse	causality	tests	generally	revealed	smaller	effect	sizes,	they	did	find	a	
reasonable	number	of	hits	even	a	strict	FWER	-	this	merits	more	explanation.	Do	these	indicate	
false	positives	(more	than	the	p-values	would	indicate,	and	thus	potentially	aren't	calibrated),	or	
are	they	suggesting	these	are	actually	true	reverse	effects	(in	addition	to	the	forward	effects?)?	
	
Re:	If	the	false	positive	rate	at	FWER	is	higher	than	expected,	it	suggests	that	p-value	is	not	
uniformly	distributed	under	the	null.	We	therefore	performed	additional	simulation	to	calibrate	
the	test-statistics	for	reverse-GSMR	under	the	null	hypothesis	that	there	is	a	forward	effect	but	no	
reverse	effect	(Supplementary	Note	4).	Result	shows	the	reverse-GSMR	p-value	is	indeed	
uniformly	distributed	under	the	null	as	demonstrated	by	the	QQ-plot	in	Supplementary	Figure	
20,	suggesting	the	false	positive	rate	of	revere-GSMR	analysis	is	well	calibrated.	We	have	added	
the	new	result	to	the	revised	manuscript	(page	13).	
	
We	have	further	performed	an	MR-Egger	regression	analysis	for	the	reverse	effect.	All	of	the	
estimated	MR-Egger	intercepts	are	very	close	to	zero	and	none	of	them	are	significant,	suggesting	
that	the	reverse	effect	is	unlikely	to	be	confounded	from	pleiotropy.	
	
We	therefore	believe	that	the	reverse	effects	are	true	in	addition	to	the	forward	effects	especially	
those	in	opposition	direction	with	the	forward	effects	(e.g.	the	bidirectional	associations	between	
BMI	and	T2D).	
	
Other	comments:	
	
Can	this	be	explained	a	little	further	(from	Online	Methods):	"where	there	is	a	significant	
difference	between	bxy	estimated	at	an	instrument	i	(i.e.	bxy(i))	and	bxy	estimated	at	the	SNP	that	
shows	the	strongest	association	with	exposure	in	the	third	
quintile	of	the	bˆxy	distribution"	--	why	the	third	quintile?	
	
Re:	In	the	HEIDI-outlier	test,	we	choose	an	instrument	as	a	target	and	compare	the	estimate	of	bxy	
at	the	target	SNPs	with	those	at	the	other	instruments.	We	know	that	the	power	of	detecting	
heterogeneity	increases	with	the	strength	of	association	between	the	target	SNP	and	exposure.	
However,	we	cannot	simply	choose	the	top	exposure-associated	SNP	because	sometimes	when	a	
SNP	has	an	extremely	strong	effect	on	the	exposure,	it	is	also	likely	to	be	a	pleiotropic	outlier	(e.g.	
the	top	LDL-associated	SNP	at	the	APOE	locus	shows	a	very	strong	pleiotropic	effect	on	
Alzheimer’s	disease,	as	shown	in	Figure	4).	Therefore,	to	increase	the	robustness	of	the	HEIDI-
outlier	test,	we	examine	the	distribution	of	b$%	as	a	function	of	–log10(p-value)	for	𝑏#$ 	and	choose	
the	top	exposure-associated	SNP	in	the	third	quintile	of	the	distribution	to	avoid	choosing	an	
extreme	pleiotropic	outlier	as	the	target	SNP.	
	
We	have	clarified	this	in	the	revised	manuscript	(page	17).		
	
The	wording	of	this	sentence	is	a	bit	convoluted:	"We	have	previously	shown	that	the	power	of	
MR	could	be	greatly	improved	by	a	flexible	analysis	of	summary-level	GWAS	data	for	exposure	
(e.g.	risk	factor)	and	outcome	(e.g.	disease)	from	two	samples	of	large	sample	size	(summary-
data-based	MR,	SMR),	and	applied	the	SMR	method	to	test	if	the	effects	of	genetic	variants	on	a	
phenotype	are	mediated	by	gene	expression"	
	
Re:	We	have	revised	the	sentence	as	follows	in	page	3.		
	
“We	have	previously	shown	that	the	power	of	an	MR	analysis	could	be	greatly	improved	by	
exploiting	GWAS	summary	data	from	two	independent	studies	with	large	sample	sizes,	and	have	
applied	a	Summary-data-based	MR	(SMR)	approach	to	test	if	the	effects	of	genetic	variants	on	a	
phenotype	are	mediated	by	gene	expression.”	



	
"estimate	the	effect	of	a	risk	factor	on	disease	conditioning	on	other	risk	factors"	-	For	a	general	
audience	should	define	"genetic	value"	the	first	time	it's	used.	
	
Re:	Done	(page	18).	
	
In	the	following	sentences,	they	seem	to	contradict	themselves.	First	saying	there	is	likely	
mediation,	then	saying	they	can't	really	distinguish.	I	would	tone	down	the	first	sentence:	
"suggesting	that	the	marginal	effects	of	HDL-c	on	diseases	were	likely	to	be	mediated	or	driven	by	
the	covariate	risk	factors	because	of	the	complex	bidirectional	causative	associations	between	
HDL-c	and	the	other	risk	factors	as	illustrated	in	Supplementary	Fig.	9.	It	is	difficult	to	distinguish	
the	direction	of	mediation,	i.e.	whether	HDL-c	is	a	mediating	(model	I:	other	risk	factors	->	HDL-c	-
>	disease)	or	driving	(model	II:	HDL-c	->	other	risk	factors	->	disease)	factor	(Supplementary	Fig.	
13)."	
	
Re:	We	have	revised	text	as	follows	(page	11).	
	
“However,	all	the	effects	became	non-significant	conditioning	on	the	covariate	risk	factors	(i.e.	
BMI,	LDL-c,	TG	and	SBP),	suggesting	that	the	marginal	effects	of	HDL-c	on	the	diseases	are	not	
independent	of	the	covariates	due	to	the	complex	bidirectional	causative	associations	between	
HDL-c	and	the	other	risk	factors	as	illustrated	in	Supplementary	Fig.	14.	It	is	difficult	to	
distinguish	whether	the	effects	of	HDL-c	on	the	diseases	are	mediated	or	driven	by	the	covariates	
(Supplementary	Fig.	17)	because	of	the	complicated	association	network	among	risk	factors	and	
diseases	(Supplementary	Fig.	15).”	
	
I	would	normally	say	that	MR	*uses*	instrumental	variables,	not	that	MR	*is*	an	instrumental	
variable.	(from	Introduction)	
	
Re:	Done	(page	3).	
	
	
Reviewer	#2	(Remarks	to	the	Author):	
	
The	authors	proposed	three	summary-data-based	methods	in	this	manuscript:	1)	to	estimate	and	
test	the	mediation	effect	of	risk	factor	on	disease	status	(b_{xy})	using	multiple	genetic	variants	as	
instruments,	an	extension	of	their	previous	SMR	method	2)	to	detect	outliers	in	the	estimates	of	
mediation	effect	which	are	likely	caused	by	pleiotropy,	i.e.	not	by	mediation	/	causality	3)	to	
estimate	and	test	the	mediation	effect	conditional	on	other	risk	factorss.	They	applied	their	
methods	to	multiple	GWAS	summary	association	data	set	to	test	for	causal	relationships	between	
pairs	of	traits	and	diseases.	Overall,	I	find	the	methods	robust	and	useful	addition	to	the	
community.	However,	more	simulations	and	more	rigorous	analyses	of	real	data	are	needed	to	
demonstrate	the	robustness	of	their	methods	and	validity	of	their	conclusions.	
	
Re:	We	thank	the	review	for	the	positive	remarks.	
	
Major	comments:	
	
1)	The	authors	developed	GSMR	to	meta-analyze	the	estimates	of	effect	of	risk	factor	on	disease	
status	from	multiple	SNPs	(b_{zx,i})	in	a	fixed-effect	framework.	This	method	models	correlation	
between	SNPs	(LD)	in	the	variance,	and	therefore	is	able	to	provide	an	unbiased	and	efficient	
estimate	of	the	mediation	effect.	However,	although	the	authors	claim	that	their	method	can	
account	for	remaining	LD	after	clumping,	all	of	their	simulations	are	based	on	independent	SNPs	–	
SNPs	were	drawn	independently	from	the	binomial.	It	would	greatly	strengthen	the	manuscript	if	



the	author	could	perform	simulations	where	the	SNPs	are	not	entirely	independent	from	each	
other	and	then	show	that	their	method	is	still	unbiased	in	the	presence	of	LD.	
	
Re:	We	thank	the	reviewer	for	the	suggestion.	We	have	conducted	additional	simulation	based	on	
SNPs	in	LD	(Supplementary	Note	1.2.2).	The	new	simulation	result	shows	that	the	estimate	of	
𝑏$%	from	GSMR	is	unbiased	in	the	presence	of	LD	(Supplementary	Table	1).	
	
2)	In	the	null	simulation	to	test	the	unbiasedness	of	GSMR,	the	authors	did	not	include	any	
pleiotropic	/	direct	effect	of	genetic	effect	on	the	disease	status.	For	example,	it	could	be	the	case	
that	b_{xy}	is	zero,	but	multiple	b_{zy}	is	not	zero	for	both	the	exposure	and	the	disease	status	at	
some	of	the	SNPs.	This	could,	in	principle,	results	in	bias	estimate	of	b_{xy},	in	the	scenario	where	
there	is	LD	among	the	SNPs	–	the	estimate	of	b_{xy,i}	at	each	SNPs	are	likely	non-zero	and	highly	
correlated.	It	would	greatly	strengthen	the	manuscript	if	the	authors	could	perform	simulations	
where	there	is	indeed	pleiotropic	/	direct	effect	of	genetic	variants	on	the	disease	status.	Also,	
although	the	authors	demonstrated	that	the	power	of	GSMR	is	not	significantly	affected	by	HEIDI-
outlier	filtering,	an	assessment	of	HEIDI-outlier	in	detecting	the	SNPs	with	pleiotropic	effect	
would	be	very	helpful.	
	
Re:	The	power	of	detecting	a	pleiotropic	SNP	depends	on	the	sample	sizes	of	the	GWAS	data	sets	
and	the	deviation	of	𝑏$%	estimated	at	the	pleiotropic	SNP	from	the	causal	model.	We	have	
performed	simulation	based	on	a	model	with	pleiotropy	to	quantify	the	power	of	HEIDI-outlier	to	
detect	the	pleiotropic	effects	(Supplementary	Fig.	4a).	There	are	certainly	pleiotropic	outliers	
(especially	those	with	small	effects)	not	detected	by	HEIDI-outlier.	Nevertheless,	these	undetected	
pleiotropic	effects	do	not	seem	to	bias	𝑏$%	from	GSMR	(Supplementary	Fig.	4b),	in	contrast	to	a	
small	bias	in	the	estimate	from	Egger	regression	(MR-Egger)	which	is	thought	to	be	free	of	
confounding	from	pleiotropy	(Bowden	et	al.	2015	Int	J	Epidemiol).		
	
The	bxy	estimate	by	GSMR	is	also	unbised	in	the	absence	of	causality	but	in	the	presence	of	
pleiotropy	(Supplementary	Table	2).	
	
We	have	added	these	new	results	in	the	revised	manuscript	(page	5).	
	
3)	The	authors	showed	that	their	method	is	more	powerful	than	Egger	regression.	However,	this	
is	not	an	entirely	fair	comparison,	since	Egger	regression	accounts	for	pleiotropy	by	incorporating	
an	intercept	term	in	the	second	regression	step,	effectively	estimating	two	parameters	instead	of	
one	as	the	case	for	GSMR.	It’s	curious	whether	GSMR	is	still	more	powerful	than	Egger	regression	
when	there	is	indeed	pleiotropy.	Again,	all	the	simulations	performed	in	this	study	(as	described	
in	supplementary	note)	do	not	seem	to	make	the	assumption	that	there	is	indeed	pleitropy.	An	
explanation	of	why	GSMR	is	more	powerful	than	Egger	regression	would	also	be	helpful.		
	
Re:	Egger	regression	uses	the	intercept	to	account	for	pleiotropy	while	the	GSMR	analysis	
incorporates	the	HEIDI-outlier	approach	to	detect	and	eliminate	pleiotropic	outliers.	We	have	
performed	simulations	to	compare	the	methods	in	the	presence	of	pleiotropy.	The	new	simulation	
result	shows	that	MR-Egger	is	even	less	powerful	than	GSMR	in	the	presence	of	pleiotropy	
(Supplementary	Fig.	4c).	
	
4)	In	the	absence	of	LD,	the	inverse-variance	weighted	approach	to	estimate	the	mediation	effect	
should	be	equivalent	to	the	GSMR	approach	(as	shown	by	the	equations	at	the	top	of	page	23)	and	
Egger	regression.	It’s	curious	to	me	why	GSMR	has	more	power	than	IVW.	An	explanation	would	
be	helpful.	
	
Re:	IVW	is	the	same	as	MR-Egger	without	intercept	(Burgess	et	al.	2013	Genet	Epidemiol	and	
Bowden	et	al.	2015	Int	J	Epidemiol).	Therefore,	in	the	absence	of	pleiotropy	these	two	methods	



are	equivalent.	GSMR	is	different	because	GSMR	takes	the	sampling	variance	(standard	error	
squared)	of	both	𝑏#$ 	and	𝑏#%	whereas	both	MR-Egger	and	IVW	assume	𝑏#$ 	is	estimated	without	
error.	We	have	clarified	this	in	the	revised	manuscript	(page	5).	
	
5)	The	authors	analyzed	many	diseases	that	are	case-control	traits,	which	are	often	studied	on	
ascertained	samples,	i.e.	more	cases	are	collected	than	in	the	general	population	to	increase	the	
chance	of	detecting	the	causal	variants.	The	exposures,	which	are	quantitative	traits,	on	the	other	
hand,	are	more	likely	studied	on	randomly	collected	(i.e.	not	ascertained)	samples.	The	mismatch	
between	the	two	types	of	samples	will	likely	induce	an	overestimate	of	the	mediation	effect.	The	
authors	should	elaborate	more	on	how	ascertainment	could	bias	their	causal	inference.	
	
Re:	Because	OR	is	free	of	the	ascertainment	bias	in	a	case-control	study,	the	effect	(logOR)	of	a	
SNP	on	disease	in	the	general	population	can	be	approximated	by	that	from	a	case-control	study.	
Therefore,	GSMR	can	be	applied	to	data	with	SNP	effects	on	the	risk	factor	from	a	population-
based	study	and	SNP	effects	on	the	disease	from	an	ascertained	case-control	study,	and	the	
estimate	of	causative	effect	of	the	risk	factor	on	the	disease	can	be	interpreted	as	that	in	the	
general	population.	We	have	clarified	this	in	the	revised	manuscript	(pages	6	and	17).	
	
6)	It’s	not	clear	whether	the	authors	removed	genetic	variants	in	the	HLA	region	before	their	
analyses.	If	the	author	included	SNPs	in	the	HLA,	an	explanation	would	be	helpful.	
	
Re:	The	MHC	region	is	often	removed	from	the	analysis	in	previous	studies,	mainly	because	of	the	
complicated	LD	structure	in	this	region.	In	this	study,	we	did	not	remove	this	region	because	we	
use	a	set	of	near-independent	SNPs	as	instruments	after	LD	clumping.	We	have	clarified	this	in	the	
revised	manuscript	(page	20).	
	
Minor	comments:	
	
1)	The	authors	estimate	b_{xy}	by	meta-analyzing	b_{xy,i}	of	each	SNP	under	a	fixed-effect	
framework.	Another	approach	is	to	assume	the	true	b_{xy}	has	a	distribution,	i.e.	a	random-effect	
framework.	It’s	curious	whether	using	a	random-effect	framework	would	be	more	appropriate	as	
each	SNP	in	the	GWAS	is	likely	tested	under	different	sample	sizes.	
	
Re:	Under	a	causal	model,	the	expected	value	of	𝑏$%	estimated	at	any	of	the	instruments	is	
constant.	We	therefore	use	a	fixed	effect.	A	random-effect	model	is	more	useful	for	analyses	that	
allow	heterogeneity	(e.g.	a	meta-analysis	of	SNP	effects	across	different	populations).	
		
2)	The	authors	showed	that	reverse	causation	likely	exist	for	BMI	and	T2D	although	the	effect	of	
T2D	on	BMI	is	much	smaller.	It’s	worth	noting	here	that	the	sample	sizes	of	GWASs	on	BMI	and	
T2D	are	very	different.	Therefore,	there	can	be	biases	in	the	number	of	GWS	selected	(e.g.	number	
of	GWAS	for	BMI	likely	larger	than	the	number	of	GWS	for	T2D)	in	the	estimation	b_{xy},	which	
can	in	turn	results	in	biases	in	b_{xy}	in	both	the	forward	and	reverse	direction.	The	authors	
should	discuss	this	as	potential	bias	of	their	analyses.	
	
Re:	To	avoid	an	underpowered	test,	we	limited	the	reverse-GSMR	analysis	to	diseases	that	had	
more	than	10	instruments.	Indeed,	some	of	the	estimated	reverse	effects	were	small	but	highly	
significant	(Supplementary	Table	15).	Therefore,	it	seems	very	unlikely	that	the	large	difference	
in	the	estimated	effect	sizes	between	the	forward	and	reverse	analyses	is	due	to	the	lack	of	power	
in	the	reverse	analysis.	We	further	confirmed	by	simulation	that	the	GSMR	estimate	of	𝑏$%	is	
unbiased	irrespective	of	the	sample	size	for	the	exposure	(Supplementary	Fig.	21).	We	have	
discussed	this	in	the	revised	manuscript	(page	13).	
	
3)	It	would	be	helpful	to	provide	an	estimate	of	the	remaining	LD	(e.g.	the	LD	score)	after	applying	



the	clumping	step	in	real	data	analyses.	
	
Re:	We	have	shown	a	distribution	of	LD	scores	of	the	instruments	for	each	of	the	7	exposures	in	
Supplementary	Figure	8	after	clumping	with	r2	threshold	=	0.05	and	LD	window	size	=	1Mb.	
	
4)	I	would	run	the	causal	inference	methods	described	in	citation	16	to	confirm	/	support	the	
findings	discovered	in	this	manuscript.	
	
Re:	In	the	response	to	a	comment	from	reviewer	#1,	we	have	explained	the	difference	between	
the	Pickrell	methods	(Pickrell	2016	Nat	Genet)	and	the	MR	based	methods	(Burgess	et	al.	2013	
Genet	Epidemiol;	Bowden	et	al.	2015	Int	J	Epidemiol;	Burgess	et	al.	2016	Stat	Med).	The	
correlation	method	used	in	Pickrell	et	al.	is	similar	to	MR-Egger	(Bowden	et	al.	2015	Int	J	
Epidemiol)	but	slightly	less	powerful	because	it	does	not	account	for	the	sampling	variance	in	
both	𝑏#$ 	and	𝑏#% .	The	Pickrell	Maximum	likelihood	(Pickrell-ML)	method	tests	the	asymmetry	of	
correlations	in	two	directions,	which	is	underpowered	as	demonstrated	in	our	simulation	
(Supplementary	Fig.	3).	In	fact,	our	results	show	that	some	of	the	causal	effects	can	be	
bidirectional.	Therefore,	it	is	not	always	a	good	idea	to	use	asymmetry	to	infer	causality.	
	
Nevertheless,	we	have	included	the	Pickrell-ML	methods	in	the	analysis	of	real	data.	The	
estimates	from	Pickrell-ML	are	much	less	significant	as	those	from	GSMR	or	MR-Egger	
(Supplementary	Table	7),	consistent	with	the	simulation	result.	
	
5)	Adjusting	for	heritable	covariates	could	induce	bias	in	GWAS	(see	Aschard	et	al.	AJHG	2015).	
Since	most	of	the	GWAS	summary	association	data	are	likely	adjusted	for	covariates,	this	could	
induce	biases	in	estimating	b_{xy}.	Similarly,	applying	conditional	analyses	using	summary	data	
could	result	in	false	causative	association	as	well.	
	
Re:	We	thank	the	reviewer	for	pointing	out	this.	The	Aschard	et	al.	(AJHG	2015)	study	quantifies	
the	bias	in	the	effect	of	SNP	(g)	on	phenotype	(Y)	correcting	for	a	covariate	(C)	if	the	C	and	Y	are	
confounded	by	shared	environmental	effect	(E)	or	uncorrelated	genetic	effect	(G-g).	If	C	and	Y	are	
standardized	with	mean	0	and	variance	1,	the	bias	is	approximately	−𝛽)𝜌)+	where	𝛽) 	is	the	effect	
of	g	on	C	and	𝜌)+	is	the	correlation	between	C	and	Y.	Our	summary	data	based	conditional	analysis	
approach	is	free	of	this	bias	because	we	estimate	𝜌)+	from	the	GSMR	approach.	The	expected	
value	of	𝜌)+	estimated	from	GSMR	is	0	if	there	is	no	direct	effect	of	C	on	Y.	This	has	been	validated	
by	simulation	(Supplementary	Fig.	7).	We	have	commented	on	this	in	the	revised	manuscript	
(pages	5	and	19).	
	
	
Reviewer	#3	(Remarks	to	the	Author):	
	
Zhu	et	al.	propose	the	method	GSMR	to	estimate	"causal"	(with	assumptions)	relationships	
between	traits	from	GWAS	summary	statistics.	They	extend	their	previous	SMR	statistic	to	
estimate	and	test	a	Mendelian	Randomization	across	multiple	correlated	instruments.	They	
propose	an	outlier	test	to	identify	and	remove	SNPs	that	deviate	from	the	overall	MR	trend,	as	
well	as	a	novel	conditional	analysis.	Because	the	method	only	requires	summary-level	data,	it	was	
applied	to	a	large	number	of	risk	factors	and	disease	traits.	They	observe	a	causal	effect	of	BMI	on	
many	traits	(including,	interestingly,	overall	disease	count),	as	well	as	intriguing	causal	inferences	
between	height,	educational	attainment	and	other	traits.	
	
Overall,	the	work	aims	to	address	a	specific	and	important	problem,	proposes	multiple	methods,	
and	describes	interesting	results.	The	manuscript	is	concise	and	easy	to	read.	The	conditional	
GSMR	idea,	in	particular,	is	novel	and	informative.	However,	given	that	MR	is	now	a	mature	
research	area	with	many	competing	methods,	it	is	not	clear	what	advance	these	methods	offer	
over	the	most	cutting-edge	work,	which	is	not	cited	or	discussed	very	extensively.	Moreover,	



there	are	some	issues	with	the	SMR	statistic	and	the	simulation	framework	that	left	me	
unconvinced	about	the	validity	of	the	method.	The	results	are	interesting	and	of	potential	value	to	
the	field,	but	there	are	too	many	methodological	gaps	in	the	current	form.	
	
Re:	We	thank	the	review	for	the	positive	remarks.	
	
#	Major	Comments	
	
*	Recent	MR	methodology	should	be	cited	and	compared	to	more	thoroughly.	Several	methods	to	
deal	with	correlated	instrumental	variables	exist,	of	which	weighted	generalized	linear	regression	
(Burgess	et	al.	Stat	Med	2016	[PMID	26661904])	appears	to	be	very	similar	in	spirit	to	GSMR.	
What	is	the	advance	of	this	approach	over	the	methods	described	in	Burgess	et	al.	and	what	is	the	
relative	performance	of	the	methods?	The	approach	of	Pickrell	et	al.	Nat	Genet	2016	-	perhaps	the	
most	recent	high-profile	MR	paper	-	is	cited	but	GSMR	needs	to	be	put	in	context	to	the	causal	
inference	in	that	paper	(which	analyzes	many	of	the	same	traits)	or	compared	by	simulation.	The	
same	comments	apply	to	the	HEIDI	outlier	test:	multiple	summary-based	sensitivity	approaches	
are	discussed	in,	for	example,	(Burgess	et	al.	Epi	2017	[PMID	27749700]).	How	does	HEIDI-outlier	
compare	to	those	approaches?	
	
Re:	We	have	shown	by	additional	simulation	that	GSMR	is	more	powerful	than	the	generalised	
MR-IVW	method	proposed	by	Burgess	et	al.	(Stat	Med	2016).	The	difference	between	the	two	
approaches	is	that	GSMR	takes	var(𝑏#$)	into	account	whereas	MR-IVW	or	generalised	MR-IVW	
assumes	that	bzx	is	estimated	without	error	(Supplementary	Fig.	3).	
	
Similarly	the	sensitivity	analysis	approaches	described	in	Burgess	et	al.	(2017	Epidemiology)	also	
assume	that	bzx	is	estimated	without	error	and	these	methods	do	not	account	for	LD	between	
SNPs.	We	have	commented	on	this	in	the	revised	manuscript	(page	17).	We	have	performed	
additional	simulation	based	on	a	model	with	pleiotropy	to	quantify	the	power	of	HEIDI-outlier	to	
detect	the	pleiotropic	effects	(Supplementary	Fig.	4a).	There	are	certainly	pleiotropic	outliers	
(especially	those	with	small	effects)	not	detected	by	HEIDI-outlier.	Nevertheless,	these	undetected	
pleiotropic	effects	do	not	seem	to	bias	the	bxy	estimate	by	GSMR	(Supplementary	Fig.	4b),	in	
contrast	to	a	small	bias	in	the	estimate	from	MR-Egger	(Bowden	et	al.	2015	Int	J	Epidemiol).	The	
bxy	estimate	by	GSMR	is	also	unbised	in	the	absence	of	causality	but	in	the	presence	of	pleiotropy	
(Supplementary	Table	2).	
	
We	have	also	add	the	methods	used	in	Pickrell	et	al.	into	comparison.	The	correlation	method	
used	in	Pickrell	et	al.	is	similar	to	but	slightly	less	powerful	than	MR-Egger	(Supplementary	Fig.	
3)	because	the	former	does	not	account	for	the	sampling	variance	in	both	𝑏#%	and	𝑏#$ .	The	Pickrell	
Maximum	likelihood	(Pickrell-ML)	method	tests	for	the	asymmetry	of	correlations	in	two	
directions,	which	is	underpowered	as	demonstrated	in	our	simulation	(Supplementary	Fig.	3).	In	
fact,	our	results	show	that	some	of	the	causal	effects	can	be	bidirectional.	Therefore,	it	is	not	
always	a	good	idea	to	use	asymmetry	to	infer	causality.	Nevertheless,	we	have	included	the	
Pickrell-ML	methods	in	the	analysis	of	real	data.	The	estimates	from	Pickrell-ML	are	much	less	
significant	as	those	from	GSMR	or	MR-Egger	(Supplementary	Table	7),	consistent	with	the	
simulation	result.	
	
We	added	these	new	results	in	the	revised	manuscript	(pages	4	and	5).	
	
*	The	derivation	for	var(b_xy)	is	approximate	(pg.22)	and	is	not	well	calibrated,	casting	doubt	on	
the	calibration	of	the	subsequent	statistics.	Consider	the	following	R	snippet	as	a	quick	example:	
	
set.seed(0)	
chisqzy	=	rchisq(10e4,df=1,ncp=0)	
chisqzx	=	rchisq(10e4,df=1,ncp=0)	



smrstat	=	chisqzy	*	chisqzx	/	(chisqzy	+	chisqzx)	
cat(	mean(pchisq(smrstat,1)	<	0.05)	,	'\n'	)	
	
In	this	null	simulation	10%	of	statistics	come	up	as	significant	at	P<0.05.	Only	after	substantially	
increasing	the	non-centrality	parameter	for	one	of	the	traits	does	the	empirical	\alpha	start	to	
approach	5%.	This	is	a	serious	problem	that	the	reader	should	be	made	aware	of	and	I	did	not	find	
any	discussion	of	it	in	the	manuscript.	Especially	since	the	actual	causal	estimate	is	identical	to	
existing	methods	(Fig	S16)	so	all	of	the	power	is	coming	from	this	variance	estimator.	This	is	the	
fundamental	statistic	used	in	all	other	tools	so	poor	calibration	has	implications	for	all	of	the	
results.	Please	include	a	discussion	of	this	issue	and	recommendation	for	how	to	avoid	bias,	and	
assure	the	reader	that	mis-calibration	is	not	the	reason	GSMR	performs	better	than	existing	
methods.	
	
Re:	One	of	the	basic	assumptions	of	MR	is	that	the	instruments	should	be	strongly	associated	with	
the	exposure.	Therefore,	we	cannot	simply	simulate	“chisqzx”	under	the	null	without	any	
ascertainment.	In	our	analysis,	we	choose	SNPs	that	are	associated	the	exposure	at	P	<	5e-8.	If	we	
modify	the	R	code	above	according	to	the	selection	criterion	used	in	GSMR	(changes	highlighted	in	
yellow),	then	~5%	of	statistics	will	be	significant	at	P	<	0.05,	suggesting	the	false	positive	rate	of	
GSMR	is	well	calibrated	under	the	null	hypothesis	that	there	is	no	effect	of	the	exposure	on	
outcome,	consistent	with	our	simulation	result	that	there	is	no	inflation	in	GSMR	test-statistics	
under	the	null	(Supplementary	Fig.	1).	
	
set.seed(0)	
chisqzy	=	rchisq(10e4,df=1,ncp=0)	
chisqzx	=	rchisq(10e4,df=1,ncp=29)	
instruments	=	which(chisqzx	>	qchisq(5e-8,	df	=	1,	lower.tail=F))	
chisqzy	=	chisqzy[instruments]	
chisqzx	=	chisqzx[instruments]	
smrstat	=	chisqzy	*	chisqzx	/	(chisqzy	+	chisqzx)	
cat(	mean(pchisq(smrstat,1)	<	0.05)	,	'\n'	)	
	
*	All	of	the	simulations	in	Supp	Note	1	use	independent	SNPs	drawn	from	a	binomial	distribution	
so	the	impact	of	LD	is	never	actually	evaluated.	An	LD	correlation	matrix	is	described	in	the	
Supplement	("In	addition,	we	simulated	5,000	individuals	in	sample	#3	(n3)	to	calculate	LD	
correlation	matrix.")	but	should	only	be	contributing	noise	if	the	SNPs	come	from	independent	
distributions.	Please	include	thorough	simulations	with	realistic	population	LD	and	reference	
panels	(as	in	Supp	Note	3	for	example).		
	
Re:	We	have	performed	additional	simulation	based	on	SNPs	in	LD.	The	result	shows	that	the	
GSMR	estimate	is	unbiased	in	the	presence	of	LD	(Supplementary	Table	1).		
	
*	The	GSMR	method	is	presented	as	a	generalization	of	MR	that	accounts	for	LD,	and	so	I	had	
expected	it	to	be	applied	to	most/all	SNPs	in	the	data.	However,	only	genome-wide	significant	
SNPs	with	highly	strict	LD	pruning	were	used.	It's	not	at	all	clear	why	these	restrictions	are	
necessary	and	they	severely	undercut	the	novelty	of	the	approach	since	the	remaining	SNPs	are	
nearly	free	of	LD.	Why	throw	away	so	much	data?	Given	that	this	is	such	a	key	methodological	
point,	I	urge	the	authors	to	clearly	explain	and	justify	how	SNPs	should	be	selected	for	inclusion	in	
the	analysis	to	maximize	power	(this	could	be	addressed	using	realistic	LD	simulations	suggested	
in	the	previous	comment).	
	
Re:	We	only	used	genome-wide	significant	SNPs	with	stringent	LD	clumping	criteria	for	the	
following	two	reasons.	
1) Including	SNPs	in	moderate	to	high	LD	often	results	in	the	V	matrix	being	not	invertible.	



2) We	used	the	near-independent	genome-wide	significant	SNPs	for	the	ease	of	directly	
comparing	the	results	from	GSMR	with	those	from	other	methods	that	do	not	account	for	LD	
(e.g.	MR-Egger).	

	
We	have	conducted	additional	simulation	based	on	SNPs	in	LD,	and	performed	the	GSMR	analysis	
at	different	LD	clumping	thresholds.	The	result	shows	that	the	loss	of	power	due	to	LD	clumping	is	
very	small	(Supplementary	Fig.	9).	We	commented	on	this	in	the	revised	manuscript	(page	6).	
	
*	There's	also	a	broader	question	of	what	advantages	this	approach	has	over	cross-trait	LD-score	
regression	(which	was	run	on	all	pairs	of	traits	anyway).	The	paper	of	Bulik-Sullivan	et	al.	2015	
Nat	Genet	showed	that	cross-trait	LDSC	is	asymptotically	equivalent	to	the	2SLS	Mendelian	
randomization	estimate	from	the	same	set	of	variants,	and	confounding	from	pleiotropy	affects	
both	methods.	So	is	there	a	clear	advantage	to	using	the	GSMR	statistics?	Are	there	any	instances	
where	GSMR	results	are	significantly	different	from	cross-trait	LDSC	results?	Is	GSMR	expected	to	
have	better	power	for	certain	disease	architectures?	I	can	see	how	the	bi-directional	GSMR	
approach	gives	you	additional	insights	into	causality,	but	is	this	better	than	running	a	sort	of	"bi-
directional"	LDSC	on	the	top	X%	of	SNPs	from	each	trait?	
	
Re:	There	are	distinct	features	between	LDSC	and	MR.		
	
The	bivariate	LDSC	method	(Bulik-Sullivan	et	al.	2015	Nat	Genet)	aims	to	estimate	the	genetic	
correlation	between	two	phenotypes.	An	estimate	of	genetic	correlation,	which	takes	a	value	
between	0	and	1,	can	be	interpreted	as	the	estimated	proportion	of	genetic	effects	shared	in	
common	between	two	traits.	It	accounts	for	both	pleiotropic	and	causal	effects,	and	does	not	test	
the	direction	of	association.	
	
The	MR	approaches	aim	to	estimate	and	test	for	the	causal	effect	of	one	phenotype	on	another.	An	
MR	estimate	is	interpreted	as	the	estimated	change	in	the	outcome	phenotype	per	unit	increase	of	
the	exposure	phenotype.	An	MR	analysis	tries	to	avoid	the	bias	due	to	pleiotropic	effects.	
	
The	bivariate	LDSC	method	assumes	a	polygenic	model	for	the	traits	and	utilizes	variability	in	LD	
scores	across	SNPs	to	estimate	the	genetic	variance	and	covariance.	Therefore,	it	has	only	been	
applied	to	estimate	heritability	and	genetic	correlation	using	all	genome-wide	SNPs.	However,	
even	if	the	LDSC	method	is	applicable	to	a	small	subset	of	the	SNPs,	taking	the	top	X%	of	SNPs	
from	each	trait	for	the	LDSC	method	is	not	too	dissimilar	to	the	correlation	and	maximum	
likelihood	methods	used	in	the	Pickrell	et	al.	(2016	Nat	Genet)	study.	Both	methods	are	less	
powerful	than	GSMR	as	demonstrated	by	simulation	(Supplementary	Fig.	3).	We	commented	on	
this	in	the	revised	Supplementary	Figure	3.	
	
#	Minor	Comments	
	
*	For	HEIDI-outlier	please	explain	why	the	third	quintile	is	used	to	define	b_xy(top)	and	how	the	
choice	of	quintile	impacts	the	power	and	calibration	of	the	method.	Can	the	authors	guarantee	
that	using	HEIDI-outlier	to	remove	poor	fitting	SNPs	and	then	running	GSMR	is	always	over-
conservative?	
	
Re:	In	the	HEIDI-outlier	test,	we	choose	an	instrument	as	a	target	and	compare	𝑏$%	at	the	target	
SNPs	with	those	at	the	other	instruments.	The	power	of	detecting	heterogeneity	increases	with	
the	strength	of	association	between	the	target	SNP	and	the	exposure.	However,	we	cannot	simply	
choose	the	top	exposure-associated	SNP	because	sometimes	when	a	SNP	shows	an	extreme	
association	signal	with	the	exposure,	it	is	also	likely	to	be	a	pleiotropic	outlier	(e.g.	the	top	LDL-
associated	SNP	at	the	APOE	locus	shows	a	very	strong	pleiotropic	effect	on	Alzheimer’s	disease	as	
shown	in	Figure	4).	Therefore,	to	increase	the	robustness	of	the	HEIDI-outlier	test,	we	examine	



the	distribution	of	𝑏$%	as	a	function	of	–log10	p-value	for	𝑏#$ 	and	choose	the	top	exposure-
associated	SNP	in	the	third	quintile	of	the	𝑏$%	distribution	to	avoid	choosing	an	extreme	
pleiotropic	outlier	as	the	target	SNP.	We	have	clarified	this	in	the	revised	manuscript.	
	
The	power	of	detecting	a	pleiotropic	SNP	depends	on	the	sample	sizes	of	the	GWAS	data	sets	and	
the	deviation	of	𝑏$%	estimated	at	the	SNP	from	the	causal	model.	We	have	performed	additional	
simulation	based	on	a	causal	model	with	pleiotropy	to	quantify	the	power	of	HEIDI-outlier	to	
detect	the	pleiotropic	effect	(Supplementary	Fig.	4a).	There	are	certainly	pleiotropic	outliers	
(especially	those	of	small	effect)	not	detected	by	HEIDI-outlier.	Nevertheless,	these	undetected	
pleiotropic	effects	do	not	seem	to	bias	the	GSMR	estimate,	in	contrast	to	a	small	bias	in	the	
estimate	from	Egger	regression	(Bowden	et	al.	2015	Int	J	Epidemiol)	which	is	thought	to	be	free	of	
confounding	from	pleiotropy	(Supplementary	Fig.	4b).	The	GSMR	estimate	of	𝑏$%	is	also	
unbiased	under	a	pleiotropic	model	without	causal	effect	in	the	presence	or	absence	of	LD	
(Supplementary	Table	2).		
	
We	have	included	these	new	results	in	the	revised	manuscript	(pages	5	and	17),	Supplementary	
Table	2	and	Supplementary	Figure	4.	
	
*	The	multi-trait	conditioning	requires	h^2	and	r^2	over	the	targeted	SNPs,	but	uses	LDSC	
estimates	which	are	from	all	common	variants.	Is	there	a	misspecification	if	the	distribution	of	
effect	sizes	is	something	like	spike	+	slab	and	top	hits	have	different	h^2	and	r^2	from	the	rest	of	
the	variants?	
	
Re:	The	multi-trait	conditional	analysis	(which	is	now	called	mtCOJO)	is	for	all	SNPs.	Therefore,	
SNP-based	heritability	and	genetic	correlation	should	be	estimated	for	all	SNPs.	We	run	the	
mtCOJO	analysis	for	all	SNPs	and	than	re-select	the	instruments	based	on	the	conditional	p-values.	
We	have	clarified	this	in	the	revised	manuscript	(page	19).		
	
*	The	reverse	GSMR	statistics	being	less	significant	than	forward	GSMR	is	used	as	evidence	of	little	
pleiotropy:	"Second,	if	the	results	were	driven	by	pleiotropy,	we	would	expect	the	estimates	of	
bxy	from	reverse	GSMR	comparable	with	those	from	GSMR,	which	is	not	what	we	observed".	
However,	is	this	not	strongly	effected	by	differences	in	power	between	the	two	studies	
determining	which	instruments	get	selected?	The	GIANT	and	Edu	traits	are	some	of	the	largest	
GWAS	in	existence	so	it's	not	entirely	surprising	that	associations	in	the	reverse	direction	are	
weaker	and	may	not	be	sufficient	to	rule	out	pleiotropy	or	reverse-causality.	
	
Re:	To	avoid	an	underpowered	test,	we	limited	the	reverse-GSMR	analysis	to	diseases	which	had	
more	than	10	instruments.	Indeed,	some	of	the	estimated	reverse	effects	were	small	but	highly	
significant	(Supplementary	Table	15).	Therefore,	it	seems	very	unlikely	that	the	large	difference	
in	the	estimated	effect	sizes	between	the	forward	and	reverse	analyses	is	due	to	the	lack	of	power	
in	the	reverse	analysis.	We	further	confirmed	by	simulation	that	the	GSMR	estimate	of	𝑏$%	is	
unbiased	irrespective	of	the	sample	size	for	the	exposure	(Supplementary	Fig.	21).	
	
Nevertheless,	we	agree	that	there	might	be	other	sources	of	biases	that	could	result	in	an	
underestimation	of	the	reverse	effect	and	have	therefore	removed	this	sentence.	
	



Reviewers' comments:  

 

Reviewer #2 (Remarks to the Author):  

 

The authors have addressed most of my comments in a very satisfactory manner. And I only have 

one minor comment left.  

 

Major comments:  

 

1) This comment has been addressed effectively.  

2) This comment has been addressed effectively.  

3) This comment has been addressed effectively.  

4) Makes sense.  

5) OK.  

6) I am a bit worried about the imputation quality of SNPs at MHC, which could result in inaccurate 

association scores during GWAS, which could then affect the result of GSMR.  

 

Minor comments:  

 

1) Makes sense.  

2) This comment has been addressed effectively.  

3) This comment has been addressed effectively.  

4) This comment has been addressed effectively.  

5) This comment has been addressed effectively.  

 

 

Reviewer #3 (Remarks to the Author):  

 

Thank you for the thorough discussion of the previous comments. The benefits of the GSMR 

approach are now much clearer and the additional simulations are very informative. I have two 

remaining presentation comments.  

 

# Comment 1  

 

Thank you for performing additional simulations and a methods comparison. Is it correct that 

because the SNPs were simulated to be independent, the only gain from GSMR comes from 

modelling the var(b_zx)? If so, I'm confused why MR-IVW and generalized MR-IVW perform 

differently since there is no correlation between markers. Please explain in the figure or indicate if 

not significantly different.  

 

# Comment 2  

 

Thank you for the explanation of where GSMR is unbiased. Please add a discussion of this point to 

the main text, with a justification of which significance cutoff should be used to avoid bias. 

Currently the text on lines 100-104 states that there is no inflation in the GSMR test-static but this 

should be clarified to state that there is no inflation when only chisqzx > the cutoff are included 

and explicitly warn readers not to include non-significant variants.  

 



Reviewers’	comments	
	
We	thank	all	the	two	reviews	for	additional	comments.	We	have	responded	to	all	the	comments	
point-by-point	as	below	in	this	document	(in	blue)	and	have	highlighted	all	the	relevant	changes	
in	the	revised	manuscript.	
	
Reviewer	#1:	
N/A	
	
Reviewer	#2:	
	
The	authors	have	addressed	most	of	my	comments	in	a	very	satisfactory	manner.	And	I	only	have	
one	minor	comment	left.		
	
Major	comments:		
1)	This	comment	has	been	addressed	effectively.		
2)	This	comment	has	been	addressed	effectively.		
3)	This	comment	has	been	addressed	effectively.		
4)	Makes	sense.		
5)	OK.		
	
6)	I	am	a	bit	worried	about	the	imputation	quality	of	SNPs	at	MHC,	which	could	result	in	
inaccurate	association	scores	during	GWAS,	which	could	then	affect	the	result	of	GSMR.		
	
Re:	We	have	performed	the	GSMR	analyses	excluding	the	MHC	SNPs.	The	results	remain	
unchanged	(Supplementary	Fig.	22).		
	
We	have	added	the	additional	result	in	the	revised	manuscript	(page	14	and	Supplementary	
Figure	22).	
	
Minor	comments:		
	
1)	Makes	sense.		
2)	This	comment	has	been	addressed	effectively.		
3)	This	comment	has	been	addressed	effectively.		
4)	This	comment	has	been	addressed	effectively.		
5)	This	comment	has	been	addressed	effectively.	
	
Reviewer	#3:	
Thank	you	for	the	thorough	discussion	of	the	previous	comments.	The	benefits	of	the	GSMR	
approach	are	now	much	clearer	and	the	additional	simulations	are	very	informative.	I	have	two	
remaining	presentation	comments.		
	
#	Comment	1		
	
Thank	you	for	performing	additional	simulations	and	a	methods	comparison.	Is	it	correct	that	
because	the	SNPs	were	simulated	to	be	independent,	the	only	gain	from	GSMR	comes	from	
modelling	the	var(b_zx)?	If	so,	I'm	confused	why	MR-IVW	and	generalized	MR-IVW	perform	
differently	since	there	is	no	correlation	between	markers.	Please	explain	in	the	figure	or	indicate	
if	not	significantly	different.		
	
Re:	We	apologize	for	the	confusion.	We	believe	this	comment	refers	to	the	results	presented	in	
Supplementary	Figure	#,	where	all	the	SNPs	were	simulated	to	be	independent.	Note	that	we	
focus	on	the	results	for	independent	SNPs	because	in	practice	we	usually	use	near-independent	



SNPs	from	a	clumping	analysis	with	a	stringent	LD	r2	threshold	(e.g.	0.05),	although	GSMR	
accounts	for	remaining	LD	not	removed	by	clumping	(Supplementary	Figure	1b	and	
Supplementary	Table	1).	We	have	clarified	this	in	our	revised	manuscript	(Supplementary	Figure	
#).	
	
The	difference	between	MR-IVW	and	generalized	MR-IVW	was	due	to	the	use	of	MR-Egger	
without	intercept	to	compute	the	results	for	MR-IVW.		Although	the	MR-Egger	authors	claim	that	
MR-Egger	without	intercept	is	equivalent	to	MR-IVW	(ref),	there	appears	to	be	a	small	difference	
between	the	SE	computed	from	the	script	provided	by	the	MR-Egger	authors	with	intercept	0	and	
that	computed	from	our	own	script	following	the	method	described	in	MR-IVW	(ref).		
	
For	consistency,	we	have	re-computed	the	simulation	results	using	the	methods	described	in	the	
original	MR-IVW	and	generalized	MR-IVW	papers	(refs).	As	expected,	the	results	from	the	two	
methods	are	almost	identical.	There	are	subtle	differences	(not	statistically	significant)	which	are	
due	to	the	use	of	SNP	correlations	(all	chance	correlations	because	the	SNPs	are	independent)	
computed	from	a	reference	sample	for	generalized	MR-IVW.	We	have	clarified	this	in	the	revised	
manuscripts	(Supplementary	Figure	#).	
	
#	Comment	2		
	
Thank	you	for	the	explanation	of	where	GSMR	is	unbiased.	Please	add	a	discussion	of	this	point	to	
the	main	text,	with	a	justification	of	which	significance	cutoff	should	be	used	to	avoid	bias.	
Currently	the	text	on	lines	100-104	states	that	there	is	no	inflation	in	the	GSMR	test-static	but	this	
should	be	clarified	to	state	that	there	is	no	inflation	when	only	chisqzx	>	the	cutoff	are	included	
and	explicitly	warn	readers	not	to	include	non-significant	variants.	
	
We	thank	the	reviewer	for	the	constructive	suggestion.	We	have	clarified	in	the	revised	version	of	
our	manuscript	that	the	statement	above	is	based	on	SNPs	that	are	associated	with	the	risk	factor	
at	P	<	5e-8	(see	page	#).	We	have	emphasized	in	both	the	Results	and	Discussion	sections	that	
only	the	SNPs	that	are	strongly	associated	with	the	exposure	(e.g.	P	<	5e-8)	should	used	as	the	
instruments	for	GSMR	and	any	other	forms	of	MR	analyses	(see	pages	#	and	#).	



REVIEWERS' COMMENTS:  

 

Reviewer #2 (Remarks to the Author):  

 

My comment has been satisfactorily addressed.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have fully addressed my comments. Thank you for the detailed responses.  



REVIEWERS'	COMMENTS:	
	
Reviewer	#2	(Remarks	to	the	Author):	
	
My	comment	has	been	satisfactorily	addressed.	
	
Re:	We	thank	the	reviewer	for	the	comments	on	all	the	versions	of	our	manuscript.	
	
Reviewer	#3	(Remarks	to	the	Author):	
	
The	authors	have	fully	addressed	my	comments.	Thank	you	for	the	detailed	responses.	
	
Re:	We	thank	the	reviewer	for	the	comments	on	all	the	versions	of	our	manuscript.	


