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Supplemental Material

Figure S1. Western blot analysis of mMTORC targets in HLY and SUDHL2. HLY
and SUDHL2 cells were grown for different time points at 1 % oxygen tension.
Cells grown under normoxia were used as controls for the time points indicated
in the figure. Protein lysates were obtained and expression levels of pMTOR,
pRibosomalS6K, and p70S6K were determined using antibodies from Cell
Signaling. GAPDH was used as an internal control for sample loading.

Figure S2. Microarray analysis of DLBCL cell lines HLY and SUDHL2. Co-
correlation analysis of microarray data generated showed RNA enrichment of
clinically relevant hypoxia metabolic targets in our dataset. Each column
represents a sample for (A) HLY and (B) SUDHL2 cell lines that were cultured
under normoxia and hypoxia, n=3. HLY and SUDHL2 cells were cultured in
normal culture conditions and 1% hypoxia and microarray analysis was
performed using lllumina gene chip. (C) Gene enrichment analysis of HIF1a
targets in the SUDHL2 dataset identified increased expression of glucose
transporters SLC2A1 (GLUT1) and HK2 in hypoxia samples compared to those
derived from normoxic cells. Top panel: heat map, bottom panel: fold change,
*p<0.05, n=3, +SD. (D) List of ribosomal regulated genes.

Figure S3. Ingenuity Pathway (IPA) toxicity analyses. IPA toxicity analysis of
microarray data in (A) HLY cell line, and (C) SUDHLZ2 cell line. Pathway analysis
was filtered for pathways pertaining to mitochondria and hypoxia. Top
mitochondrial pathways regulated under hypoxia are listed based on level of
significance that are regulated under hypoxia are listed. X-axis is the —log of a p
value and Y-axis represents different mitochondrial pathways regulated in
DLBCL cell lines. (B and D) A detailed list of mitochondria-related genes that are
regulated in respective mitochondrial pathways under hypoxia in HYL and
SUDHL2 cell lines as determined by IPA toxicity analysis. (B, HLY) and (D,
SUDHL2).



Figure S4. Expression of HIF1a targets in normal B-cells derived from tonsils.
Expression of HIF1a targets was determined by RT-PCR analysis in primary B-
cells derived from normal tonsils. There was no change in expression of glucose
transporters in normal B-cells obtained from processing of tonsil tissue. However,
the HIF1o target VEGF was significantly induced under short-term hypoxic
exposure of B cells compared to cells cultured under normoxia, p<0.05, n=3,
+SD.

Figure S5. Measurement of ATP dependent OCR and immunofluorescence
staining of mitochondrial markers in DLBCL cells. (A) ATP synthesis-dependent
oxygen consumption rates of cells treated with hypoxia were unchanged relative
to normoxia in DLBCL cell lines K422, HLY and Toledo. (B) HLY and Farage
cells were also stained with MitoTracker green (MTG) to detect changes in
mitochondrial mass. (C and D) Immunofluorescence staining of mitochondrial
protein TOM20 and Cytochrome-C in DLBCL cells exposed to normoxia or
hypoxia. There was intense staining of TOM20 and Cty-C in normoxic cells

compared to cells cultured in 1% hypoxia.

Figure S6. Growth characterization of DLBCL cells under hypoxic stress. (A)
N=normoxia; H=hypoxia, p<0.05, Flow cytometry data of cell cycle distribution
are represented as a graph. For visualization purposes, each histogram is
divided into three quadrants, each representing a G1/S/G2-M phase, as indicated
in the figure. The percentage of cells accumulated in G2/M phase was
significantly different from cells cultured in normoxia, p<0.05. Results are
expressed as n=3 +sd for A, B and C respectively. (B and C) Expression of
markers indicative of cell cycle progression in HLY and SUDHL2 cells. Markers
of mitotic induction (CDC25B and CDC2) were downregulated in SUDHL2 cells
under hypoxic stress. In contrast, expression of CDC25B and CDC2, CDC25A
were up-regulated in HLY cells when grown in 1% oxygen compared to normoxic

control.



Figure S7. The presence of elF4E1 selectively stimulates expression of HKZ2
under hypoxia. (A) Detection of pelF4E1 and elF4E1 at indicated time points in
HLY and SUDHL2 cells exposed to hypoxic stress. (B and C) Polysomal
fractions were isolated from HLY and SUDHL2 cells cultured under normoxia and
hypoxia and analyzed for elF4E1 and HKZ2 levels by western blot analysis. (D)
HLY cells were transfected with elF4E1 and selected with G418. Stably
transfected cells were then subjected to normal culture conditions or hypoxic
stress for 48 hrs. Protein lysates were obtained and expression of HK2 was
determined in the presence or absence of elF4E1. (E) Luciferase assay using
HK2 promoter in COS7 cells to determine the effect of elF4E1 and HIF1a on
HKZ2 promoter activity. COS7 cells transfected with e/lF4E1, HIF1a or both were
incubated in 21% oxygen (normoxia) or 1 % oxygen (hypoxia) for 24 hrs and
luciferase activity was measured using Promega dual activity luciferase Kkit.

Renilla was used as an internal control.

Figure S8. Effect of HKZ2 in promoting tumor growth. (A and B) RNA and protein
expression of endogenous HK2 levels in non-malignant B-cell line GM02184
(GM), primary B-cells derived form normal tonsil tissue (T1, T2) and DLBCL cell
lines HLY, SUDHL2 and SUDHLG6. (C) Knockdown of HK2 levels in HLY using
lentivirus (Origene). Cells expressed non-target shRNA (NT), shRNA HK2
(Clones: sh5VA, sh5VB, sh5VC and sh5VD). shRNA clones sh5VA and sh5VB
with efficient knock down were used for in vitro and in vivo growth experiments.
(D) Xenograft tumors were established in NSG mice (n=5 per group, NT and
shHK2) using SUDHL2 cells expressing NT or shHK2 lentivirus. Growth of
tumors was monitored for approximately 2 weeks and tumor volume was

measured.
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Figure S2
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Figure S6
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Figure S7
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Figure S8
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