
“Peng˙BiForce˙Supp” — 2014/2/25 — 11:48 — page 1 — #1i
i

i
i

i
i

i
i

1

SUPPLEMENTARY FILE 1.

Bi-Force only requires the threshold to model the edges in the
bipartite graphs generated from matrices. For each synthetic
data, we tried 10 thresholds, from 19

20e to 1
2e, where e is the

difference between the maximum and the minimum values
in the matrix, decreasing 1

20e each time. Then the thresholds
with the best performance were used. For expression data sets,
where no gold-standard result is present,t0 was set to be 9

10e,
For the Cheng and Church algorithm, where δ controls the

maximum variances in the biclusters and α regulates the speed
of the algorithm. We implemented grid-search strategy with
δ ranging from 0.1 to 2.5 and α from 1.5 to 3. Based on
the performance, we chose δ=0.1 and α=1.5 for synthetic
data sets. However, for the gene expression data sets which
are much larger, δ=0.1 seems to be over-stringent, then we
took an empirically-beneficial value of δ=e/2000 (?). α
was decreased from 1.5 to 1.1 to avoid over-slimming the
biclusters.

For Bimax and Spectral which require minimum row and
column sizes, a grid-search was conducted in the ranges
from 2 to 20 for both rows and columns and finally 10 was
chosen to be the minimum sizes for rows and columns in a
bicluster. Moreover, for Spectral algorithm, we compared the
performances of different normalization methods and finally
chose “logarithmic normalization” for both synthetic and gene
expression data sets.

Two important parameters largely influenced the perfor-
mance of QUBIC: the range of the possible ranks r and
the percentage of regulating conditions for each gene q. As
suggested by the author, we conducted the grid-search, starting
from a relatively small value of r, from 1 to the half of the
number of columns in the matrix, which was 100. For q, we
set our range from 0.02 to 0.08, centered by the default value
0.06. Afterwards we found the default values (1 for r and 0.06
for q) worked the best on synthetic data sets. The values of
both parameters were kept the same for gene expression data
sets.

Note that two algorithms (Bimax and xMOTIFS) require
discretized data, thus the input matrices were all binarized into
0s and 1s, using the means of the corresponding matrices as
thresholds.

For ISA algorithms, we tested different numbers of seeds,
from 100 to 400 and chose 200 seeds for synthetic data. For
gene expression data sets, which are expected to be more
complex, we increased the number of seed to 400.

“Peng˙BiForce˙Supp” — 2014/2/25 — 11:48 — page 2 — #2i
i

i
i

i
i

i
i

2

SUPPLEMENTARY FILE 2.

FABIA performed best on the constant-upregulated data sets,
followed by the performance on shift-scale and plaid data sets.
For the other data sets, less than half of the real biclusters were
found because FABIA is optimized to perform better if the
distribution of the data set is highly unsymmetric (?). If the
values in the data sets are symmetrically distributed or have
a Gaussian-like distribution, then the performances of FABIA
suffer. (?)

QUBIC recovered most of the constant-upregulated biclu-
sters. It also successfully recovered part of the biclusters of
scale data sets, shift-scale data sets and plaid data sets.

The Cheng and Church algorithm was expected to find
biclusters with low mean square residues. It performed well
on the constant data set. With over 80% of the pre-defined
biclusters recovered it is the best among the nine algorithms
on the constant model. However, for all the other models with
data shifted from the background, the qualities of the results
of Cheng and Church decrease significantly.

Plaid successfully identified most of the biclusters within
constant-upregulated, shift, shift-scale, scale and plaid model.
It achieved recovery and relevance scores almost as good as
Bi-Force. However, no bicluster was found for the constant
model, indicating a poor performance of Plaid to extract
constant biclusters.

BiMax bi-discretizes the data elements in the matrix by
using a given threshold. This over-simplifies many scenarios.
Thus BiMax performed well only on constant-upregulated
data where biclusters were largely shifted away from the
background. For all the other models, BiMax’s performances
were relatively poor.

Similarly, xMOTIFs discretizes the data and thus only
biclusters for the constant model were well recovered.

Spectral clustering, though the fastest tool, has a compa-
ratively weak overall performance. Even for the constant-
upregualted data sets, only about 60% of the true biclusters
were recovered.

ISA recovered most of the biclusters in all the models
but constant model. However, ISA generated a number of
redundant biclusters that lowered overall relevance scores. A
post-running filter merging the highly overlapping biclusters
might be beneficial for ISA.

“Peng˙BiForce˙Supp” — 2014/2/25 — 11:48 — page 3 — #3i
i

i
i

i
i

i
i

3

SUPPLEMENTARY FILE 3.

Algorithm - Bi-Force
Input: Similarity matrix A (aij ∈A, 1≤ i≤m, 1≤j≤n), a
threshold t.
Parameter: Number of iterations I , attractive factor fatt,
repulsive factor frep, cooling parameter M0 and the radius of
the initial layout R.
Result: The biclusters discovered by Bi-Force.

. Two vectors store the coordinates of the nodes in two sets
pos1=(pos1[1], ..., pos1[m]) . The coordinates for the
nodes in set 1.
pos2=(pos2[1], ..., pos2[n]) . The coordinates for the
nodes in set 2.

initNodePos(pos1,pos2) . Initialize the positions of all
nodes.

for iter=1 TO I do

disp1[]=array[m]
disp2[]=array[n] . Initialize the two movement

vectors for all nodes.

for i=1 TO m do
for j=1 TO n do . Compute the movement

vectors
if aij≥ t then

fi←j=log(d(i,j)+1)·(aij−t) ·fatt/(m+
n)

. Compute attraction force. d(i,j) is the Euclidean
distance.

else
fi←j=1/log(d(i,j)+1)·(aij−t) ·

frep/(m+n)
. Compute compulsion force. d(i,j) is the Euclidean

distance.
end if
disp1[i]+=fi←j ·(pos1[i]−pos2[j])/d(i,j)
disp2[j]−=fi←j ·(pos1[i]−pos2[j])/d(i,j)

end for
end for
for i=1 TO m do . Move the nodes

disp1[i]=disp1[i] ·min{(M(iter)/|disp1[i]|),1}
pos1[i]+=disp1[i]

end for
for j=1 TO n do . Move the nodes

disp2[j]=disp2[j]·min{(M(iter)/|disp2[j]|),1}
pos2[j]+=disp2[j]

end for
end for
biclusters=argmin{cost(SLC(pos1,pos2)),
cost(kmeans (pos1,pos2))} . Run Single-linkage
clustering and Kmeans
biclusters=postprocessing(biclusters)
return biclusters

