
WEB-APPENDIX

A MSCM Model Specification

In the presence of baseline covariates L0, the hazard function can be expressed as the fol-

lowing time-dependent Cox model:

λ(m|L0) = λ0(m) exp
(
ψ1Am + ψ2L0

)
, (A.1)

where m is the visit index, λ0(m) is the unspecified baseline hazard function, ψ1 is the log-

HR of the current treatment status (Am) and ψ2 is the vector of log-HRs for the baseline

covariates. Here the impact of treatment is modelled based on only current exposure1.

In presence of a time-dependent confounder Lm, we may want to expand the above Cox

model to:

λ(m|L0, Lm) = λ0(m) exp
(
ψ1Am + ψ2L0 + ψ3Lm

)
,

which may produce a biased estimate of ψ1 if Lm is influenced by past exposure1. Nonethe-

less, as Lm is a confounder, we still need to adjust for confounding due to Lm somehow.

IPWs are person-time specific measures of the degree to which Lm confounds the treatment

selection process. Therefore, in MSCM, IPWs are used in the time-dependent Cox model

formulation (equation (A.1)) to weight the contribution of each person-time observation so

that the confounding due to Lm is removed.

B Model Specifications for Estimating the Weights

The unstabilized IPTW is expressed as:

wTm =
m∏
j=0

1

pr(Aj = aj|Āj−1 = āj−1, L0 = l0, L̄j = l̄j)
, (B.1)

A pooled logistic regression model is used to estimate the probabilities in equation (B.1) as

follows:

logit Pr(Aj = 1|Āj−1, L0, L̄j) = α0(j) + α1Aj−1 + α2L0 + α3Lj. (B.2)



Here, α0(j) is a smooth function1,2 of the month index j, Aj is the current treatment status,

Aj−1 is the treatment status at the previous time interval, L0 is the collection of baseline

covariates, and Lj is the time-varying confounder. The predicted probabilities from equation

(B.2) yield the estimated probability of the subject’s treatment status at time j. Multiplying

the corresponding probabilities as indicated in equation (B.1) yields the probability of the

observed exposure sequence over m time periods of a given subject.

To obtain the stabilized IPTW, we use the following formula:

swTm =
m∏
j=0

pr(Aj = aj|Āj−1 = āj−1, L0 = l0)

pr(Aj = aj|Āj−1 = āj−1, L0 = l0, L̄j = l̄j)
. (B.3)

The numerator terms are estimated from:

logit Pr(Aj = 1|Āj−1, L0) = α′0(j) + α′1Aj−1 + α′2L0. (B.4)

Dividing the estimated numerator probabilities of the subject’s observed treatment status aj

by the corresponding estimated denominator probabilities yields the estimated IPTWs swTm

that account for the confounding due to L̄m.

Using similar logic to that leading to the IPTW for uncensored patients, the stabilized

IPCW can be obtained as3:

swCm =
m∏
j=0

pr(Cj = 0|C̄j−1 = 0, Āj−1 = āj−1, L0 = l0)

pr(Cj = 0|C̄j−1 = 0, Āj−1 = āj−1, L0 = l0, L̄j−1 = l̄j−1)
, (B.5)

where Cj denotes the binary censoring status taking the value of 1 if the patient was censored

in the j-th month and 0 otherwise. The overall stabilized IPTC weights swm are obtained

by multiplying swTm by swCm
4.

C Constructing a Mini-trial in the Sequential Cox Ap-

proach

To illustrate the method, consider Web-Figure C.1, where the follow–up times for 11 subjects

are outlined. Patient 1 was not under treatment when entering the study. This individual

started taking the treatment in the m = 4th month and was censored during the 5th month.

Similarly subject 5, who was never under treatment was censored during the 6th month.



Web-Figure C.1: An illustration of the sequential Cox approach

Now, suppose we want to create the mimicked trial considering the 4th month as the refer-

ence interval. We eliminate the subjects who received treatment before the 4th month, i.e.,

the 3rd, 7th and 11th subjects are discarded. Then for the subjects who started treatment

after the 4th month, we censor them at the time of treatment start i.e., the 6th and 10th

subjects are censored at the 5th and 6th months respectively. Then, under the assumption

that treatment status remains the same for the entire month, subjects 1, 4 and 9 are consid-

ered the treated group and subjects 2, 5, 6, 8 and 10 are considered the control group, for

the mimicked trial starting at the beginning of 4th month.

In this mimicked trial, a subject is considered either on treatment or off treatment during

the entire duration of the follow-up. Therefore, this manipulated subset of the data mimics

a clinical trial. A Cox proportional hazards model can be used to compare the survival

experiences of these two groups. Similarly, we can identify the subjects for the treatment

and control groups in the mimicked trials starting at the beginning of other months. This

yields multiple mimicked trials, one for each of the time intervals (say, months) of treatment

start. The intervals in which no subject initiates treatment do not have a corresponding

mimicked trial.



One way to get a treatment effect estimate is to fit a stratified Cox model on the combined

data of all mini-trials (pseudo-data), stratified by the treatment initiation time. In this pa-

per, we used this approach. Alternatively, a simple Cox model weighted by IPCW can be

run for each of the successive mini-trials to obtain separate estimates of the treatment effect

for each mini-trial, leading to the name of this approach, the sequential Cox approach. An

overall estimate of the treatment effect is obtained by simply averaging the treatment effect

estimates from the separate mini-trials. Convergence may be an issue if some mini-trials

have only a few subjects, which could be the case in mini-trials starting near the end of the

follow-up. This may have an impact on the estimation of IPCW if we are estimating them

separately for each mini-trial.

The overall estimate (from the above two approaches) requires two additional assumptions

for causal interpretation: (1) the treatment effect is the same in all the mini-trials and (2)

the treatment effect is unchanged for all covariate histories before the m-th interval, given

the covariates at the m-th interval. However, if one is willing to interpret the overall effect

estimate as an aggregated (averaged) effect over all the mini-trials, then the first assumption

can be relaxed5,6. Whether the two estimators (using combined pseudo-data or averaging the

results from the separate mini-trials) are estimating the same target parameter may depend

on satisfying the stated assumptions.

D Implementation of the Sequential Cox Approach in

R

The coxph function in the survival package7 is used to fit both time-independent and time-

dependent Cox PH models. The combined mini-trial (pseudo) dataset can become large due

to repeated use of the same control subjects.

In the coxph function, the option strata is set to fit a stratified Cox model for the sequen-

tial Cox approach. Also, the options such as cluster and robust = TRUE are set to obtain

the robust (sandwich) variance estimate. This is an approximate grouped jackknife variance

estimate8 when multiple observations per subject are present. Aalen’s additive regression is

fitted using the aalen function in the timereg package to estimate the IPCWs6. To obtain

bootstrap estimates9, the lapply function can be used on each bootstrap sample to estimate



the corresponding IPCWs and subsequently the HR from a Cox PH.

E MSCM Data Simulation Algorithm Pseudocode

A number of different simulation schemes are available in the literature to simulate survival

times in the presence of a time-dependent confounder10–16. The algorithm we used11,17

generates data satisfying the conditions of the following three models simultaneously: MSM,

structural nested accelerated failure time model and a structural nested cumulative failure

time model. The steps of this algorithm are also described elsewhere11,12,16,18–20.

GET

n← 2500;

K ← 10 (maximum follow-up);

λ0 ← 0.01 (rare events) or 0.10 (frequent events);

β ← [log(3/7), 2, log(1/2), log(3/2)] (parameter vector for generating L);

α← [log(2/7), (1/2), (1/2), 10] (parameter vector for generating A);

ψ1 ← 0.5 (true log-HR value of the treatment effect)

COMPUTE

FOR ID = 1 to n

INIT: L−1 ← 0; A−1 ← 0; Y0 ← 0; Hm ← 0; c← 30

T0̄ ∼ Exponential(λ0)

FOR m = 1 to K

logit pL ← logit Pr(Lm = 1|Lm−1, Am−1, Ym = 0; β)

← β0 + β1I(T0 < c) + β2Am−1 + β3Lm−1

Lm ∼ Bernoulli(pL)

logit pA ← logit Pr(Am = 1|Lm, Lm−1, Am−1, Ym = 0;α)

← α0 + α1Lm + α2Am−1 + α3Lm−1

Am ∼ Bernoulli(pA)

Hm ←
∫ m+1

0
λāj(j)dj

← Hm + exp(ψ1 × Am)

IF T0 ≥ Hm



Ym+1 ← 0

ELSE

Ym+1 ← 1

T ← m+ (T0̄ −Hm)× exp(−ψ1 × Am)

END IF

ENDFOR m

ENDFOR ID

PRINT

ID, m, Ym+1, Am, Lm, Am−1, Lm−1

F Survival Data Simulation via Permutation Algorithm

This algorithm has been validated for generating survival times conditional on time-dependent

treatment21 and also when time-dependent covariates are present22. This algorithm has been

used in several other studies dealing with generating survival data with time-dependent co-

variates (see for example23–27). The algorithm has the following steps:

1. For each subject i = 1, 2, . . . , n, generate the survival time Ti using a specified distri-

bution.

2. For each subject i, generate the censoring time TCi using a specified distribution.

3. Find the observed survival time T ∗i = min(Ti, T
C
i ) and the binary censoring indicator

Ci = I(Ti ≥ TCi ) = 1 if censored and 0 otherwise.

4. Repeat steps 1-3 n times and sort survival status tuples (T ∗i , Ci) with respect to T ∗i in

increasing order.

5. Generate n covariate matrices Xi = (Aim, Li0, Lim) with dimensions (m × p), where

the m = 0, 1, . . . , K rows correspond to the different time intervals or visits when

measurements are taken and the p columns correspond to the predictor variables,

including treatment (Am), time-fixed and/or time-varying covariates (L0 and/or Lm).

For subject i, Xim, the m-th row of Xi, is a vector of variable values at time m.

6. According to the ordered T ∗i listed in step 3, begin assigning the survival status tuple

(T ∗i , Ci) to covariate values from Xim as follows. At time T ∗i , variable values (treatment



and covariate) are sampled with probabilities pim defined below based on the Cox

model’s partial likelihood:

pim =


exp(ψXim)∑

j∈ri
exp(ψXjm)

, if Ci = 0

1∑
j∈ri

I(j∈ri) , if Ci = 1,

where ψ is the vector of log-HRs for the corresponding variables and I(j ∈ ri) indicates

whether a subject is within a given riskset ri for time T ∗i .

7. The subject i with the covariate values Xim is assigned the observed time T ∗i . The

selected Xim is removed from further calculation.

The permutation algorithm is implemented in the PermAlgo package in R28.

G Summary of Selected Cohorts and Exclusion Crite-

ria

The eligibility criteria used for β-IFN treatment are: patients have to be at least 18 years

old, have an Expanded Disability Status Scale (EDSS) score of 6.5 or below (i.e., able to

walk 20 meters without resting with constant bilateral support) and have definite MS with a

relapsing-onset course. 2, 671 patients met the eligibility criteria to receive β-IFN treatment

between July 1995 and December 200429,30.

Web-Table G.1: Characteristics of the selected cohort of patients with
relapsing-onset multiple sclerosis (MS), British Columbia, Canada (1995-
2008).

Baseline Ever-β-IFN Never-β-IFN
characteristics exposed exposed

Number 868 829
Women, n (%) 660 (76.0) 637 (76.8)
Disease duration, average (SD) 5.8 ( 6.6 ) 8.3 ( 8.5 )
Age, average (SD) 38.1 ( 9.2 ) 41.3 ( 10.0 )
EDSS score, median (range) 2.0 ( 0-6.5 ) 2.0 ( 0-6.5 )
Relapse rate / year†, median (IQR) 0.5 ( 0-1.2 ) 0.5 ( 0-1.0 )

† Over the 2 years prior to baseline.



Of these, patients who were exposed to a non-β-IFN immunomodulatory drug, a cytotoxic

immunosuppressant for MS (n = 172), or an MS clinical trial (n = 21) prior to baseline were

excluded from the analysis. If the exposure occurred after baseline, data were censored at

the start of the exposure to the non-β-IFN treatment. Further exclusion criteria included

unknown MS onset date (n = 10), insufficient EDSS measurements (n = 436), reaching of the

outcome (n = 218) or the secondary progressive stage before the eligibility date (n = 217).

Some patients met multiple exclusion criteria. As a result, 1, 697 patients were selected. A

summary of their characteristics are reported in Web-Table G.1.

H Additional Simulation Results

H.1 When More Events are Available

Results from the more frequent event condition are presented in the Tables H.1-H.2 (λ0 =

0.10 on a monthly scale).



Web-Table H.1: Comparison of the analytical approaches to adjust for time-dependent
confounding from simulation-I (one time-dependent confounder and time-dependent treat-
ment exposure) of 1, 000 datasets, each containing 2, 500 subjects followed for up to 10 time-
intervals (frequent event case).

Approach Bias SD(ψ̂1) se(ψ̂1) Coverage Probability

TD-Cox§ 0.044 0.067 0.065 0.888
Sequential Cox#, † 0.174 0.098 0.097 0.560
Modified Sequential Cox∗, @ -0.035 0.074 0.073 0.924
MSCM‡ 0.000 0.069 0.068 0.942

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural
Cox model.
§ Includes the time-dependent confounder Lm as a covariate. In the presence of a

time-dependent confounder, the time-dependent Cox model is not appropriate but
the results are retained for comparison purposes.

# Adjusts for L̃m.
† For the stabilized IPCWs, the numerator model adjusts for Am, while the denomi-

nator model adjusts for Am and L̃m via Aalen’s additive regression.
∗ Adjusts for lagged values of Am, the time-dependent confounder ~Lm, and lagged

values of ~Lm. Note that, baseline covariates are not present in this setting.
@ For the stabilized IPCWs, the numerator model adjusts for Am, while the denom-

inator model adjusts for Am, ~Lm and lagged values of ~Lm via Aalen’s additive
regression.
‡ The stabilized IPTW numerator model adjusts for time index and lagged values of
Am, while the denominator model additionally adjusts for current and lagged values
of Lm to predict future treatment status via pooled logistic models.



Web-Table H.2: Comparison of the analytical approaches to adjust for time-dependent
covariate from simulation-II (one baseline covariate, one time-dependent covariate and time-
dependent treatment exposure) of 1, 000 datasets, each containing 2, 500 subjects followed for
up to 10 time-intervals (frequent event case).

Approach Bias SD(ψ̂1) se(ψ̂1) Coverage Probability

TD-Cox§ -0.002 0.059 0.060 0.960
Sequential Cox#, † 0.218 0.063 0.064 0.074
Modified Sequential Cox∗, @ -0.034 0.083 0.083 0.945
MSCM±, ‡ -0.014 0.058 0.060 0.952

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural
Cox model.
§ The baseline covariate L0 and time-dependent covariate Lm are included.
# Adjusts for L0 and L̃m.
† In the stabilized IPCW model, the numerator model adjusts for Am and L0, while

the denominator model adjusts for Am, L0 and L̃m via Aalen’s additive model.
∗ Adjusts for baseline covariates L0, lagged values of Am, the time-dependent con-

founder ~Lm, and lagged values of ~Lm.
@ For the stabilized IPCWs, the numerator model adjusts for Am and baseline variable
L0, while the denominator model adjusts for L0, Am, ~Lm and lagged values of ~Lm
via Aalen’s additive regression.
± Adjusts for only L0.
‡ For the stabilized IPTWs, the numerator model adjusts for the time index, L0

and lagged values of Am, while the denominator model additionally adjusts for
current and lagged values of Lm to predict future treatment status via pooled logistic
models.



I Additional MS Data Analysis: Modified Sequential

Cox Approach

The HRs for the treatment estimated using a the modified sequential Cox approach when

IPCWs are calculated from different approaches are reported in Web-Table I.1. The anal-

yses are adjusted for baseline covariates: sex, EDSS score, age, disease duration and time-

dependent confounder ‘cumulative relapse’ measured at baseline, treatment initiation month

and its lagged value.

Web-Table I.1: Estimated hazard ratio using the modified sequential Cox approach
to estimate the causal effect of β-IFN on time to sustained EDSS 6 for patients with
relapsing-onset multiple sclerosis (MS), British Columbia, Canada (1995-2008), when
IPCWs are calculated using different approaches.

IPCW HR se(ĤR) 95% CI Weights
estimation Average (SD) range

No weights 1.36 0.26 0.93 - 1.99
Aalen’s regression‡ 1.36 0.26 0.93 - 1.99 1.00 ( 0.01 ) 0.92 - 1.24
Aalen’s regression† 1.36 0.26 0.94 - 1.99 1.00 ( 0.02 ) 0.41 - 1.31
Pooled logistic‡ 1.36 0.26 0.93 - 1.99 1.00 ( 0.01 ) 0.36 - 1.51
Pooled logistic† 1.36 0.26 0.93 - 1.99 1.00 ( 0.01 ) 0.95 - 1.15

‡ IPCW estimated from each mini-trial separately.
† IPCW estimated from the aggregated data of all mini-trials.



Web-Figure I.1: Density plots of the estimated IPC weights via Aalen’s additive regression from the MS data (estimated from the
aggregated data of all mini-trials) in all the reference intervals using the modified sequential Cox approach



Web-Figure I.2: Density plots of the estimated IPC weights via pooled logistic from the MS data (estimated from the aggregated data
of all mini-trials) in all the reference intervals using the modified sequential Cox approach



Web-References

[1] M.A. Hernán, B. Brumback, and J.M. Robins. Marginal structural models to estimate

the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology,

11(5):561–570, 2000.

[2] Z. Fewell, M.A. Hernán, F. Wolfe, K. Tilling, H. Choi, and JA Sterne. Controlling

for time-dependent confounding using marginal structural models. The Stata Journal,

4(4):402–420, 2004.

[3] J.M. Robins, S. Greenland, and F.C. Hu. Estimation of the causal effect of a time-

varying exposure on the marginal mean of a repeated binary outcome. Journal of the

American Statistical Association, 94(447):687–700, 1999.

[4] J.M. Robins, M.A. Hernán, and B. Brumback. Marginal structural models and causal

inference in epidemiology. Epidemiology, 11(5):550–560, 2000.

[5] J.M. Gran, K. Røysland, M. Wolbers, V. Didelez, J.A.C. Sterne, B. Ledergerber, H. Fur-

rer, V. von Wyl, and O.O. Aalen. A sequential Cox approach for estimating the causal

effect of treatment in the presence of time-dependent confounding applied to data from

the Swiss HIV Cohort Study. Statistics in Medicine, 29(26):2757–2768, 2010.

[6] T. Lange and N.H. Rod. Causal models. In Handbook of Survival Analysis, pages

135–151. CRC Press, 2013.

[7] T. Therneau. A Package for Survival Analysis in S, 2014. R package version 2.37-7,

Last accessed: Sep-15,2014.

[8] T.M. Therneau. Modeling Survival Data: Extending the Cox Model. Springer, 2000.

[9] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. CRC press, 1994.

[10] J. Bryan, Z. Yu, and M.J. van der Laan. Analysis of longitudinal marginal structural

models. Biostatistics, 5(3):361–380, 2004.

[11] J.G. Young, M.A. Hernán, S. Picciotto, and J.M. Robins. Relation between three classes

of structural models for the effect of a time-varying exposure on survival. Lifetime Data

Analysis, 16(1):71–84, 2010.

[12] Y. Xiao, M. Abrahamowicz, and E.E.M. Moodie. Accuracy of conventional and marginal

structural Cox model estimators: A simulation study. The International Journal of

Biostatistics, 6(2):1–28, 2010.

[13] D. Westreich, S.R. Cole, E.F. Schisterman, and R.W. Platt. A simulation study of finite-



sample properties of marginal structural Cox proportional hazards models. Statistics in

Medicine, 31(19):2098–2109, 2012.

[14] W.G. Havercroft and V. Didelez. Simulating from marginal structural models with

time-dependent confounding. Statistics in Medicine, 31(30):4190–4206, 2012.

[15] J.G. Young and E.J. Tchetgen Tchetgen. Simulation from a known Cox MSM using

standard parametric models for the g-formula. Statistics in Medicine, 33(6):1001–1014,

2014.

[16] E.E.M. Moodie, D.A. Stephens, and M.B. Klein. A marginal structural model for

multiple-outcome survival data: assessing the impact of injection drug use on several

causes of death in the Canadian co-infection cohort. Statistics in Medicine, 33(8):1409–

1425, 2014.

[17] J.G. Young, M.A. Hernán, S. Picciotto, and J.M. Robins. Simulation from structural

survival models under complex time-varying data structures. In JSM Proceedings, Sec-

tion on Statistics in Epidemiology, pages 1–6. American Statistical Association, 2008.

[18] R.A. Ali, M.A. Ali, and Z. Wei. On computing standard errors for marginal structural

Cox models. Lifetime Data Analysis, 20(1):106–131, 2014.

[19] M.E. Karim. Causal inference approaches for dealing with time-dependent confounding

in longitudinal studies, with applications to multiple sclerosis research, 2015. Ph.D.

Thesis, University of British Columbia.

[20] N. Mojaverian, E.E.M. Moodie, A. Bliu, and M.B. Klein. The impact of sparse follow-up

on marginal structural models for time-to-event data. American journal of epidemiology,

182(12):1047–1055, 2015.

[21] T. Mackenzie and M. Abrahamowicz. Marginal and hazard ratio specific random data

generation: Applications to semi-parametric bootstrapping. Statistics and Computing,

12(3):245–252, 2002.

[22] M.P. Sylvestre and M. Abrahamowicz. Comparison of algorithms to generate event

times conditional on time-dependent covariates. Statistics in Medicine, 27(14):2618–

2634, 2008.

[23] M. Abrahamowicz and T.A. MacKenzie. Joint estimation of time-dependent and non-

linear effects of continuous covariates on survival. Statistics in Medicine, 26(2):392–408,

2007.



[24] M. Sylvestre and M. Abrahamowicz. Flexible modeling of the cumulative effects of time-

dependent exposures on the hazard. Statistics in Medicine, 28(27):3437–3453, 2009.

[25] A. Mahboubi, M. Abrahamowicz, R. Giorgi, C. Binquet, C. Bonithon-Kopp, and

C. Quantin. Flexible modeling of the effects of continuous prognostic factors in rel-

ative survival. Statistics in Medicine, 30(12):1351–1365, 2011.

[26] M. Abrahamowicz, M. Beauchamp, and M. Sylvestre. Comparison of alternative models

for linking drug exposure with adverse effects. Statistics in Medicine, 31(11-12):1014–

1030, 2012.
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