

Supplementary Figure 1. Dot1 has a binding preference for Sas2-mediated H4K16ac

(a, b) Samples were collected by trichloroacetic acid (TCA) precipitation and subjected to Western blotting. (a) Plasmids encoding histone H4 with lysine-to-arginine mutations were inserted into the wzy42 strain. Wild-type (lanes 1, 2), H4K12R (lanes 3, 4), and H4K16R (lanes 5, 6) samples were loaded with a gradient of the total protein concentration. (b) Wild-type (lanes 1, 2) and $sas2\Delta$ (lanes 3, 4) cells were grown at 30°C, while the temperature-sensitive mutant, esa1-414 (lanes 7, 8) and its wild-type control (lanes 5, 6) were grown at 37°C.

(c, d) Boxplot of normalized read count ChIP-seq data. H3K79me3 is indicated in blue, while H3K79me1 is shown in red. (c) H3K79me3 and H3K79me1 at transcribed regions of wild-type cells; the plot represents RPKM values calculated for genes with a high level of H3K79me3 (n=2,672). (d) H3K79me3 and H3K79me1 at transcribed regions of wild-type cells; the plot represents RPKM values calculated for genes with a low level of H3K79me3 (n=1,204). Asterisks (***) indicates p-value <0.001 (Wilcoxon-and-Mann-Whitney tests).

(e) Average plot of H3K79me3 (upper) and H3K79me1 (bottom) in wild-type and $sas2\Delta$ cells at genes showing a low level of H3K79me3 (n=1,204).

(f) Peptide pull-down assay indicates that binding preference of Dot1p to H4 tail which acetylated lysine peptides (H4, H4K5ac, H4K8ac, H4K12ac, H4K16ac). The bar graph represents values quantified from three experimental replications; error-bars show the s.d. for the biological replicates (right).

(g) The calculated equilibrium dissociation constant, $K_D[M]$, dissociation constant, $K_d[1/s]$, and association constant, $K_a[1/Ms]$, for Dot1p at each H4 tail peptide, as determined using the BLItz system.

Supplementary Figure 2. Dot1p plays a role similar to that of Asf1 for cryptic transcription in Set2-Rpd3S pathway-disrupted cells

(a) Spotting assay using pGAL1-FLO8-HIS3 reporter strains. Wild-type and mutant strains were diluted 5-fold and spotted onto synthetic complete (SC) medium supplemented with 2% glucose (upper panel) and histidine-lacking SC medium supplemented with 2% galactose (-His SC+Gal, lower panel). Plates were incubated at 30°C for 3 days.

(b) A Boxplot of the log2 mRNA-seq RPKM values of wild-type (black), $sas2\Delta$ (blue), and $dot1\Delta$ (magenta) mutants for genes that showed increased mRNA expression in $set2\Delta$ cells (number of genes, n=533) (left panel). mRNA-seq data in wild-type (grey), $sas2\Delta$ (blue), and $dot1\Delta$ (magenta) mutants for the cryptic loci, *STE1* and *SPB4*. The plus and minus values of the y-axis indicate level of mRNA read counts and the sense and antisense strands, respectively (left to right, +; right to left, -). The read count data were obtained from biological duplicates (right panel). The abbreviation n.s. indicates p-value>0.05 (Wilcoxon-and-Mann-Whitney tests).

(c) A Boxplot of \log_2 fold-change values for $set2\Delta$ (black) and $dot1\Delta set2\Delta$ (magenta) mutants versus wild type in the reference group of cryptic genes (n=213). Asterisks (***) indicates p-value <0.001 calculated by Wilcoxon-and-Mann-Whitney tests.

(d) A Boxplot of log₂ fold-change values for *set2* Δ (black), *dot1* Δ *set2* Δ (magenta), and *asf1* Δ *set2* Δ (blue) mutants versus wild type for genes sorted based on increased mRNA expression in *set2* Δ cells (n=533). Asterisks (***) indicates p-value <0.001 calculated by Wilcoxon-and-Mann-Whitney tests.

(e) Venn diagrams. In the left panel, gene groups were separated on the basis of clear mRNA down-regulation in double mutants compared to those exhibiting increased mRNA in *set2A* cells (n=533), as assessed using Cuffdiff (log₂ fold change <-0.4; p-value <0.05). The colored circles indicate groups of genes from *dot1* Δ *set2* Δ (magenta, n=90) or *asf1* Δ *set2* Δ (blue, n=222) cells. The right panel shows gene groups that exhibited mRNA down-regulation in double mutants compared to *set2* Δ cells (assessed using Cuffdiff). Colored circles indicate groups of genes from *dot1* Δ *set2* Δ (blue, n=708) cells. Hypergeometric *P* value is 6.7E-16 (upper panel) and 4.6E-4 (lower panel).

Supplementary Figure 3. Cryptic transcription overlaps with increased histone exchange in *set2*∆ cells

(a) A Venn diagram depicting the overlap between genes that show increased histone exchange across transcribed regions (blue, n=3,053) and those that show increased mRNA expression (cryptic expression) following the deletion of *SET2* (orange, n=533). Hypergeometric *P* value is 4.6E-167.

(b) The ChIP-seq average plot of H4ac normalized by H3. The values for $set2\Delta$ (black),

 $sas2\Delta set2\Delta$ (magenta), and $sas2\Delta$ (blue) cells were calculated as the log₂ ratios of the mutant over wild type. The values of the y-axis indicate log₂ fold change level of H4ac/H3 ChIP-seq in mutants over wild-type cells. The data set included all transcribed regions of yeast (number of genes, n=6,692), and were obtained from biological duplicates.

(c) Boxplot of histone H3 \log_2 fold-change values obtained for $sas2\Delta$ (blue) at the transcribed regions of all yeast genes (number of genes, n=6,692). The y-axis indicates \log_2 fold change of H3 in mutants over wild-type. The shadowed box indicates negative values, which mean decrease in mutant compared to wild-type.

(d) Histone turnover is slightly decreased at the centers of transcribed regions with long-length genes in *sas2* Δ cells. A boxplots of Flag/Myc RPKM values obtained at the centers of the transcribed regions for each gene length cluster (i.e., >2 kb and 0.5-1 kb). Asterisks (***) indicates p-value <0.001 calculated by Wilcoxon-and-Mann-Whitney tests.

Supplementary Figure 4. Dot1 stimulates nucleosome-remodeling activity regardless of the remodeler type

Sliding assays for Rsc2p, Chd1p, and Isw1p were performed with Dot1p (lanes 3, 4), nucleosome binding-defective mutant Dot1(101-140 Δ) (lanes 5, 6), DNA-binding-defective mutant Dot1(147-172 Δ) (lanes 7, 8), Dot1(101-172 Δ) (lanes 9, 10), and H4 tail binding-defective mutant EDVDE Δ (lanes 11, 12).

(n= 1,325) (n=2,266) (n=1,600)

Supplementary Figure 5. The enrichment of RNAPII at the centers of transcribed regions is related to gene length

Boxplots for RNAPII (anti-8WG16; calculated as the log₂ RPKM) at the centers of transcribed regions versus gene groups clustered by gene length cluster (i.e., >2 kb, 1-2 kb, and 0.5-1 kb). Asterisks (***) indicates p-value <0.001 calculated by Wilcoxon-and-Mann-Whitney tests.

Supplementary Figure 6. Deletion of DOT1 does not clearly affect nucleosome positioning or occupancy

(a) Average plot of MNase-seq data, as analyzed by DANPOS2. Gray line indicates the average plot in wild-type cells, while the red line indicates the average plot in $dot 1\Delta$ cells. The plot presents the 1 kb regions upstream and downstream of the TSSs of genes with well-positioned nucleosomes (n=1,441).

(b) Heatmap of MNase-seq data. Nucleosome occupancy was calculated as the log₄₀₀ ratio of normalized values, using DANPOS2.

Supplementary Figure 7. ChIP-seq peak are highly reproducible

Pairwise correlations of ChIP-seq replicate signal at (a) H3K79 monomethylation (H3K79me1), (b) H3K79 trimethylation (H3K79me3), (c) H4K16 acetylation (H4K16ac), (d) H4 panacetylation (H4ac), and (e) H3 peaks in mutants and wild-type cells for whole number of genes (n=6,692). All data were obtained from biological duplicates. The RPKM in transcribed regions was taken as the peak occupancy. The correlation coefficient R^2 for each pairwise comparison is shown.

Supplementary Figure 8. mRNA-seq values are highly reproducible

Pairwise correlations of mRNA-seq replicate signal in mutants and wild-type cells for cryptic transcription genes (n=553). All data were obtained from biological duplicate samples. The RPKM in transcribed regions was taken as the peak occupancy. The correlation coefficient R^2 for each pairwise comparison is shown.

Supplementary Figure 9. ChIP-seq, ATAC-seq, and MNase-seq peak are highly reproducible

Pairwise correlations of ChIP-seq replicate signal at (a) Flag and (b) Myc in $dot1\Delta$ and wildtype cells for whole number of genes (n=6,692). (c) Pairwise correlations of ATAC-seq replicate signal in $sas2\Delta$, $set2\Delta$, $dot1\Delta$, and wild-type cells for all genes (n=6,692). (d) Pairwise correlations of MNase-seq replicate signal in $dot1\Delta$ and wild-type cells for whole number of genes (n=6,692) All data were obtained from biological duplicate samples. (a-c) The RPKM in transcribed regions was taken as the peak occupancy for ChIP-seq and ATAC-seq. (d) The sum of calculated nucleosome occupancy value from DANPOS2 was taken as the peak occupancy for MNase-seq. The correlation coefficient R² for each pairwise comparison is reported.

Supplementary Figure 10. Original Western blot film in Fig. 1 and Fig. 4

The uncropped scans of Western blot exposed to x-ray films in (a) Fig. 1a (b) Fig. 4c.

Supplementary Figure 11. Original blots images in Fig. 4

(a) The uncropped scan of coomasie blue stained SDS-PAGE gel in Fig. 4a. (b) The uncropped and pre-inversion image of EtBr stained native polyacrylamide gel in Fig. 4c. (c) The uncropped image of native polyacrylamide gel exposed using a FLA-7000 (Fuji) in Fig. 4d.

Supplementary Table 1. List of strains used in the study

Strain	Genotype	Parental strain	Source
wzy42	MATa; ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200	wzy42	Roth, SY
	leu2∆1 hht1-hhf1::pWZ405-F2F9-LEU2 hht2-		
	hhf2::pWZ403-F4F10-HIS3 ycP50-copyII(HHT2-HHF2-		
	URA3)		
ySY501	pWZ414-TRP1 HHT2-HHF2(K5A)	wzy42	This study
ySY503	pWZ414-TRP1 HHT2-HHF2(K8A) wzy42 This st		This study
ySY505	pWZ414-TRP1 HHT2-HHF2(K12A) wzy42 This stu		This study
ySY507	pWZ414-TRP1 HHT2-HHF2(K16A) wzy42 This		This study
SC007	pWZ414-TRP1 HHT2-HHF2(K16R)	wzy42	This study
SC008	pWZ414-TRP1 HHT2-HHF2(K12R)	wzy42	This study
w303a	MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15	w303a	
ySH159	set2A::TRP1	w303a	This study
ySH160	dot1∆::TRP1	w303a	This study
LPY4774	esa1-414	w303a	Pillus, L
ySY103	sas2∆::KAN	w303a	This study
yHH302	LEU::pGAL1-FLO8-HIS3	w303a	This study
yHH302	LEU::pGAL1-FLO8-HIS3 set24::TRP	w303a	This study
yHH302	LEU::pGAL1-FLO8-HIS3 sas2\Delta::HYGMX set2A::TRP	w303a	This study
yHH302	LEU::pGAL1-FLO8-HIS3 dot1\Delta::HYGMX set2A::TRP	w303a	This study
ySH1020	set2A::HIS3 dot1A::TRP1	w303a	This study
ySH1022	set2Δ::HIS3 Dot1(G401R)	w303a	This study
ySH1024	set2Δ::HIS3 Dot1(101-140Δ)	w303a	This study
yHH532	set24::NAT	wzy42	This study
SC546	set2A::HYG H3K79R	wzy42	This study
SC542	asf1\Delta::NAT set2A::HYG	w303a	This study
SC528	asf1\Delta::KAN set2A::HYG dot1A::TRP1	w303a	This study
ySH1026	bar1∆::KAN	w303a	This study
SC526	bar1∆::KAN sas2∆::HYG	W303a	This study
ySH1028	bar1∆::KAN dot1∆::TRP1	w303a	This study
ySH1055	bar1Δ::NAT Dot1(101-140Δ)	w303a	This study

SC544	bar1A::HYG set2A::TRP1	w303a	This study
SC514	bar1\Delta::HYG set2A::HIS3 dot1A::TRP1	w303a	This study
SC667	bar1A::HYG set2A::TRP1 sas2A::HYG	w303a	This study
YKW409	MATa; lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 hht1-	wzy42	This study
	hhf1::pWZ405-F2F9-LEU2 hht2-hhf2::pWZ403-F4F10-		
	HIS3 [pNOY439(CEN6 ARS4-TRP1 MYC-HHT2-		
	HHF2)] ura3-52: YIplac211pGAL1/10-FLAG-HHT1-		
	HHF1 bar1∆::KAN		
	bar1∆::KAN		
YKW410	as YKW409, dot1∆::NAT	wzy42	This study

Antibody target	Supplier	Dilution	Catalog#
Flag	Sigma	1:200 (for ChIP)	F1804
Мус	prepared by Lee Lab	1:100 (for ChIP)	
Histone H3	prepared by Lee Lab	1:1000; 1:200 (for ChIP)	
Histone H3	Millipore	1:10000	05-928
Pan-acetylated H4	Millipore	1:200 (for ChIP)	06-866
H3K79me3	prepared by Lee Lab	1:2000; 1:200 (for ChIP)	
H3K79me2	prepared by Lee Lab	1:1000	
H3K79me1	prepared by Lee Lab	1:1000; 1:100 (for ChIP)	
H4K16ac	prepared by Lee Lab	1:1000; 1:200 (for ChIP)	
Dot1	prepared by Lee Lab	1:1000	
RNAPII 8WG16	Biolegend Inc.	1:50 (for ChIP)	mms-126R

Supplementary Table 2. List of antibodies used in the study

Gene	Sequence
PCA1#1_F	CAAAGGTTATAGGTGCCAGAG
PCA1#1_R	GCAGCCTACACGAACTAAAT
PCA1#2_F	CAGATGCTGTCTCCACTATTAAC
PCA1#2_R	CGTTGCGTGAGAACGAATA
FLO8#1_F	CAATTCCRCCCACGGAACAACCGTAC
FLO8#1_R	CCGCCGTAGGTTGATTTATCCACTGCTG
FLO8#2_F	GAGATCGTAATCCGGTCCTTGGTCTC
FLO8#2_R	GAAACCTCTGCATCTACAAATAGTGGCG
Actin_F	GTGTGATGTCGATGTCCGTAAG
Actin_R	CGGAGTACTTTCTTCTGGAGG
Lateral_F	GGATCCTCTAGAGTCGGGAGC
Lateral_R	CTGGAGAATCCCGGTGCC
Central_F	CTGGCACCGGCAAGGTCG
Central_R	TCCCTTATGTGATGGACC

Supplementary Table 3. List of primers used in the study