Relationship between brachial-ankle and heart-femoral pulse wave velocities and the rapid decline of kidney function Sung Woo Lee^{1,2}, Seung Hyeok Han³, Tae Hyun Yoo³, Wookyung Chung⁴, Sue K. Park^{5,6,7}, Dong Wan Chae⁸, Curie Ahn⁸, and *Kook-Hwan Oh⁸ ¹Department of Internal Medicine, Seoul National University Postgraduate School, Seoul, Korea ²Department of Internal Medicine, Eulji University, Eulji General Hospital, Seoul, Korea ³Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea ⁴Department of Internal Medicine, Gachon University, Gil Hospital, Incheon, Korea ⁵Department of Preventive Medicine, Seoul National University College of Medicine, S eoul. Korea ⁶Cancer Research Institute, Seoul National University, Seoul, Korea ⁷Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea ⁸Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea *Correspondence to: Kook-Hwan Oh e-mail: ohchris@hanmail.net Tel) 82-2-2072-0776 Fax) 82-2-741-4876 Address) Department of Internal Medicine, Seoul National University Hospital 101 *Daehak-ro, Chong No Gu* 03080, Seoul, Korea **Figure S1. Flowchart of the patients' selection.** baPWV, brachial-ankle pulse wave velocity; eGFR, estimated glomerular filtration rate. Table S1. Clinical characteristics of study population according to CKD stages | | Stage 1 (n = 230) | Stage 2 (n = 350) | Stage 3 (n = 721) | Stage 4 (n = 405) | Stage 5 (n = 89) | Р | |----------------------|-------------------|-------------------|-------------------|-------------------|------------------|---------| | Age (years) | 44.1 ± 11.7 | 50.7 ± 11.6* | 56.5 ± 11.2* | 57.5 ± 10.9* | 56.1 ± 11.8* | < 0.001 | | Male sex (%) | 47.8 | 66.1* | 65.0* | 59.2* | 42.7 | 0.938 | | Alcohol drinking (%) | 56.6 | 55.6 | 44.0* | 34.5* | 23.8* | < 0.001 | | Smoking (Pack-year) | 7.0 ± 15.0 | 10.7 ± 16.9 | 12.9 ± 18.8 * | 14.2 ± 20.7 * | 8.7 ± 17.2 | 0.001 | | Hypertension (%) | 89.6 | 95.2* | 96.7* | 97.3* | 96.6* | < 0.001 | | RAS inhibitor (%) | 79.6 | 88.6* | 88.5* | 86.8* | 86.5* | 0.078 | | Beta blocker (%) | 14.3 | 17.1 | 25.9* | 32.5* | 31.5* | < 0.001 | | CCB (%) | 23.0 | 33.9* | 45.5* | 54.3* | 60.7* | < 0.001 | | Diuretics (%) | 11.7 | 17.9* | 32.3* | 44.7* | 51.7 | < 0.001 | | Diabetes (%) | 11.5 | 13.5 | 28.9* | 38.8* | 37.1* | < 0.001 | | CVD (%) | 3.5 | 5.1 | 12.5* | 14.7* | 9.0* | < 0.001 | | Cause of CKD | | | | | | | | DMN (%) | 7.0 | 13.1* | 26.0* | 39.6* | 36.0* | < 0.001 | | HN (%) | 8.3 | 16.5* | 24.2* | 22.5* | 15.7* | < 0.001 | | GN (%) | 45.7 | 36.8* | 31.3* | 24.2* | 31.5* | < 0.001 | | Others (%) | 39.1 | 33.6 | 18.4* | 13.7* | 16.9* | < 0.001 | |-----------------------------------|------------------|------------------|--------------------|--------------------|--------------------|---------| | SBP (mm Hg) | 126.4 ± 14.4 | 127.1 ± 15.2 | 128.3 ± 15.9 | $130.4 \pm 17.3*$ | 131.4 ± 19.1 | < 0.001 | | DBP (mm Hg) | 77.6 ± 10.4 | 77.8 ± 11.2 | 76.5 ± 10.6 | 76.6 ± 12.2 | 75.6 ± 10.7 | 0.050 | | PP (mmHg) | 48.8 ± 10.5 | 49.3 ± 11.6 | 51.8 ± 13.1 * | $53.8 \pm 13*$ | 55.8 ± 15.2 * | < 0.001 | | HR (counts/min) | 73.4 ± 13.1 | 73.9 ± 13.0 | 72.8 ± 12.7 | 73.7 ± 13.0 | 71.8 ± 12.8 | 0.491 | | baPWV (m/s) | 13.3 ± 2.0 | 14.4 ± 2.8 * | $15.6 \pm 3.3*$ | 16.4 ± 3.8 * | 16.0 ± 3.4 * | < 0.001 | | hfPWV (m/s) | 8.5 ± 1.5 | $9.4 \pm 2.1*$ | 10.4 ± 2.6 * | 11.0 ± 3.0 * | 10.8 ± 2.8 * | < 0.001 | | BMI (kg/m ²) | 24.1 ± 3.7 | 24.5 ± 3.4 | $24.7 \pm 3.2*$ | $24.5 \pm 3.4*$ | 24.3 ± 3.4 | 0.338 | | FPG (mmol/l) | 5.7 ± 1.3 | 5.9 ± 1.7 | 6.3 ± 2.3 | 6.3 ± 2.5 | 6.4 ± 2.6 | < 0.001 | | BUN (mmol/l) | 4.8 ± 1.3 | 6.1 ± 1.8 * | 8.9 ± 2.8 * | 14.5 ± 4.4* | 21 ± 6.4* | < 0.001 | | Calcium (mmol/l) | 2.31 ± 0.11 | 2.32 ± 0.10 | 2.30 ± 0.12 | $2.24 \pm 0.12*$ | 2.15 ± 0.18 * | < 0.001 | | Phosphorus (mmol/l) | 1.14 ± 0.17 | 1.12 ± 0.18 | 1.15 ± 0.18 | 1.26 ± 0.21 * | 1.47 ± 0.19 * | < 0.001 | | Cr (µmol/l) | 61.8 ± 12.3 | 88.7 ± 15.1* | 137.9 ± 28.5 * | 236.5 ± 52.6 * | 382.7 ± 75.4 * | < 0.001 | | eGFR (ml/min/1.73m ²) | 110.1 ± 19.8 | 73.3 ± 8.6 * | 43.7 ± 8.7* | 23.0 ± 4.4* | 12.5 ± 1.7* | < 0.001 | | Bilirubin (µmol/l) | 14.6 ± 6.2 | $13.4 \pm 5.5*$ | 11.6 ± 4.6 * | $9.0 \pm 3.4*$ | 8.1 ± 2.8 * | < 0.001 | | Albumin (g/l) | 43.2 ± 3.9 | 43.0 ± 3.7 | $42.0 \pm 4*$ | 40.5 ± 4.4 * | $40.5 \pm 4.2*$ | < 0.001 | |----------------------|----------------|-----------------|------------------|------------------|------------------|---------| | Cholesterol (mmol/l) | 4.8 ± 1.0 | 4.7 ± 0.9 | 4.5 ± 1.0 * | 4.4 ± 1.1* | 4.4 ± 1.0 * | < 0.001 | | Hemoglobin (g/dl) | 14.0 ± 1.5 | 14.1 ± 1.7 | 13.0 ± 1.9* | 11.5 ± 1.5* | 10.5 ± 1.2 * | < 0.001 | | Ln-hsCRP (nmol/l) | 1.4 ± 1.3 | 1.8 ± 1.3 * | 1.8 ± 1.4* | 2.1 ± 1.4* | 1.8 ± 1.3 | < 0.001 | | Ln-UPCR (g/g Cr) | -1.5 ± 1.5 | -1.5 ± 1.5 | -0.8 ± 1.5 * | -0.1 ± 1.3* | $0.1 \pm 1.2*$ | < 0.001 | RAS, renin angiotensin-aldosterone system; CCB, calcium channel blocker; CVD, cardiovascular disease; baPWV, brachial-ankle pulse wave velocity; CKD, chronic kidney disease; DMN, diabetic nephropathy; HN, hypertensive nephropathy; GN, glomerulonephritis; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; hfPWV, heart-femoral pulse wave velocity; BMI, body mass index; FPG, fasting plasma glucose; BUN, blood urea nitrogen; Cr, creatinine; eGFR, estimated glomerular filtration rate; hsCRP, high sensitivity C-reactive protein; UPCR, urine protein-to-creatinine ratio. Values are expressed as mean \pm standard deviation for continuous variables and percentage for categorical variables. *P*-trend was analyzed by linear-term of one-way ANOVA for continuous variables and a linear-by-linear association for categorical variables. Except for hfPWV (619/1801, 34.4%) and smoking year (286/1801, 15.9%), missing rate of all above variables was below 8.9%. * meant P < 0.05 when compared to CKD stage 1 by using Bonferroni post-hoc analysis of one-way ANOVA for continuous variables and chi-square test for categorical variables.